miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Ese fantásticio mundo…, de lo muy pequeño!

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Partículas!    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico”.

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

Cada día se avanza más en el conocimiento de los elemetos, y, el último descubierto ha sido el “Copernicium”, Este  nuevo  elemento   de  la  tabla  periódica,  que  clasifica  los elementos en función de sus propiedades químicas, es 277 veces más pesado que el hidrógeno. De hecho,  es el elemento más pesado oficialmente reconocido por la Unión Internacional de Química Pura y Aplicada (IUPAC)”, según  el  Centro  de  investigación  de  iones  pesados  (GSI)  de Darmstadt (Alemania), que lo fabricó.

Pero sigamos: El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

Isótopos naturales del hidrógeno

Los tres isótopos del hidrógeno. El protio y el deuterio son estables, pero el tritio no: uno de sus neutrones emite pronto una partícula beta y se convierte en un protón, dando lugar al helio-3 (2 protones, 1 neutrón). El hidrógeno-4, aunque existe, es en extremo inestable y pierde rápidamente su tercer neutrón para convertirse de nuevo en tritio.

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión  a 20’5º K.

Todo gira en el Universo, desde las partículas hasta los mundos, las estrellas y las galaxias que forman supercúmulos que también giran. El Universo es dinámico, todo en él tiene un movimiento un ritmo que está marcado por las leyes fundamentales de la naturaleza.

Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre, las matemáticas, la única que finalmente lo podrá explicar todo.

physicistsca.jpg

            Fotografía del espín atómico por primera vez conseguido

Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1943 y 1944 respectivamente, por sus trabajos sobre dicho fenómeno.

Estadística Fermi-Dirac para las Fermiones

 

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

 

Estadística Bose-Einstein para los Bosones

 

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.

Los bosones tienen un momento angular nh/2π, donde n es cero o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1894 – 1974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma  un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en  definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

Así, los fermiones están asociados con la idea que tenemos de materia. Obedecen la estadística de Fermi-Dirac. Cumplen el principio de exclusión de Pauli (dos fermiones no pueden ocupar el mismo estado cuántico a la vez). Tienen espín semientero. Cada fermión posee su propio anti-fermión. Hay 12 fermiones diferentes: 6 son quarks y 6 son leptones. Los fermiones se agrupan en tres familias o tres generaciones: cada uno consistente en una pareja de quarks y una pareja de leptones.

Tres quarks forman un protón, que es un nucleón y también un fermión. Los quarks son portadores de carga de color y por ello interaccionan con la llamada fuerza fuerte. También poseen carga eléctrica e isospín débil, por lo que también interaccionan con la fuerza electromagnética y la fuerza débil. Hay 6 tipos de quarks llamados up, down, charm, strange, top and bottom (o beauty).

La fuerza fuerte les confina de forma que se encuentran siempre agrupados formando compuestos sin carga de color: los hadrones. Éstos pueden estar constituidos por 3 quarks (y se llaman entonces bariones) o por una pareja de quark y antiquark (los mesones, que en realidad son bosones). Nuestros bien conocidos protones y neutrones son un tipo de bariones, y están por tanto compuestos por 3 quarks.


        Familias de quarksleptones y partíuclas de fuerza (bosones) que rigen el universo de la materia.

 

Los leptones no tienen carga de color, por lo que no interaccionan con la fuerza fuerte. A este grupo pertenecen el electrón, el muón y el tau, además de los neutrinos que cada uno lleva asociado, el neutrino electrónico, el muónico y el tauónico.

El electrón, el muón y el tau tienen carga eléctrica e interaccionan con la fuerza electromagnética y la fuerza débil. Los neutrinos no tienen carga eléctrica, por lo que sólo interaccionan con la fuerza débil, una de las razones por las que son difíciles de detectar.

Entre los bosones gauge encontramos a los fotones (portadores de la fuerza electromagnética), los gluones (portadores de la fuerza fuerte) y los bosones W+, W- y Z (portadores de la fuerza débil).

          El Bosón de Higgs no sabemos… todavía, que pelaje tendrá

Además está teorizada la existencia del bosón de Higgs (de espín cero), que es una partícula elemental que explicaría el origen de la masa de las partículas elementales. Es la única partícula del Modelo Estándar de la que no hay todavía evidencia experimental. El gran colisionador de hadrones (LHC) del CERN espera descubrir pronto a este escurridizo bosón.

Hadrón, leptón, muón, barión, fermión …. ¡Vaya lío!. No te desanimes con tan variada fauna, sólo quería presentarte a sus principales componentes, así podrás identificarlos en sus grupos cuando oigas hablar de ellos y hacerte una idea de sus propiedades y de cómo interaccionan. Escucharás muchos más nombres raros llamados con letras griegas (lambda, sigma, delta …), no te alarmes, muy probablemente serán tipos de hadrones.

Quédate con esto:

“Por lo que conocemos hasta ahora, los ladrillos fundamentales de nuestro universo son los quarks, los leptones y los bosones portadores de fuerza.”

Puede que, con las explicaciones aquí dadas, alguien haya podido alcanzar una mejor comprensiòn de todo este fantástico mundillo de las partículas subatómicas que, como se dice más arriba, son los componentes más fundamentales del Universo y de lo que todo, lo que conocemos, está hecho. También nosotros.

Pensándolo bienn… ¡Qué imaginación tiene la Naturaleza!

 

emilio silvera

¡Los pensamientos! ¿Quién nos los puede quitar?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los procesos científicos que comentamos en este lugar, los fenómenos del Universo que hemos debatido y, también,  los misterios y secretos que el inmenso Cosmos nos oculta han contribuido, aunque inadvertidamente, a comprometer e involucrar a nuestra especie en la vastedad del universo. La astronomía ha venido a descorrer el velo, que supuestamente, aislaban la Tierra de los ámbitos etéreos que están situados mucho más allá de la Lunase hallan, todo eso, nos llevó lejos al auténtico Universo que ahora, sí conocemos. La Física cuántica llegó para destruir esa barrera invisible que separaba lo grande de lo muy pequeño y que supuestamente, separaba al observador distante del mundo observado; descubrimos que estamos inevitablemente enredados en aquello que estudiamos.

Comparación entre estructuras del universo y de la vida

La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, reveló una unidad cósmica que se extiende desde la fusión nuclear en las estrellas hasta la química de la vida que allí se produce a lo largo de todo el Universo. La evolución darwiniana, al destacar que todas las especies de la vida terrestre están relacionadas y que todas surgieron de la materia ordinaria, puso de manifiesto que no hay ninguna muralla que nos separe de las otras criaturas de la Tierra, o del planeta que nos dio la vida: que estamos hechos del mismo material del que están hechos los mundos.

  Bio-moléculas, precursoras de la vida en el espacio

La convicción de que, en cierto sentido, formamos una unidad con el universo, por supuesto, ha sido afirmada antes muchas veces, en otras esferas de pensamiento. Hahvé creó a Adán del polvo; el griego Heráclito escribió que “todas las cosas son una sola”; Lao-tse, en China, describió al hombre y la naturaleza como gobernados por un solo principio (“lo llamó el Tao”); y la creencia en la unidad de la Humanidad con el cosmos estaba difundida entre los pueblos anteriores a la escritura, como lo puso de relieve el jefe indio suquamish Seattle, quien declaró en su lecho de muerte que, “todas las cosas están conectadas, como la sangre que une a una misma familia. Todo es como una misma familia, os lo digo”.

               La física sugiera que la vida, pudiera ser un fenómeno cuántico antes que biológico

Pero hay algo sorprendente en el hecho de que la misma concepción general ha surgido de ciencias que se enorgullecen de su lúcida búsqueda de hechos objetivos, empíricos. Desde los mapas de cromosomas y los registros fósiles que representan las interconexiones de todos los seres vivos de la Tierra, hasta la semejanza de las proporciones químicas cósmicas con las de las especies vivas terrestres, nos muestran que realmente formamos parte del universo en su conjunto.

La verificación científica de nuestra participación en las acciones del cosmos tiene, desde luego, muchas implicaciones. Una de ellas es, si la vida inteligente ha evolucionado en este planeta, también puede haberlo hecho en otras partes. La Teoría de la evolución de Darwin, aunque no explica el antiguo enigma de por qué existe la vida, deja claro que la vida puede surgir de la materia ordinaria y evolucionar hasta una forma “inteligente”, al menos en un planeta como la Tierra que gira alredeedor de una estrella como el Sol (más de dioez mil millones en la Vía Láctea solamente) y, presumiblemente, más que unos pocos planetas semejantes a la Tierra, podemos especular que no somos la única especie que ha estudiado el universo y se ha preguntado sobre su papel en él.

Nuestra comprensión de la relación entre la Mente el el Universo puede depender de que podamos tomar contacto con otra especie inteligente con la cual compararnos. Raramente la ciencia ha obtenido buenos resultados al estudiar fenómenos de los que sólo tenía un ejemplo: Las leyes de Newton y Einstein habrían sido mucho más difíciles -quizá imposibles- de fortmular si sólo hubiese habido un planeta para someterlas a prueba, y a menudo se dice que el problema de la cosmología es que sólo tenemos un universo para examinar. (El descubrimiento de la evolucoión cósmica reduce un poco esta dificultad al ofrecer a nuestra consideración el estado muy diferente del universo en los primeros momentos de la evolución cósmica.) La cuestión de la vida estraterrestre, pues, va más allá de problemas  como el de si estamos solos en el universo, o si podemos esperar tener compañia cósmica o si debemos temer invasiones exteriores; también es un modo de examinarnos a nosotros mismos y nuestra relación con el resto de la Naturaleza.

¿Quién sabe lo que nos podemos encontrar ahí fuera? Sabemos que las moléculas biológicas de la vida están en las Nebulosas, y, también sabemos que existen muchos mundos que, como la propia Tierra, pueden albergar formas de vida de tan rica diversidad como, la Naturaleza, es capaz de producir.

Aunque mucho de esto es nuevo, el interés reciente por la vida estraterrestre puede considerarse como un resultasdo del último vuelco en la fortuna del materialismo, la doctrina filosófica según la cual es posible explicar los sucesos exclusivamente en términos de interacciones materiales, sin recurrir a conceptos insustanciales tales como el espíritu. El darwinismo engendró una nueva actitud de respeto hacia las potencialidades de la materia ordinaria:

“Un montón de barro en un charco de agua de lluvia empieza a parecer mágico, si se piensa que sus iguales de antaño lograron elevarse hasta dar origen a todo el conjunto de la vida terrestre, inclusive la del individuo que contempla el barro.”

Una persona reflexiva, recordando que su ascendencia se remonta, a través de los mamíferos, hasta los peces, los aminoácidos, los azúcares de la materia prebiótica, no puede estar de acuerdo con Martín Lutero en que la Tierra es “sucia” y “nociva”, o aceptar el veredicto de la Christia Sciencie de que “no hay vida, verdad, sustancia ni inteligencia en la materia”.

En realidad -al menos eso creo-, la materia tiene memoria y está predeterminada para lo que tiene que hacer, sigue lo que le dicta la Naturaleza que la lleva, de manera irremediable…, hacia la vida.

Históricamente, los materialistas se han inclinado a pensar que hay vida en otros mundos. El atomista Metrodoro escribió en el siglo IV a. de C. que:

“Considerar la Tierra como el único mundo poblado en el espacio infinito es tan absurdo como afirmar que en todo un campo sembrado de mijo sólo un grano crecerá”.

Cinco siglos más tarde, el epicuréo Lucrecio sostuvo que “hay infinitos mundos iguales y diferentes de este mundo nuestro”. La Iglesia católica romana, convencida de que los seres humanos son esencialmente espíritus inmateriales, se sintió amenazada por el punto de vista materialista: cuando Giordiano Bruno, el decano renacentista del misticismo popular, afirmaba que la materia “es en verdad toda la naturaleza y la madre de todo lo vivo, y declaró que Dios “es glorificado, no en uno, sino en incontables soles; no es una sola Tierra, sino en mil, que digo, en infinidad de mundos”, fue atado a una estaca de hierro y quemado vivo, el 19 de febrero de 1600, en la Piazza Campo dei Fiori de Roma.

                  Giordano Bruno, quien fue sometido a un proceso que le llevaría a la hoguera

Sin embargo, cuando la ciencia creció también lo hizo el materialismo, y con él la creencia de una pluralidad de mundos. Podríamos seguir por este camino y filosofar sobre lo que fue, lo que es y, lo que probablemente será pero, el tiempo se me acaba y, desde luego, no quisiera cerrar este trabajo sin dejar una falsa sensación.

La Ciencia está muy bien, el materialismo viene a poner nuestros pies en el suelo y hacer que nos fijemos en las cosas tal como son o, al menos, tal como creemos que son. Sin embargo, una cuestión me tiene desconcertado: ¿Cómo podemos sentir en la forma que sentimos? ¿De donde vienen esos sentimientos? ¿Será quizá una muestra suprema de la evolución del mundo material? ¿Tendrá memoria la materia?

Por si acaso, yo dejaría aquí un gran signo de interrogación, ya que, hemos alcanzado una pequeña cota de la altísima montaña que nos hemos propuesta escalar, y, desde luego, no sabemos lo que nos podremos encontrar cuando lleguemos a cotas más elevadas, ya que, pensar en llegar al final…no parece nada fácil.

Una cosa sí que está clara para mí:

¡Que hay mucha vida en el Universo y que, la única libertad que tenemos…, son nuestros pensamientos!

La primera tenemos que demostrarla y, la segunda, simplemente con mirar la Historia…, hallaremos la respuesta.

emilio silvera