Feb
11
En el Universo… ¡Todo se transforma!
por Emilio Silvera ~ Clasificado en Astrofísica ~ Comments (0)
La Astrofísica nuclear es una rama relativamente joven de la física entre cuyos objetivos destaca la descripción de las reacciones mediante las cuales tiene lugar la generación de energías y la síntesis de elementos químicos en el Universo. Se trata, por tanto, de un campo multidisciplinar que combina las observaciones astronómicas, con el análisis de la composición de meteoritos, la modelización astrofísica y la física nuclear tanto experimental como teórica.
En 1957, E.M. Burbidge, W.A. Fowler and F. Hoyle y de manera independiente A.G.W. Cameron publicaron sendos artículos clave, donde definen los principales procesos que explican la transformación de unos núcleos en otros, asentados en base de la Astrofísica nuclear.
Representación artística de la creación de moléculas orgánicas en el universo primitivo. La síntesis del carbono en el corazón de las estrellas continúa planteando algunos retos teóricos. [NASA/JPL-Caltech/T. Pyle (SSC)]
A lo largo de la segunda mitad del siglo XX, la Astrofísica nuclear ha conseguido importantes logros que sin duda están íntimamente conectados al impresionante avance experimentado por las técnicas instrumentales y de medidas asociadas y por la capacidad de cálculo numérico.
Los diferentes procesos de nucleosíntesis que tienen lugar durante la vida de una estrella dan lugar a la creación de nuevos elementos químicos que son expulsados al medio interestelar. Estos elementos pasan a formar parte de una nueva generación de estrellas, y pueden ser detectados mediante estudios espectroscópicos. La mejora de las técnicas utilizadas en la instrumentación observacional y de los métodos de detección espectroscópicos, la construcción de grandes telescopios como el VLT y el Keck a los que pronto se añadirá el Gran TeCan, y la posibilidad de hacer observaciones desde el espacio sin la interferencia de la atmósfera terrestre (Telescopio Hubble, Chandra, XMM Newton e Integral), ha permitido obtener toda una nueva visión del universo que nos rodea.
La Física nuclear experimental tampoco ha sido ajena a todos estos avances tecnológicos, desarrollando haces de núcleos estables e inestables y la instrumentación necesaria para realizar experimentos de precisión. Las reacciones nucleares que intervienen en los procesos astrofísicos son reacciones de fusión; reacciones de captura de protones, de neutrones y de partículas alfa y sus inversas; y procesos mediados por la interacción débil tales como las desintegraciones beta, capturas de electrones y de neutrinos. En algunos casos se miden reacciones inducidas por núcleos estables y energías próximas a las que se dan en las estrellas, con secciones eficaces muy pequeñas, que necesitan el uso de instalaciones subterráneas (LUNA) capaces de blindar los equipos de detección a la radiación de origen cósmico.
En otros casos, se estudian reacciones inducidas por núcleos inestables (también llamados núcleos exóticos), con una vida media muy corta, y difíciles de sintetizar en el laboratorio con la tecnología actual. No obstante, en las últimas décadas, numerosas instalaciones de haces de núcleos exóticos (Louvain la Neuve, GANIL, GSI, ISOLDE) han desarrollado programas experimentales en los que se han determinado las propiedades fundamentales (masas y vidas medias) y propiedades de la estructura de núcleos claves en reacciones de interés Astrofísico. Igualmente se han medido un número importante de secciones eficaces asociadas a los diferentes procesos de nucleosíntesis. Por otro lado, la construcción de instalaciones de tiempo de vuelo de neutrones (n_ToF arroba CERN) ha permitido el desarrollo de programas dedicados al estudio de la captura neutrónica. Así mismo, las nuevas instalaciones que se construirán en los próximos años (FAIR, SPIRAL 2) incluyen en sus programas científicos el estudio de reacciones nucleares de interés astrofísico.
En la mayor parte de los Modelos Astrofísicos la Física Nuclear Teórica es necesaria para convertir un texto experimental en el ritmo de reacción que es necesario en la aplicación astrofísica concreta. Ahora mismo nos encontramos al comienzo de una nueva era de desarrollo de modelos teóricos basados en primeros principios (ab-anitio). Esto permitirá reducir las incertidumbres asociadas con extrapolaciones a regiones de la carta de núcleos que no han sido exploradas experimentalmente, pero que son relevantes para diferentes procesos astrofísicos como es el caso de núcleos muy ricos en neutrones para el proceso r.
De forma complementaria, se han producido grandes avances en la modelización astrofísica de las diferentes etapas de evolución estelar. Los desafíos actuales se centran en la realización de simulaciones en tres dimensiones espaciales de los diferentes fenómenos astrofísicos y en particular de las espectaculares explosiones de supernovas tanto termonucleares como debidas al colapso gravitatorio.
Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:
H, He, (Li, Be, B) C, N, O… Fe
¿Apreciáis la maravilla? Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas.
La explosión de una estrella gigante y supermasiva hace que esta brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, como el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.
Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en cada momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de SER.
¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Claro que, el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.
Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
¡Maravillas de la materia!
El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.
Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella y, la Astrofísica, nos abrirá el camino para comprender, lo que la materia es (ayudada por ingenios como el LHC).
emilio silvera