viernes, 20 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Marte: cada día menos misterioso

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Planeta Tierra pequeño

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

Ni la NASA, se tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Claro que después, parece que recapacitaron y enviaron al planeta Marte ingenios robotizados que forman ya una larga lista y, cada una de esas misiones, nos posibilitaron conocer mejor aquel planeta. Se encontró hielo de agua, han diluido porciones de la tierra marciana en agua y debidamente tratada, han hallado la presencia de magnesio, sodio, potasio y cloruros.  Sabemos, por las maravillosas fotografías allí tomadas, que el planeta conoció mejores tiempos en los que, mares y océanos y grandes conterrías de agua, eran lo natural y hemos podido ver las huellas de todo aquellos maravillosos procesos. Ahora tenemos más que evidencias de la presencia del agua, la presencia de sales y otros vestigios, así lo confirman y, los compuestos para la vida…andan cerca.

 Archivo:Mars global surveyor.jpg

Se están analizando los gases y los compuestos químicos del suelo y del hielo allí encontrados, y, todo ello, debidamente procesado nos dará una respuesta de lo que allí existe. La Curiosity está haciendo su trabajo y hará posible que los datos sobre aquel planeta sean cada vez más abundantes y fiables.

 

                                                                          El Invernadero Marciano

En muchas de las fotografías que nuestros ingenios espaciales han tomado de muchos lugares de Marte, podemos ver, sin ningún lugar a dudas, que el agua corrió rumorosa por sus regajos y canales. Los “ríos marcianos” ofrecen una clara evidencia de que el planeta fue en algún momento más caliente y más húmedo. Pero, ¿cómo pudo ser esto? A primera vista hay una buena razón para creer que Marte debería haber estado aún más frío en el pasado que lo está hoy. Dicha razón tiene que ver con el denominado problema del Sol joven. A medida que el Sol envejece, se hace poco a poco más brillante debido a cambios en su constitución química.

Hace cuatro mil millones de años, habría sido un 30 por 100 más tenue de lo que  es hoy, reduciendo drásticamente su efecto calentador sobre el lejano Marte. Esto estaría contrarrestado en parte por el calentamiento geotérmico, producido por la radiactividad y el calor almacenado procedente de la formación del planeta, y ambos efectos fueron mucho más fuertes en el pasado. Sin embargo, el flujo de calor geotérmico por sí sólo no compensaría el efecto del Sol joven, tenue, y hay que encontrar otras razones para un clima más tibio.

La manera más fácil de hacer un planeta más caliente es utilizando el efecto invernadero. Los gases invernadero tales como el dióxido de carbono actúan como un parasol, atrapando el calor del Sol cerca de la superficie del planeta. Hoy la atmósfera marciana es demasiado delgada para producir mucho calentamiento por efecto invernadero, pero ciertamente habría sido mucho más espesa durante los primeros mil millones de años. Como sucede con la Tierra, Marte adquirió una densa atmósfera inicial tanto por la degasificación del planeta como por el aporte de sustancias volátiles por parte de cometas, asteroides y planetesimales helados. Un CO2 abundante habría elevado la temperatura de modo espectacular.

Gullied Trough Wall

Sin la presencia de agua, nunca se podrían formar estas figuras que vemos ahí. La erosión peroducida por el paso del agua, es inconfundible. En Marte había agua en abundancia que corría por su superficie, y, hoy, sabemos que sigue ahí congelada en la interperie y, no podríamos decir, en qué estado está en el subsuelo.

Aunque los científicos conjeturan que Marte debe de haber tenido mucho más CO2 en el pasado, no es fácil dar una cifra para ello. Primero hay que determinar dónde ha ido a parar el CO2. Con mucha probabilidad, la mayor parte de él se perdió en el espacio como resultado de impactos cósmicos masivos. La colisión de cometas grandes con planetas provoca erosión por impacto, que vacía la atmósfera. En el caso de Marte, el resultado final fue un aire poco denso, pero durante el propio período de bombardeo, la presión habría fluctuado de forma incontrolada. Los cálculos sugieren que Marte perdió el 99 por 100 a partir de entonces debido a procesos diversos. Si estos números son correctos, implican que Marte puede haber tenido en el pasado una presión atmosférica mil veces más alta que la actual, suficiente para elevar la temperatura por encima del punto de congelación y mantener incluso un extenso océano.

Omega Pyroxene Detection

Existen marcas de las señales dejadas en las costas por los océanos de Marte. La subida del agua en bajamar y pleamar, dejaron señales inconfundibles de que, el océano estuvo allí. No hay dudas de que Marte tuvo alguna vez una atmósfera gruesa, puesto que las paredes de los cráteres producidos por impactos más antiguos han sufrido una fuerte erosión. Cráteres de menos de 15 kilómetro han sido completamente aniquilados. Por el contrario, los últimos cráteres apenas están erosionados. Tras datar el cambio, los investigadores creen que la atmósfera se redujo espectacularmente no mucho después del final del último bombardeo intenso, hace 3.800 millones de años.

La mayoría de las inundaciones catastróficas parecen haber ocurrido antes o aproximadamente en esa época, porque los canales de descarga están adornados por un montón de cráteres pequeños y bien conservados. Es la falta de erosión durante la mayor parte de la historia marciana la que ha mantenido sus cursos de agua extraordinariamente antiguos en una condición virginal. En la Tierra, ningún valle fluvial sobreviviría durante miles de millones de años.

Una vez que acabó el bombardeo, el dióxido de carbono de Marte siguió fugándose, por varias causas. Parte de él escapó al espacio, parte se disolvió en el agua o quedó absorbido en el regolito, y una gran cantidad puede haber quedado incorporada en carbonatos u otros minerales en las rocas. Sin algún proceso compensatorio, el CO2 hubiera sido engullido en muy poco tiempo. Probablemente, el calentamiento geotérmico invirtió algunos de estos procesos y devolvió parte del CO2 a la atmósfera.

artist's concept portrays a NASA Mars Exploration Rover on the surface of Mars

Hasta el momento hemos podido enviar allí a distintos ingenios en forma de sondas espaciales y naves que, han hecho un buen trabajo y nos han acercado a la realidad de un planeta que, posiblemente, en su subsuelo, pueda contener algunas formas de vida. El Tiempo pasa, la técnica avanza y… ¿Que nos impedirá, más adelante, enviar robots más especializados para que, de una vez por todas investiguen si hay vida en el subsuelo del planeta?, o, todavía mejor, ¿Un viaje tripulado por astronautas una vez que logremos los conocimientos necesarios para asegurar sus vidas?

Durante unos cientos de millones de años puede haber habido una presión  atmosférica moderadamente alta y un calentamiento asociado por efecto invernadero. Finalmente, sin embargo, el calor geotérmico desapareció, el reciclaje del CO2 flaqueó, y la presión atmosférica cayó en picado, produciendo el desierto liofilizado que vemos hoy en Marte.

El hecho de que parezca que algunos valles fluviales han sido excavados en fecha relativamente reciente sugiere episodios ocasionales de calentamiento. Una posible explicación procede de procesos de realimentación. Si un calentamiento geotérmico local o un estallido de vulcanismo llegasen a liberar repentinamente grandes cantidades de agua en la superficie, entonces un montón de dióxido de carbono disuelto se escaparía con ella. Esto, a su vez, elevaría la temperatura, con lo que se fundiría más agua y se liberaría más CO2. A medida que el agua fundida inundaba las bajas tierras congeladas, calentaría el regolito liberando aún más CO2. En total, podría haberse liberado en el planeta de esta forma incontrolada una cantidad suficiente de dióxido de carbono para crear temporalmente una atmósfera más densa con un calentamiento pronunciado por efecto invernadero.

Archivo:VallesMarinerisHuge.jpg

¿Cuántas historias nos podrían contar los geólogos mirando está imagen?

Los Valles Marcianos que tardaron millones ede años en formarse, y, toda la orografía del planeta, nos habla de un pasado mejor, en el que el agua, estaba presente en abundancia y en los distintos estados en que son conocidos en la Tierra.

Otro mecanismo comodín concierne al movimiento del planeta. Marte tiene una órbita bastante excéntrica, y ninguna luna que pueda estabilizar su eje de giro. Habría habido veces en que condiciones favorables de los movimientos de rotación y orbital condujeran a un calentamiento solar considerablemente aumentado. En ocasiones, el eje de rotación podría haberse inclinado mucho, de modo que los polos recibieran más luz del Sol que las regiones ecuatoriales. Esto hubiera fundido los casquetes polares y producido un efecto invernadero en aumento. En el balance global, episodios repetidos de inundación, formación de océanos y glaciación, seguidos por largos períodos de inactividad, parecen más probables que el simple enfriamiento ininterrumpido.

Respecto a la posibilidad de vida, el hecho de que Marte  estuviese caliente y húmedo hace entre 3.800 y 3.500 millones de años es altamente significativo, pues significa que Marte se parecería a la Tierra en una época en que la vida existía aquí. Esto ha llevado a algunos científicos a concluir que Marte habría sido también en esa época un lugar apropiado para la vida. Por sí misma, sin embargo, la presencia de agua líquida es sólo una parte de la historia. Lo que hace que las perspectivas de vida parezcan tan buenas es que Marte no sólo tiene agua líquida, sino también volcanes.

¿Hubo vida en Marte?

 

Montañas Heladas de Marte

 

Lo que sí hay son heladas montañas y abundantes volcanes que nos hablan de su actividad del pasado.

 

La montaña marciana del Monte Olimpo se eleva 27 kilómetros sobre el macizo de Tharsis y tiene 550 kilómetros de diámetro. Medida por medida, es la montaña más grande de su tipo en el Sistema Solar, equivalente a amontonar siete montes Everets de la Tierra. La importancia del Monte Olimpo no está en su tamaño, sino en el hecho de que es un volcán. Donde se dan juntos volcanes y agua, pueden aparecer fuentes calientes: sistemas hidrotermales como los de la Tierra que posiblemente fueron un hogar para los primeros organismos. ¿Floreció también la vida microbiana en Marte hace 3.800 millones de años, quizá en alguna fuente burbujeante en la pendiente del Monte Olimpo, o en las profundidades de las rocas porosas por debajo de un mar marciano hace tiempo desaparecido?

 

 

            La menor Gravedad de Marte, hace posible que sus montañas, sean inmensas, mucho mayores que las de la Tierra.

Hace cuatro mil millones de años, Marte aún resplandecía con el calor de su formación. La radiactividad calentaba la corteza. Los impactos cósmicos fundían la superficie. A medida que el planeta luchaba para deshacerse de este calor primordial, escupía lava de los volcanes a una escala masiva, creando inmensas llanuras de roca fundida similares a los mares de la Luna. A medida que la corteza se enfriaba lentamente, este vulcanismo declinaba continuamente: para la época que cesó el bombardeo intenso, estaba básicamente confinado a tres regiones principales: Tharsis, Elysium y Hellas. Si hay volcanes vivos hoy en Marte, no están manifestando ningún signo de actividad. Sin embargo, ha habido erupciones a lo largo de toda la historia marciana: por ejemplo alrededor del monte Olimpo dentro de los últimos mil quinientos millones de años, y cerca de Alba Patera en épocas tan recientes como hace quinientos millones de años. Puesto que es poco probable que Marte estuviera  volcánicamente activo durante cuatro mil millones de años sólo para cesar su actividad en épocas relativamente recientes, parece razonable concluir que siguen existiendo algunos puntos calientes, probablemente en el subsuelo profundo.

Valle Marineris, un extenso valle de arena

Marte tiene regiones que nos son tan familiares como las de la Tierra

En el pasado remoto debe haber habido muchas oportunidades para que se formasen  fuentes calientes alrededor de chimeneas termales, dada la abundancia de agua en el planeta. Hay clara evidencia de la interacción de agua y volcanes en los exámenes fotográficos. Muchas de las inundaciones fueron probablemente desencadenadas por  lava que fundía el permafrost y el hielo del suelo, y se puede ver como algunos cursos de agua emergen claramente desde debajo de los flujos de lava. Los canales de desagüe se acumulan también alrededor  de la región altamente volcánica de Tharsis. En otros lugares, densas redes de valles decoran los flancos de los volcanes.

Hay colinas de cima plana que se parecen a las tablas montañosas de Islandia, donde la lava ha rezumado desde debajo del hielo. Cordilleras de forma característica en Elysium llevan también la huella de una combinación de lava y hielo. Todo esto constituye una fuerte evidencia circunstancial de sistemas hidrotermales en el antiguo Marte, aunque todavía no han sido detectados depósitos minerales específicos, lo que sería un signo claro y evidente.

El Monte Olimpo del Planeta Marte

                                                                          El Monte Olimpo

Mientras esperan nuevas misiones marcianas, los científicos de la NASA han estado ocupados en identificar puntos en la superficie del planeta donde podría haber tenido lugar actividad hidrotermal. La ladera del volcán Hadríaca Pladera parece un buen lugar. Aquí se encuentran muchos valles fluviales enmarañados que fluyen desde el borde de la antigua caldera, cruzados por un canal espectacular que emerge abruptamente a mitad de pendiente. Otro volcán, Apollinaris Patera, domina una región de aspecto singularmente brillante cerca del borde de la caldera, que podría ser un depósito mineral de fuente caliente. Un volcán similar en el área llena de cráteres conocida como Terra Cimmeria ha erosionado fuertemente las pendientes y está situado en el comienzo de un enorme curso de agua.

Muchos valles fluviales en Marte se dan en terreno caótico, donde hay grandes bloques de roca en masas revueltas. Se cree que esta topografía se formó cuando la roca fundida se introdujo en el hielo del suelo. Cuando el hielo se fundió, el agua fluyó haciendo que la tierra colapsara de una forma azarosa. Tales áreas serían un lugar perfecto para que aparecieran sistemas hidrotermales poco profundos.

Si, en efecto, la vida se asentó en una fuente caliente, quizá haya dejado restos fosilizados. Es probable que los fósiles marcianos hayan soportado las inclemencias del tiempo mejor que sus homólogos terrestres debido a la relativa falta de erosión climática. Futuras misiones de aterrizaje podrían buscar muestras para traer a la Tierra. Otros depósitos de fósiles potenciales incluyen valles fluviales, donde las inundaciones han podido arrastrar minúsculos organismos marcianos a las charcas estancadas, y la enorme grieta del Valle Marineris, donde estratos profundos han quedado expuestos. También tienen interés los lechos lacustres secos, en cuyos sedimentos se habrían podido depositar microbios. El cráter conocido como Gusev parece un candidato prometedor, puesto que un gran río desembocó una vez en él. Debe haber habido allí hace tiempo un lago profundo, con montones de sedimentos en el fondo.

                                                  La misión Pathfinder

El primer y pequeño paso siguiendo estos indicadores llegó en julio de 1977, cuando la misión Pathfinder depositó con éxito la primera nave espacial en Marte desde los tiempos de las Vikingo. Con su pequeño vehículo todo terreno Sojourner, la Pathfinder transmitió una gran riqueza de datos desde la boca de la llanura inundada Ares Vallis. En el terreno próximo a la nave espacial, hay esparcidas bolsa de rocas arrastradas por el torrente. Estos detritos podrían incluir fragmentos de un antiguo sistema hidrotermal, o incluso fósiles de microbios de la subsuperficie profunda llevados a la superficie con la inundación y transportados corriente abajo. Por desgracia, la Pathfinder no tenía capacidad de verificar estas conjeturas.

En septiembre de 1997, Mars Global Surveyor entró en órbita. Estaba diseñada para cartografiar la superficie del planeta con precisión en una escala de un metro y proporcionó una valiosa información sobre la historia hidrológica de Marte y los probables refugios para la vida. Hay Imágenes que nos hablan de una de la evidencia de una antigua orilla oceánica, charcas secas dentro de un cráter e incluso indicios de depósitos minerales asociados con sistemas hidrotermales, todo lo cual favorece las perspectivas de vida pasada.

Hemos buscado la evidencia de la vida en aquel planeta y, no se descarta la idea de que, si seguimos insitiendo, la vida en Marte, aparecerá en forma fósil referida a la que estuvo presente en el pasado y, posiblemente, en los túneles y grutas que existen como vestigios de la rica vida volcánica del planeta, se encontrarán, formas de vida presente que vendrán a confirmar que, la vida, es algo natural en todo nuestro universo. Simplemente requiere del tiempo necesario y de las condiciones idóneas para su aparición.

emilio silvera

 

 

 

 

¿Vida de Silicio? ¿Será posible?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Yo sigo pensando (sin negar nada de otros posibles caminos),  que no es el Silicio,  sino el Carbono,  el que trae consigo la posibilidad de la Vida en el Universo conocido. Conforme a las leyes que rigen nuestro Universo y las conocidas interacciones que tienen con la materia, es el Carbono el que, por sus excepcionales cualidades, puede proporcionarnos una cantidad de variedades y adaptabilidad que, ni el Silicio y cualquier otro elemento parece tener…pero, ¿quién sabe?

http://www.yalosabes.com/images//vida-silicio.jpg

Anoche acabé de repasar el pequeño librito de Asimov “Cien preguntas básicas sobre Ciencia” y, de entre todas ellas, os he sacado la que aquí os transcribo por ser un tema que muchas veces hemos comentado en esta página. Asimov, como sabéis, era químico y le gustaba la Ciencia en General, él se metía de cabeza en todos los campos y, para dejar volar su imaginación, se refugiaba en la Ciencia ficción, parcela en la que, no salió mal parado al conseguir grandes éxitos.

“Todos los seres vivientes, desde la célula más simple hasta la sequoia más grande, contienen agua, y además, como la molécula más abundante, con mucho. Inmersas en el agua hay moléculas muy complejas, llamadas proteínas y ácidos nucleicos, que al parecer son características de todo lo que conocemos por el nombre de vida. Estas moléculas complejas tienen una estructura básica compuesta en cadenas y anillos de átomos de carbono. A casi todos los carbonos van unidos uno o más átomos de hidrógeno. A una minoría, en cambio, van ligadas combinaciones de átomos como los de oxígeno, nitrógeno, azufre y fósforo.

Los átomos de silicio reemplazan a los de carbono dentro del grafeno.

Los átomos de silicio reemplazan a los de carbono dentro del grafeno.¿Lo hará también para la vida?

Expresándolo con la máxima sencillez podemos decir que la vida, tal como la conocemos, está compuesta de derivados de hidrocarburos en agua.

¿Puede la vida estar compuesta de otra cosa? ¿Existen otros tipos de moléculas que proporcionen la complejidad y versatilidad de la vida, algo distinto del agua que proporcione, sin embargo, las propiedades poco usuales, pero necesarias, que sirven como trasfondo de la vida?

¿Es posible concebir algo parecido al agua que pudiera sustituirla? Las propiedades del amoníaco líquido son las más afines a las del agua. En un planeta más frío que la Tierra, por ejemplo, Júpiter, donde el amoníaco abunda en estado de líquido mientras que el agua está solidificada, puede que sea concebible una vida basada en el amoníaco.

El amoniaco está constituido por moléculas de composición NH3. Los átomos del hidrógeno son equivalentes. La molécula tiene, por tanto, forma piramidal es decir presenta una hibridación sp3, donde tres de los orbitales se solapan con los hidrógenos y el que resta se queda con los electrones no compartidos. Los ángulos de enlace son algo menores que los de un tetraedro debido a la nube electrónica del par solitario que los reduce a un ángulo de 107º 20´. El nitrógeno ocupa el vértice de una pirámide, cuya base es un triángulo equilátero formado por los tres átomos de hidrógeno.

Así que, en el amoniaco tenemos átomos de hidrógeno unidos al nitrógeno , que es un átomo pequeño y electronegativo, por lo que el amoniaco presentará enlaces intermoleculares de puntes de hidrógeno al igual que la molécula de agua.El hecho de que el amoniaco presente este tipo de enlace entre sus moléculas hace que sus puntos de fusión y ebullición, el calor de vaporización, la constante dieléctrica, etc… sean anormalmente altos.

Bianca Atwell y el átomo

          Mirando dentro del átomo…

Por otro lado, hay que decir que si el hidrógeno va unido a tantos puntos de la cadena de carbono es porque se trata de un átomo muy pequeño que se acopla en cualquier lugar. El átomo de flúor es parecido al de hidrógeno en algunos aspectos y casi tan pequeño como él. Así pues, igual que tenemos una química de los hidrocarburos podemos tener una química de los fluocarburos, con la única salvedad de que éstos son mucho más estables que aquéllos. Quizá en un planeta más caliente que la Tierra podría concebirse una vida a base de fluorocarburos.

Pero ¿y en cuanto al átomo de carbono? ¿Existe algún sustituto? El carbono puede unirse a un máximo de cuatro átomos diferentes (que pueden ser también de carbono) en cuatro direcciones distintas, y es tan pequeño que los átomos de carbono vecinos se hallan suficientemente próximos para formar un enlace muy fuerte. Esta característica es la que hace que las largas cadenas y anillos de carbono sean estables.

Glucosa

Se puede ver que la glucosa se compone de seis átomos de carbono (Carbo…) y los elementos de seis moléculas del agua (…hidrato). La glucosa es un azúcar simple, en el sentido de que a nuestra lengua su sabor es dulce. Hay otros azúcares simples que también habrás escuchado:

  • Fructosa
  • Galactosa
  • Lactosa
  • Sacarosa
  • Maltosa

La glucosa, fructosa y galactosa se conocen como monosacáridos. Lactosa, sacarosa, maltosa y son llamados disacáridos (que contienen dos monosacáridos).

El silicio es, después del oxígeno (O) el segundo elemento más abundante en la tierra: la corteza terrestre está formada en aprox. 28 % de silicio. Cada átomo de silicio central puede enlazarse adicionalmente con dos átomos de carbono, normalmente en grupos metilo (CH3). En los átomos de silicio de los extremos se suelen enlazar tres grupos metilo. El silicio es un elemento tetravalente, es decir, que puede formar 4 enlaces covalentes. En la tabla periódica se encuentra en el grupo IV, justo debajo del carbono (C). El silicio presenta una gran afinidad con el oxígeno.

El silicio se parece mucho al carbono y también puede unirse a un máximo de cuatro átomos diferentes en cuatro direcciones distintas. El átomo de silicio, sin embargo, es mayor que el de carbono, con lo cual las combinaciones silicio-silicio son menos estables que las de carbono-carbono. La existencia de largas cadenas y anillos de átomos de silicio es mucho más improbable que en el caso de carbono.

Lo que sí es posible son largas y complicadas cadenas de átomos en las que alternan el silicio con el oxígeno.

Moléculas de dióxido de silicio formando una macla de cristales de cuarzo. Créditos: www.123rf.com

Personalmente creo que el Silicio dará más juego en el campo de la I.A. (Vida Artificial) que en esta otra clase de vida que nosotros representamos.

La estructura de la silicona contiene átomos de silicio y oxígeno alternantes en unidades periódicas, llamadas siloxano. Las moléculas formadas por varias unidades de siloxano se denominan polisiloxano o silicona. Cada átomo de silicio puede unirse a otros dos átomos o grupos de átomos, y este tipo de moléculas se denominan “siliconas”.

A la molécula de silicona pueden ir unidos grupos de hidrocarburos o de fluorcarburos, y estas combinaciones podrían resultar en moléculas suficientemente grandes, delicadas y versátiles como para formar la base de la vida. En ese sentido sí que es concebible una vida a base de silicio.

Pero ¿existen realmente esas otras formas de vida en algún lugar del universo? ¿O serán formas de vida basadas en una química completamente extraña, sin ningún punto de semejanza con la nuestra?

Quizá nunca lo sepamos.”

Al menos de momento, la vida basada en el Silicio ha sido cosa de la Ciencia ficción, nada hemos podido descubrir que nos indique esa dirección y, desde luego, aunque nunca podemos negar nada (el universo y su diversidad de mundos es muy complejo), afirmar que existe la vida basada en el Silicio, no tiene ninguna base científica.

El elemento químico básico que ha sido propuesto para un sistema bioquímico alternativo es el átomo de silicio, puesto que el silicio tiene muchas propiedades químicas similares al carbono, tiene los mismos cuatro enlaces, y está en el mismo grupo del cuadro periódico, el grupo 14.

[foto de la noticia]

En esta segunda imagen, obtenida por el mismo grupo de investigación, se observan los orbitales moleculares de la molécula (PTCDA) que en este caso está depositada sobre los átomos de silicio.

Parafraseando al premio Nobel Richard Feynman, efectivamente “hay un gran espacio al final”. Tenemos ante nosotros un universo de tamaño diminuto que justo ahora estamos comenzando a explorar, un lugar en donde los materiales se comportan de diferente manera y cuyas extrañas propiedades podemos aprovechar para desarrollar una mejor tecnología.

Tendrás este material la propiedad bioquímica para poder, a partir de ahí, otras formas de vida. La bioquímica que conocemos está basada en el Carbono pero…¡quién sabe! Es tan grande el Universo, son tantos los mundos que están alumbrados por estrellas distintas a las que… por distintas razones podríamos pensar que…Por ejemplo, pensemos en Titán.

Se trata de una molécula de Silicio. Se ha especulado con la posibilidad de encontrar vida en Titán, la luna de Saturno. Sin embargo los científicos creen que de existir sería una vida de tipo microbiana basada probablemente en el silicio debido a las bajas temperaturas, escasez de agua y la falta de oxígeno de su entorno.

Suponen también que su hábitat serían los hidrocarburos que se encuentran en Titán en forma líquida y que sus procesos biológicos serían muy distintos a los que conocemos, al ser el silicio más pesado que el Carbono. Son muchas las cosas que desconcemos y, de nada de lo que podamos encontrar, en el vasto universo, podremos sorprendernos.

Los Cristales de Cuarzo son una sorprendente creación de la Naturaleza, con dos moléculas de Silicio y una de Oxigeno (Si2 O) en su configuración química, podría decir que son agua fosilizada, su particularidad se podría explicar como catalizadora ya que enfoca, almacena, aumenta y transforma cualquier forma de energía. Muchas son las bellas formas que en la Naturaleza se pueden configurar con Silicio pero la vida…

Yo, de momento, apuesto por el Carbono y, algo me dice que, aunque existan seres distintos a nosotros (que existirán), estos, como nosotros, también estarán basados en el Carbono. Pienso que la mecánica del universo se rige por las leyes que conocemos y, siendo así (que lo es), todo lo que aquí ha ocurrido también podrá ocurrior en cualquier lugar lejano. La materia está conformada de la misma manera en todas partes y, sus transiciones de fase, tanto aquí como allí, siempre serán las mismas y, si es así…La Vida, será también la misma en todas partes independientemente de las formas que puedan adoptar en función de otros factores como gravedad del planeta, lejanía de su estrella, campo electromagnético, etc. etc.

Bueno, ya veremos si tenemos la oportunidad de comprobarlo.

emilio silvera