Mar
9
¡La Naturaleza! Se comporta… ¡Como si supiera lo que hace!
por Emilio Silvera ~ Clasificado en El Universo y... ¿nosotros? ~ Comments (5)
Hemos llegado a saber que, otros planetas, situados en la zona habitable de su estrella, también pudieran tener Vida. La Astrofísica nos llevará de la mano hasta lejanos lugares y mundos de fantásticas posibilidades que, cuando las podemos contemplar, nos asombraran y, sobre todo, nos enseñará que estamos muy bien acompañados.
Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él, fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.
La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el big bang y a una posterios fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.
Una potente simulación de la naturaleza nos permite ser testigos de los procesos que se generan en la colisión de dos cuerpos galácticos y, nuestros modernos telescopios, nos permiten captar imágenes como las que arriba podemos contemplar, en la que, galaxias inmensas como la propia Vía Láctea, se funden en un abrazo… ¿De Amor o de Muerte? Bueno, casi siempre, el resultado final es la Vida nueva.
La fusión libera energía. La energía liberada está relacionada con la famosa ecuación de Einstein, E=mc2. En el ciclo básico de fusión del Hidrógeno, cuatro núcleos de hidrógeno (protones) se unen para formar un núcleo de Helio. Esta es la versión más simple de la historia. En realidad existen electrones, neutrinos y fotones involucrados en esta historia que hacen posible la fusión de Hidrógeno hacia helio .Lo importante es recordar que esta fusión desprende energía en el centro de una estrella. Esta es la fusión que genera energía en nuestro Sol. Conocemos esta energía cuando sentimos calor en un día de verano.
La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.
El Proceso Triple Alfa:
1) He-4 + He-4 → Be-8 + Energia
2) Be-8 + He-4 → C-12 + Energía
3) C-12 + He-4 → O-16 + Energía
En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO ). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.
Las reacciones de fusiones que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón (carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.
En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía para sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.
Pero, en las estrellas masivas y supermasivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara hacia arriba a través del gas que entran, el resultado es el choque más violento del Universo.
la imagen es un zoom del centro de la galaxia M82, una de las más cercana galaxias con estrellas explosivas a una distancia de sólo 12 millones de años luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.
Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y la nube, con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.
Los remanentes de supernovas cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio para saber sobre los procesos estelares en este tipo de sucesos.
Antes edejámos una relación de materriales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitan Cook negociaban por el afecto de las tahitianas.
La muerte de una estrella supergigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.
¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y, como más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio. ¡Que maravilla!
El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planete Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creración de esos materiales complejos entre los que se encuentran la química biológica para la vida.
Si a partir de las Nebulosas que, al llegar al final de sus vidas, pueden surgir planetas como la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plgado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuantas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?
Tendremos que convenir que la Naturaleza es sabia, ya que, como nos decía Lederman, el premio Nobel de Física:
“Todo lo que hay en el universo pasado o presente, del caldo de pollo a las estrellas de neutrones, podemos hacerlo con sólo doce partículas de materia. Nuestros á-tomos se agrupan en dos familias: seis quarks y seis leptones. Los seis quarks reciben los nombres de up (arriba), down (abajo), encanto, extraño, top (cima) o truth (verdad) y bottom fondo) o beauty (belleza). Los leptones son el electrón, tan familiar, el neutrino electrónico, el muón, el neutrino muónico, el tau y el neutrinotau.”
Claro que Lederman y el mismo Demócrito mucho antes que él, además de hablar de átomos y de Quarks y Leptones, se dejaron por detrás eso que llegaron a generar tales “insignificantes” partículas: Pensamientos y sentimientos que, dicho sea de paso, puede que sea el más alto grado evolutivo alcanzado por la materia hasta el momento (al menos hasta donde hemos podido conocer).
Ahí, en esa visión cognitiva de nuestro cerebro, están todos los secretos del mundo. En nuestros genes que tienen memoria, están grabadas todas las cosas que han sucedido en el transcurso de los miles de millones de años que el Universo ha estado fabricando estrellas y mundos para que, nosotros, seres que pudimos alcanzar la consciencia de Ser, los podamos desvelar… ¡Con el Tiempo!
emilio silvera
Mar
9
EL CARBONO ¡Qué elemento!
por Emilio Silvera ~ Clasificado en Bioquímica ~ Comments (1)
El Carbono es un elemento esencial para muchas cosas, y, podríamos destacar, sin temor a equivocarnos que, la vida, es la más importante de entre todas ellas. En cualquier parte que queramos mirar nos dirán, del Carbono, cosas como éstas:
“El carbono es un elemento notable por varias razones. Sus formas alotrópicas incluyen, sorprendentemente, una de las sustancias más blandas (el grafito) y la más dura (el diamante) y, desde el punto de vista económico, uno de los materiales más baratos (carbón) y uno de los más caros (diamante). Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Así, con el oxígeno forma el dióxido de carbono, vital para el crecimiento de las plantas (ver ciclo del carbono); con el hidrógeno forma numerosos compuestos denominados genéricamente hidrocarburos, esenciales para la industria y el transporte en la forma de combustibles fósiles; y combinado con oxígeno e hidrógeno forma gran variedad de compuestos como, por ejemplo, los ácidos grasos, esenciales para la vida, y los ésteres que dan sabor a las frutas; además es vector, a través del ciclo carbono-nitrógeno, de parte de la energía producida por el Sol.”
Hacia 1860, varios químicos sugirieron que la asimetría óptica de los compuestos orgánicos debía surgir a partir de la estructura tetraédrica del átomo de Carbono. A finales del siglo XIX, la teoría correcta fue formulada de manera independiente, por dos químicos que, de manera simultánea, dieron con la clave al sugerir que, el átomo de Carbono de un compuesto carbonado se encuentra situado en el centro de esa estructura tetraédrica, unido mediante enlaces químicos a otros cuatro átomos, situados en cada uno de los vértices del tetraedro. El átomo de Carbono puede albergar 8 electrones en su corteza, pero tiene solamente cuatro; por tanto, por decirlo de manera sencilla, dispone de cuatro plazas vacantes que pueden ser ocupadas por electrones de las cortezas de otros cuatro átomos.
La teoría que es correcta, fue expuesta por el joven francés Joseph Achille Le Bel, y el otro, el joven neerlandés llamado Jacobus Henricus van´t Hoff, ambos razonaron que tal estructura tetraédrica será asimétrica y no superponible a su imagen especular.
Los bioquímicos, es decir, los químicos que estudian los procesos de los seres vivos, no pueden imaginar tipo de vida alguno (excepto, tal vez, alguna forma inactiva muy elemental) que no requiera decenas de miles de clases distintas de tejidos, cada uno de ellos diseñado para llevar a cabo una labor altamente especializada. Pensemos, por ejemplo, en la complejidad de un ojo, que no es más que uno de los muchos órganos del cuerpo.
El ojo tiene que sintetizar compuestos determinados para poder constituir cada una de sus partes: el cristalino, los músculos que permiten cambiar la forma de éste último, los que abren y cierran las pupilas, las capas de la córnea, los líquidos que llenan las distintas vavidades, la retina, el coroides, la esclerótica, el nervio óptico de los vasos sanguineos… Cada una de ellas necesita sustancias enormemente complejas que, además, deben poseer las propiedades adecuadas para hacer exactamente lo que se supone que hacen.
Miles de millones de tales tejidos especialiozados son esenciales para las formas vivientes de la Tierra. Es imposible imaginar que la evolución de éstos haya podido realizarse sin la ayuda del Carbono, un elemento que sobrepasa a los demás en su capacidad de formar una variedad casi ilimitada de compuestos, cada uno de ellos con propiedades específicas.
insaturados, con dobles enlaces covalentes (alquenos) o triples (alquinos).
aromáticos: estructura cíclica.
Tenemos que pensar que todo lo que existe, sea animado o inanimado, se trate del cerebro de un insecto, de las conexiones de nuestro cerebro o de los nanotubos de carbono, todo sin excepción, está formado por la misma cosa: Quarks y Leptones que, combinados en la debida proporción, conforman la materia presente en todo el Universo y que es poseedora de la energía que está presente por todas partes en sus distintas manifestaciones.
De todas las maneras y, aunque mirando objetivamente la realidad, seámos nosotros los que prevalecemos sobre todos los demás, no debemos presumir demasiado por ello, dado que, la diferencia entre nosotros y algunos objetos y seres de la Tierra…, no es tan grande. Seámos humildes y sencillos, reconozcamos nuestras debilidades y comprendamos que, en definitiva, sólo somos una parte más, de la Naturaleza grandiosa que define al Universo.
Organismo |
Hombre |
Alfalfa |
Bacteria |
Carbono |
19,37 % |
11,34 % |
12,14 % |
Hidrógeno |
9,31 % |
8,72 % |
9,94 % |
Nitrógeno |
5,14 % |
0,83 % |
3,04 % |
Oxígeno |
61,81 % |
77,90 % |
73,68 % |
Fósforo |
0,63 % |
0,71 % |
0,60 % |
Azufre |
0,64 % |
0,10 % |
0,32 % |
CHNOPS/ TOTAL |
97,90 % |
99,60 % |
99,72 % |
¡El Carbono! Un elemento esencial para la vida… y mucho más.
emilio silvera