domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Estrellas de Quarks! Materia extraña

Autor por Emilio Silvera    ~    Archivo Clasificado en Física, Misterios del Universo    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los modelos canónicos teóricos de las Estrellas de Neutrones ( ENs ). Decimos que son hipotéticas porque se conjetura que estarían formadas por Materia Extraña ( ME ). La comunidad astrofísica espera evidencias observacionales que permitan diferenciarlas de las ENs, ya que podrían explicar un conjunto de observaciones astronómicas que aún resultan una incógnita. Es sabido que una EN es el remanente del colapso de una estrella masiva. El colapso de la estrella, la supernova, da lugar a un núcleo compacto hiperdenso de hierro y otros metales pesados que sigue comprimiéndose y calentándose. Su densidad continúa aumentando, dando lugar a una “neutronización“ (recombinación de electrones con protones que resultan en neutrones) y el gas degenerado de neutrones frena el colapso del remanente.

Se especula con la posibilidad de que existan estrellas de Quarks que estarían hechas de materia extraña de Quaks y Gluones.

Una EQ, a diferencia de una EN, no se originaría necesariamente de una evolución estelar después del agotamiento del combustible nuclear de una estrella normal. Sería, probablemente, producto de la transición de fase hadrón-quark a altísima densidad. La Cromodinámica Cuántica (CDC), la Teoría de las Interacciones Fuertes que ocurren dentro de los nucleones (protones y neutrones), concibe teóricamente la idea de la transición de fase hadrón-quark a temperaturas y/ o densidades extremadamente altas con el consecuente desconfinamiento de quarks y gluones, que formarían una especie de “sopa “. Sin embargo, los quarks libres no se han encontrado aún, en uno u otro límite, en ningún experimento terrestre.

La “sopa“ que mencionamos antes, se conoce como Plasma Quark-Gluón ( PQG ). En el límite de altas temperaturas, el PQG está tratando de obtenerse en el laboratorio y existen fuertes indicios de que se logre con éxito experimentos de altas energías como el Colisionador Relativista de Iones Pesados (conocido por sus siglas en ingles como RHIC) de Brookhaven, New York.

Por otro lado, se espera que a través de observaciones astronómicas se compruebe que la transición a altas densidades se hubiese producido en el interior de alguna EN. Esto se debe a que los valores de densidades estimados para que dicha transición tuviese lugar coinciden con densidades del orden de (3 exp. – 12) ρ0 (siendo ρ0 ̃ 0, 17 fmˉ ³ la densidad de equilibrio nuclear) que son típicas del interior de las ENs. Los cálculos basados en diferentes ecuaciones de estado de la materia nuclear muestran estos resultados, por lo que sería razonable que el núcleo de las ENs estuviese formado por materia de quarks.

Recientemente, la relación entre campo magnéticos y materia densa está atrayendo la atención de los astrofísicos, especialmente después de las observaciones de emisiones peculiares de pulsares anómalos de rayos X, que se interpretan como ENs en rotación, y de emisiones de radiación γ de baja energía de los llamados repetidores de rayos γ suaves ( SGRs – soƒt gamma-ray repeaters ). El motor central de esas radiaciones podría ser un campo magnético mayor que 4 x 10¹³ Gauss, que es el campo crítico previsto por la Electrodinámica Cuántica.

Muchas observaciones astronómicas indirectas sólo se explicarían a través de la existencia de campos magnéticos muy intensos en los núcleos de ENs  en EQs, de manera que el papel que juega el campo magnético en la ME aún constituye un problema abierto y de sumo interés en la Astrofísica.

 En particular, en un trabajo reciente, se ha analizado la ME considerando neutralidad de carga, equilibrio β y conservación del número bariónico. En dicho trabajo se obtuvo una cota superior para el valor del campo magnético que determina una transición de fase cuya explicación requiere ser estudiada en profundidad ya que sería independiente de la interacción fuerte entre los quarks. También se ha comprobado que la presencia de de campos magnéticos intensos favorece la estabilidad de la ME.

Por otro lado, estudios teóricos han demostrado que si la materia es suficientemente densa, la materia de quarks deconfinada podría estar en un estado superconductor de color. Este estado estaría formado por pares de quarks, análogos a los pares de Cooper (constituidos por electrones) existentes en los superconductores ordinarios.

Los quarks, a diferencia de los electrones, poseen grados de libertad asociados con el color, el sabor y el espín. Por este motivo, dependiendo del rango de densidades en el cual estamos trabajando, algunos patrones de apareamiento pueden verse favorecidos generando la aparición de distintas fases superconductoras de color. Según estudios teóricos, la fase superconductora más favorecida a densidades extremadamente altas sería la Color Flavor Locked (CFL), en la cual los quarks u, d y s poseen igual momento de Fermi, y en el apareamiento participan los tres colores y las dos proyecciones de espín de cada uno de ellos. Estudios recientes sobre la fase CFL han incluido los efectos de campos magnéticos intensos, obteniendo que bajo determinadas condiciones el gas superconductor, que corresponde a la separación entre bandas de energía en el espectro fermiónico, crece con la intensidad del campo. A esta fase se la llama Magnetic Color Flavor Locked (MCFL).

 Son muchos los misterios quen contiene el Universo y, nosotros, debemos recorrer los caminos para desvelarlos.

En la superconductividad electromagnética usual, un campo magnético suficientemente fuerte destruye el estado superconductor. Para la superconductividad de color no existe aún un consenso de cómo, la presencia del campo magnético, podría afectar al apareamiento entre los quarks.

En este trabajo describiremos brevemente la materia extraña, con el objetivo de explicar su formación en el interior de una EN y entender la composición y características de una EQ. Posteriormente, utilizaremos el modelo fenomenológico de bag del Massachussets Institute of Technology (MIT) para encontrar las ecuaciones de estado de la ME en condiciones determinadas, comprobando la estabilidad de la misma, frente a la materia de quarks ordinaria formada sólo por quarks u y d. Presentaremos, además, algunas candidatas posibles a EQs según observaciones astrofísicas. Por último, trataremos de entender la superconductividad de color y la influencia del campo magnético intenso en las fases superconductoras.

Materia de Quarks:

Uno de los mayores logros alcanzados por los físicos en el último siglo, fue la construcción del Modelo Estándar en la física de partículas elementales. Este modelo sostiene que la materia en el Universo está compuesta por fermiones, divididos en quarks y leptones, que interactúan a través de los llamados bosones de calibre: el fotón (interacción electromagnética), los bosones W± y Zº (interacción débil), y 8 tipos de gluones (interacción fuerte). Junto con los bosones de calibre, existen tres generaciones de fermiones: ( v e, e ), u, d ); ( vµ, µ ), ( c, s ) ; ( v….); y sus respectivas antipartículas. Cada “ sabor “ de los quarks, up ( u ), down ( d ), charme ( c ), strange ( s , top ( t ) y bottom ( b), tiene tres colores ( el color y el sabor son números cuánticos ). La partícula que aún no ha sido descubierta experimentalmente es el bosón de Higgs, que cabe suponer sería responsable del origen de la masa de las partículas.

Muchos son los científicos que buscan respuestas

Los quarks son los componentes fundamentales tanto de los hadrones fermiónicos (bariones formados por la combinación de tres quarks) como de los bosónicos (mesones formados por un quark y un antiquark). ES sabido que el núcleo de un átomo está compuesto por nucleones (protones y neutrones) que a su vez están compuestos por quarks (protón = udd). David Gross y Franks Wilczek y David Politzer, descubrieron teóricamente que en la CDC el acoplamiento efectivo entre los quarks disminuye  a medida que la energía entre ellos aumenta (libertad asintótica). La elaboración de esta teoría permitió que recibieran el Premio Nobel de Física en el año 2004. En los años 60, la libertad asintótica fue comprobada experimentalmente en el acelerador lineal de Stanford ( SLAC ).

Sin embargo, la CDC no describe completamente el deconfinamiento en un régimen de alta densidad y baja temperatura, debido a su complejidad matemática y a su naturaleza no lineal para bajas energías. No obstante, es posible recurrir a una descripción fenomenológica para intentar entender la física de la formación de la materia de quarks en las ENs. La materia de quarks, es decir, el plasma de quarks deconfinados y gluones, es una consecuencia directa de la libertad asintótica cuando la densidad bariónica o la temperatura son suficientemente altas como para considerar que los quarks son partículas más fundamentales que los neutrones o protones. Esta materia, entonces, dependiendo de la temperatura y del potencial químico (µ) de los quarks, aparecería esencialmente en dos regímenes. Uno de ellos, el PQG, constituiría la fase “caliente”  de la materia de quarks cuando T >> µ constituyendo la mencionada ME, que se formaría en el interior de las Ens. Esta transición de fase estaría ocurriendo en el Universo cada vez que una estrella masiva explotara en forma de supernova, con la consecuente aparición de una EN.

Las estrellas de Quarks, aunque de momento son una conjetura su existencia, hasta donde podemos saber, no sería nada extraña que, en cualquier momento, se pudieran descubrir algunas y, pasarían a engrosar la lista de los objetos más masivos del Universo. Ellas estarían entre las estrellas de Neutrones y los Agujeros Negros.

En 1971 A.R. Bodmer propuso que la ME es más estable que el Fe, que es el más estable de todos los núcleos ordinarios. Por lo tanto, según su hipótesis, la ME constituía el estado más fundamental de la materia. En la Naturaleza, la presencia de núcleos atómicos ordinarios. Por lo tanto, según su hipótesis, la ME constituía el estado más fundamental de la materia. En la Naturaleza, la presencia de núcleos atómicos ordinarios no se halla en contradicción con la mayor estabilidad que presenta la ME. Esto se debe a que la conversión de un núcleo atómico en ME, requiere que se transformen quarks u y d en quarks extraños s. La probabilidad de que esto ocurra involucra una transición débil que hace que los núcleos con peso atómico A ≥ 6 sean estables por más de 10 exp60. Años. De manera que si la hipótesis de la ME fuera correcta, estaríamos en presencia del estado más estable de la materia hadrónica y para su formación se necesitaría un ambiente rico en quarks s o la formación de un PQG, Como ya mencionamos, podríamos alcanzar dicho estado en las colisiones de iones pesados relativistas, segundos después del Big Bang en el Universo primordial y en el interior de las Ens.

A) Formación de Materia Extraña en una Estrella de Neutrones:

Inmediatamente después de la transición de fase hadrónquark en el interior de la estrella, no existe una configuración de equilibrio químico entre los quarks. Esto puede entenderse de la siguiente forma: en el punto de transición, la materia bariónica predominante son los quarks u y d con una pequeña cantidad de electrones. Así, la densidad del quark d es aproximadamente dos veces la densidad del quark u, Nd ~ 2Nu, debido al hecho de que la materia en las estrellas compactas es eléctricamente neutra. Por el principio de exclusión de Pauli, sería energéticamente más favorable para los quarks d decaer en quarks s hasta restablecer el equilibrio entre sabores vía interacciones débiles. Dado que la densidad bariónica de la materia de quarks en el interior de la estrella sería ~ 5ρ0, los potenciales químicos de los quarks deberían ser grandes respecto de las masas. Esto implicaría que las densidades de los quarks fueran prácticamente iguales. De esta forma, la configuración más estable en el interior de la EN, sería un núcleo de ME con una densidad bariónica Nb = Ni ( i= u , d, s ). Si el interior de una EN estuviese compuesto por ME, cabe entonces preguntarnos: ¿podría transformarse una EN en una EQ?

B) EQs: Formación y características:

Para los astrónomos ha quedado bien establecido que el remanente estelar después de la explosión de una supernova podría resultar ser una  Enana Blanca, una En o un Agujero Negro, dependiendo de la masa de la estrella de origen. Observaciones astronómicas recientes sugieren un remanente aún más exótico: las EQs. La idea de la existencia de estas estrellas apareció en 1969, cinco años después de la predicción de Gell- Mann de la existencia de los quarks. En el año 1984, Farhi y Jaffe, basándose en el modelo de bag del MIT, mostraron en sus cálculos que la energía por barión de la ME era menor que la del núcleo atómico más estable, el Fe. Esto daba mayor solidez a la hipótesis de Bodmer- Witten e inmediatamente se comenzaron a desarrollar modelos teóricos de Eqs. En el año 2002, el Observatorio de Rayos X Chandra, de la NASA, reportó el descubrimiento de dos estrellas candidatas a ser Eqs.

Para que una EN se transforme en una EQ pura, necesitamos algún mecanismo mediante el cual su densidad aumente cada vez más. Pensemos, por ejemplo, que la EN forma parte de un sistema binario. Para considerar que dos estrellas están en un sistema binario, debe analizarse su proximidad comparando el tamaño de las mismas con el radio del lóbulo de Roche, que es la región que define el campo de la acción gravitatoria de una estrella sobre otra.

Si el radio de cada estrella es menor que el lóbulo de Roche, las estrellas están desconectadas. Por el contrario, si una de ellas llena el lóbulo de Roche, el sistema es semiconectado y la materia puede fluir a través del punto de Lagrange interno. El potencial gravitatorio de un sistema binario se consume la masa de la estrella compañera. Cuando la masa de la EN alcanza el valor de ~2 M  (M corresponde a la masa solar), sufre un colapso gravitatorio, pudiéndose transformar en una EQ.

¿Podría el colapso de una supernova dar origen a la formación de una EQ? Esta pregunta nos conduce a otra hipótesis teórica acerca de la formación de la EN, hay conservación del momento angular. La proto-estrella de neutrones tiene una fracción pequeña de su radio original, que era el de la supernova, por lo que su momento de inercia se reduce bruscamente. Como resultado, la EN se forma con una altísima velocidad de rotación  que disminuye gradualmente. Los períodos de rotación se hacen cada vez más largos debido a la pérdida de energía rotacional por la emisión de vientos de electrones y positrones y de la radiación bipolar  electromagnética. Cuando la alta frecuencia de rotación o el campo electromagnético alcanzan un valor crítico, la EN se transforma en un pulsar que emite pulsos del orden de los milisegundos. Debido a la enorme fuerza centrífuga en estos objetos, la estructura interna se modifica, pudiendo alcanzar una densidad crítica por encima de la que corresponde a la transición de fase hadrón-quark. En estas condiciones, la fase de materia nuclear relativamente incomprensible se convertiría en la fase de ME, más comprensible, cuyo resultado final sería la aparición de una EQ.

La identificación de una EQ requiere señales observacionales consistentes. Con esto nos referimos a propiedades físicas de la estrella tales como su masa máxima, radio, período mínimo de rotación, enfriamiento por emisión de neutrinos. Todas estas propiedades dependen de una única ecuación de estado para la materia densa de quarks que aún no ha sido completamente establecida. Sin embargo, existe un rango de valores aceptados para las cantidades antes mencionadas, con base en datos observacionales recientes, que marcarían importantes diferencias entre las posibles Eqs y los demás objetos compactos.

Un rasgo característico de las Eqs es que la materia no se mantendría unida por la atracción  gravitacional, como ocurre en las Ens, sino que sería consecuencia directa de la interacción fuerte entre los quarks. En este caso, la estrella se dice autoligada. Esto implica una diferencia sustancial entre las ecuaciones de estado para las dos clases de estrellas. Las correcciones perturbativas a la ecuación de estado de la materia de quarks y los efectos de superconductividad de color complican aun más este punto. Otra característica para poder diferenciar las Eqs de las Ens es la relación entre su masa M y el radio R. Mientras que para una EQ, M ~ R³. De acuerdo con esta relación, las Eqs tendrían radios más pequeños que los que usualmente se le atribuyen a las Ens. Además, las Eqs violarían el llamado límite de Eddington. Arthur Eddington (1882-1994) observó que las fuerzas debido a la radiación y a la gravitación de las estrellas normales dependían del inverso del cuadrado de la distancia. Supuso, entonces, que ambas fuerzas podían estar relacionadas de algún modo, compensándose para que la estrella fuera más estable. Para estrellas de altísima masa, la presión de radiación es la dominante frente  a la gravitatoria. Sin embargo, debería existir una presión de radiación máxima para la cual la fuerza expansiva debido a la radiación se equilibrara con la gravedad local. Para una estrella normal, el límite de Eddington está dado por una ecuación que omito para no hacer más complejo el tema.

Para cualquier valor de radiación que supere este límite, no habrá equilibrio hidrostático, causando la pérdida de masa de la estrella normal. El mecanismo de emisión en una EQ produciría luminosidades por encima de dicho límite. Una posible explicación a este hecho sería que la EQ es autoligada y por lo tanto su superficie alcanzaría temperaturas altísimas con la consecuente emisión térmica.

Por otro lado, una alternativa para explicar algunas observaciones de destellos de rayos γ, sería suponer que las emisiones provienen de Eqs con radios R ~ 6 km, valores demasiados pequeños si pensáramos que los destellos provienen de ENs.

En esta sección, hemos presentado algunas características de las Eqs que las diferenciarían de las Ens. Futuras evidencias experimentales y observacionales nos permitirían saber si las Eqs realmente existen en la naturaleza.

C) Observaciones astrofísicas: posibles Eqs

El mes de febrero de 1987 fue la primera oportunidad de poner a prueba, a través de las observaciones directas, las teorías modernas sobra la formación de las supernovas. En el observatorio de Las Campanas, en Chile, fue observada la Supernova 1987A en la Gran Nube de Magallanes. Algunas características de la emisión de neutrinos de la SN 1987ª, podrían explicarse sin una hipotética fuente de energía subnuclear como la ME contribuyera a su explosión. El remanente estelar que ha quedado como consecuencia de la explosión de la Supernova 1987ª, podría ser una EQ, ya que el período de emisión de este pulsar es de P= 0.5 ms. Una EN canónica no podría tener una frecuencia de rotación tan alta.

El observatorio Chandra de rayos X de la NASA también encontró dos estrellas inusuales: la fuente RX J1856.5-3754 con una temperatura de 10 exp5.  K y la fuente 3C58 con un período de 65 ms. RX J1856.5-3754 es demasiado pequeña para ser una EN convencional y 3C58 parece haberse enfriado demasiado rápido en el tiempo de vida que se le estima.

Combinando los datos del Chandra y del telescopio espacial Hubble, los astrónomos determinaron que RX J1856. 5 – 3754 radia como si fuera un cuerpo sólido con una temperatura de unos 1x 10 exp5. ºC y que tiene un diámetro de alrededor de 11 km, que es un tamaño demasiado pequeño como para conciliarlo con los modelos conocidos de las Ens.

Las observaciones realizadas por el Chandra sobre 3C58 también produjeron resultados sorprendentes. No se pudo detectar la radiación que se esperaba en la superficie de 3C58, una EN que se cree producto de la explosión de una supernova vista por astrónomos japoneses y chinos en el año 1181 de nuestra era. Se llegó a la conclusión de que la temperatura de la estrella, de menos de un millón de grados Celsius, era un valor mucho menor que el que predice el modelo. Estas observaciones incrementan la posibilidad de que los objetos estelares mencionados sean Eqs.

D) Ecuación de estado para la materia de quarks:

Las técnicas utilizadas para resolver las ecuaciones de la CDC no proveyeron aún un resultado aceptable para densidades bariónicas finitas como en el caso de la Electrodinámica Cuántica para el núcleo atómico. Como consecuencia, es necesario recurrir a modelos fenomenológicos para describir la materia de quarks dentro de las estrellas compactas cuando se consideran las propiedades de confinamiento y de libertad asintótica de la CDC. Uno de los modelos más usados es el modelo bag del MIT. En este modelo los hadrones son considerados como quarks libres confinados en una región finita del espacio: el “Bag“ o bolsa. El confinamiento no es un resultado dinámico de la teoría fundamental, sino que se coloca como parámetro libre, imponiendo condiciones de contorno apropiadas. Así, el modelo bag del MIT se basa en una realización fenomenológica del confinamiento.

Está claro que, las estrellas de Quarks, aunque con certeza no han sido aún detectadas, es casi seguro que andarán pululando por el inmenso Universo que, en relación a la materia bariónica, en muy buena parte, está conformado por Quarks.

Fuente: Revista de la RSEF


  1. El asombroso Universo: No sabemos todo lo que contiene : Blog de Emilio Silvera V., el 3 de febrero del 2013 a las 8:50

    […] Su densidad continúa aumentando, dando lugar a una “neutronización“ (recombinación de electrones con protones que resultan en neutrones) y el gas degenerado de neutrones frena el colapso del […]

  2. ¿Que hay el núcleo de un Púlsar? ¿Existen estrellas de Quarks-Gluones? : Blog de Emilio Silvera V., el 28 de julio del 2013 a las 6:48

    […] Su densidad continúa aumentando, dando lugar a una “neutronización“ (recombinación de electrones con protones que resultan en neutrones) y el gas degenerado de neutrones frena el colapso del […]

 

  1. 1
    Maolito
    el 24 de marzo del 2012 a las 18:01

    Pero entre un agujero negro y una estrella de neutrones no hay mucho margen para tener estrellas de quarks estables, más bien  el  mero hecho de la formación del plasma de quarks llevaría a un colapso hacia agujero negro.

    Responder
    • 1.1
      emilio silvera
      el 25 de marzo del 2012 a las 8:26

      Hola, Maolito:
      Estamos hablando de una hipótesis que, no estamos en disposición de descartar. Esa que tú apuntas es una posibilidad cierta pero…, nos guarda ¡tántas sorpresas el universo! que, ¿quién sabe lo que nos podemos encontrar por ahí fuera?
      Si lo piensas bien ya es toda una estrategia de la Naturaleza los parámetros que tienen que recorrer las estrellas para que, dependiendo de sus masas, se conviertan en enanas blancas (degeneración de electrones las lleva a estabilizarce en esa clase), en estrellas de neutrones (degeneración de los neutrones surgidos de la fusión de electrones y protones y se alcanza la estabilidad de esas estrellas), y, ¿estrellas de Quarks? no lo sabemos y a partir de la de neutrones hemos pasado directamente a los agujeros negros.
      Pero, ¿quién nos asegura que no están por ahí?
      Lo dejaremos como una más, de las cuestiones que ignoramos.
      Un saludo cordial.

      Responder
  2. 2
    cheap armani jeans
    el 25 de abril del 2012 a las 11:17

    Among the finest to tell a person that i’m simply all new to blogging and definitely loved you are web site. Most likely Im going to save your website . You have exceptional articles. Kudos for discussing with us your site.

    Responder
  3. 3
    fandila
    el 17 de julio del 2012 a las 2:44

    Me uno a cheap armani jeans en su excelente calificación de los artículos.
    En estas materias referentes a quarks y gluones siempre me asalta la misma duda: ¿Cual sería una definición entendible para los conceptos de color y sabor?
    Esos números cuánticos que los definen, a qué se refieren. ¿Son una especie de Hamiltonianos que dan una idea del estado general de la pafrtícula?, ¿Una seríe de parámetros (Velocidad, momentos, masas relativas…)?
    Si los quarks siendo diferentes pueden estar en equilirio dentro de un protón por ejemplo, lo harán a través de sus gluones, que para que ello ocurra, no pueden alargarse o encongerse demasiodo. Así el cambio de color por ejemplo, obedecería a una igualación continua o adaptación continua de la velocidad de los quarks de órbitas distintas, y con los gluones, como corresponde a sus masas diferentes. En consecuencia, al tiempo existiran  variaciones de masa.
    Que orbiten en igual sentido como sugieren sus cargas electricas, y a una distancias aproximadamente constantes, requerirá de esas mezclas de colores (O conjunto de variables) para que el resultado, ya sea parcial o total, se verifique según el “color” mezcla.
    En mi ignorancia, esa es la visión que me hago para tratar de entender color y sabor. El laberinto matemático hasta esa especie de números cuánticos no me aclara gran cosa.
    Un afectuoso saludo.

    Responder
    • 3.1
      emilio silvera
      el 17 de julio del 2012 a las 6:41

      Ni a tí ni a nadie, estimado amigo. Como bien apuntas, es un auténtico laberinto matemático que nos quiere llevar a una solución que no alcanzamos a ver. Si nos metemos en el esquema matemático SU(3) en el que grupletes de ocho elementos forman un octete “fundamental” (la teoría del “óctuplo camino” de Gell-Mann que, cuando propuso este esquema se conocían nueve bariones con espín 3/2 (No figuran en las tablas porque son resonancias, cuatro de ellas  las resonancias Δ, que se desintegran en nucleones estables y piones). Los esquemas SU(3) se obtienen al representar dos propiedades fundamentales de las partículas, la extrañeza S frente al Isospín I3.
      De esa manera Gell-Mann predijo eldécimo barión, el omega-menos (Ω-), y pudo estimar con bastante precisión su masa porque porque la masa de los otros nueve bariones variaban de una forma sistemática como consecuencia de una interacción simple. Sin embargo, estaba claro que la Ω-, con una extrañeza S = -3, no tenía ninguna partícula en la que desintegrarse que no estuviera prohíbida por las leyes de conservación de la interacción fuerte.
      Todo ello llevó hasta los Quarks. Los propios Quarks forman un Grupo SU(3) aún más sencillo: los llamaremos “arriba” (u), “abajo” (d) y “extraño” (s). Las partículas ordinarias contienen solamente quarks u y d. Los hadrones “extraños” contienen uno o más quarks s (o antiquarks…
      Todo este galimatias nos lleva hasta la estructura hadrónica basada en los quarks de Gell-Mann, introducidos en 1964. En el modelo los hadrones se dividen enbariones (que se desintegran en protones) y mesones (que se desintegran en leptones y fotones). Los bariones están formados por tres quarks y los mesones por dos (un  quark y un anti-quark). Así, en la teoría Quark, las únicas partículas elementales son realmente los leptones y los quarks. Todos los qurks tienen qargas que son fracciones de son fracciones de la carga electrónica.
      Nos dicen que los Quarks aparecen en seis sabores (sin conexión con el gusto). Con el fín de evitar conflictos con el Principio de exclusi`´on de Pauli, se ha probado que es necesario añadir el concepto de carga de color a los seis sabores (u, d, c, s, t, b). Cada sabor de quark aparece en los tres colores primarios rojop, verde y azul, cada anti quarks tiene los anti colores complementarios antirrojo, antiverde y antiazul. Hay por lo tanto 18 Quarks y 18 antiquarks…
      Al llegar aquí empiezo a perderme y a no entender nada de las complejas explicaciones que nos quieren exponer para que, entendamos, lo que no podemos entender (bieno, al meno a mí me cuesta llegar a un entendimiento claro y preciso de todo este galimatias).
      ¡Son tántas las coas que no se que, una más! ¿qué importa?
      Un saludo amigo

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting