martes, 21 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El futuro de la física está en nuestra imaginación

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Diversidad de ideas

Me gusta escribir sin tener un objetivo predeterminado y repasar sobre cuestiones de la física. Escribo todo lo que estoy “viendo” -lo que sin llamarlo, acude a mi mente en cada instante-. Es un buen ejercicio de repaso de diversas cuestiones que recuerdas. Por ejemplo, ahora mismo me llega la idea de que desde la más remota antigüedad nos viene fascinando los fenómenos ópticos. De hecho, los estudios encaminados a desvelar la naturaleza de la luz han sido uno de los motores más fructíferos de la física. A ello se dedica la óptica, hoy día una de las áreas más activas de la física.

Hablando de fenómenos ópticos…,  el día 8 del pasado mes de diciembre, cuando el sol hizo una corta aparición en el cielo…

algunos pudieron asombrarse ante esta imágen de esplendorosa belleza natural, ¿qué produjo tal fenómeno? De nuevo, como es mi costumbre, me desvío del tema pero, me estaba regfiriendo al auge en el campo de la óptica…¿dónde radica el impulso de esa disciplina?

Buena prueba de ello es la rápida sucesión de Premios Nobel en ese campo en años recientes: 1.997, 2.001 y 2.005. En la luz se apreció por primera vez la naturaleza dual onda-partícula de los objetos cuánticos. El comportamiento ondulatorio de la luz sirvió de prueba experimental para la teoría electromagnética de Maxwell. La idea de la luz como un haz de fotones reapareció con Einstein en 1.905 para explicar el efecto fotoeléctrico (que le valió el Nobel de física). El dualismo onda-partícula de la luz, que De Broglie extendió a las partículas materiales, es contradictorio en el marco de la física clásica. Para reconciliar ambas imágenes hubo que desarrollar la física cuántica. No obstante, como señalaba Glauber en uno de sus artículos…

la teoría cuántica ha tenido una influencia sobre la óptica que es sólo una fracción de la que históricamente ha tenido la óptica sobre la teoría cuántica”.

 Nobel de Física

Premio Nobel de Física de 2.005. Roy J. Glauber, de la Universidad de Harvard, Theodor W. Hänsch, del Instituto Max Plack y John L. Hall, de la Universidad de Colorado, comparten el premio Nobel de Física 2005. Glauber lo recibe por su contribución a la teoría cuántica de la coherencia óptica, mientras que Hänsch y Hall por sus contribuciones a la espectroscopía de precisión basada en láser, incluyendo la técnica de barrido de frecuencia óptica.

Motivado por los experimentos de Hanbury-Brown y Twiss en 1.954-56, y por la invención del láser en 1.960, Glauber realizó una aplicación de la electrodinámica cuántica a problemas ópticos. Mientras que los experimentos previos habían usado interferencia de amplitudes y registraban intensidades con un solo detector, Hanbury-Brown y Twiss estudiaron correlaciones en las intensidades recibidas de una estrella por dos detectores separados, observando que los fotones térmicos parecen emitirse agrupados (bunched). ¿También los de un haz de láser? Esta y otras cuestiones llevaron a Glauber a desarrollar la teoría cuántica de la coherencia, basada en los estados coherentes y en la teoría cuántica de la fotodetección. Estudiando coincidencias retardadas en la detección de fotones por varios detectores, Glauber introdujo una sucesión de funciones de correlación que mostraban las características cuánticas de la radiación y permitían diferenciar entre haces de luz con la misma distribución espectral, pero diferente estadística de fotones.

luz5

 En el universo temprano los fotones se convertían continuamente en pares

Particularmente relevantes han sido los estudios posteriores de “luz no clásica”, tales como resonancia-fluorescencia de un solo átomo, que muestra el llamado antibunching, luz cuyo ruido cuántico depende de la fase; y pares de fotones entrelazados.

El estado más común de la materia en el universo, no es ni líquido, ni sólido, ni gaseoso, sino que es el plasma; el estado de la materia que conforman las estrellas. Sin embargo, particularmente apuesto por una idea que no se va de mi cabeza, el estado último de la materia es la luz.

La otra mitad del Premio Nobel se otorgó a partes iguales a John L. Hall, de la Universidad de Colorado, JILA y NIST, Boulder y a Theodor W. Hänsch, del Max Planck Instit für Quantenoptik, Garching, y de la Ludwig-Maximilians-Universität, Munich, “por sus contribuciones al desarrollo de métodos de espectroscopia láser de precisión, incluyendo la técnica de peines de frecuencias ópticas“.

                            espectroscopia de absorción atómica

 A lo largo de toda la historia la ingeniería se ha convertido en unas de las fuentes de solución a todos los problemas de la humanidad, de la mano de las ciencias y la tecnología, la cual ha aportado tantos métodos de mayor exactitud como lo es el utilizado por la espectrofotometría de absorción atómica; ya que es una técnica capaz de detectar  y determinar cuantitativamente la mayoría de los elementos del sistema periódico.

En espectroscopia se analiza la composición en frecuencias de la luz absorbida o emitida por la materia, lo cual proporciona información valiosa, por ejemplo, sobre la estructura cuántica de los átomos.

Los galardonados lideraron un proyecto espectacular en el desarrollo de métodos para producir y medir estas frecuencias ópticas, con una precisión actual de 15 cifras significativas y potencial de 18. De hecho, este tipo de medidas son de las de mayor precisión alcanzadas en física y permiten abordar cuestiones de gran interés básico, como la observación de la variación temporal de “constantes” fundamentales, como la estructura fina (α = 1/137, ó 2πe2/hc). Tienen también repercusión en el desarrollo de relojes atómicos ultraprecisos (con desajuste menor a una décima de segundo cada 100 años), útiles por ejemplo en sistemas GPS.

No dejamos de enviar ingenios al espacio para tratar de medir la Densidad Crítica y poder saber en qué clase de universo nos encontramos: Plano, cerrado o abierto. Pero, también mandamos satélirtes artificiales que, desde el cielo, dominan y controlan aspectos de la Tierra que nos son muy útiles en navegación, circulación víal, y otros muchos conceptos que, tanto en la vida cotidiana como en la investigación, nos sitúan en el más alto nivel de la tecnología…del futuro.

En espectroscopia óptica de precisión han de determinarse frecuencias de varios cientos de THz en términos de la definición del patrón de tiempo representado por desdoblamiento hiperfino del estado fundamental del cesio a 9’2 GHz. Hasta el año 2.000, esta tarea requería esfuerzos heroicos porque los detectores sólo permiten comparar directamente frecuencias separadas por algunas decenas de GHz. Se usaban por tanto complejas cadenas de generación de sucesivos armónicos de la frecuencia del cesio.

Esas cadenas eran costosas, delicadas, y de hecho, sólo algunos laboratorios las desarrollaron. El problema se ha simplificado enormemente con la introducción por Hall y Hänsch del llamado peine de frecuencias ópticas, formado por del orden de un millón de frecuencias equiespaciadas unos 100 MHz y cubriendo varios cientos de THz. De estas frecuencias pueden realizarse una medida absoluta con el patrón de cesio. Por tanto el peine sirve como una “regla” para determinar cualquier frecuencia óptica desconocida. Estos peines o sintetizadores de frecuencias, que ya se comercializan, usan láseres de femtosegundos y un nuevo tipo de fibra óptica microestructurada o de cristal fotónico…

¿Dónde estará el límite?

Han pasado ya unos cincuenta años desde que Richard Feynman dictara su famosa plática There is plenty of room at the bottom: An invitation to enter a new field of physics (Hay suficiente espacio en el fondo: Una invitación a entrar en un nuevo campo en la Física). En ella estableció que las leyes de la Física no impiden manipular las cosas átomo a átomo; –es algo que se puede hacer pero no se ha hecho debido a que somos demasiado grandes para hacerlo-. Desde entonces se ha estado buscando la manera de poder diseñar los materiales átomo a átomo. De hecho, los materiales nanoestructurados ya han sido utilizados en aplicaciones prácticas, siendo importantes en nuestra vida diaria. El color rojo de los vitrales en las catedrales góticas de Europa se obtenía utilizando nanopartículas de oro; la película fotográfica utiliza nanopartículas de plata; los bloqueadores solares utilizan nanopartículas de dióxido de titanio y de zinc como parte activa. El primer caso es una aplicación del efecto nano del oro y es quizás la primera aplicación de la nanotecnología. Quizás el mayor desarrollo de las nanoestructuras se dio con el descubrimiento de la microscopia de fuerza atómica ya que con esta se podía manipular a los átomos o partículas muy pequeñas. Hoy día, la investigación en el campo de los materiales nanoestructurados se ha multiplicado y sus aplicaciones abarcan todas las disciplinas convirtiendo a la nanotecnología en un campo interdisciplinario. Muchos países han implementado programas especiales para la investigación en este campo invirtiendo grandes cantidades de dinero. La apuesta puede ser de alto riesgo, pero el premio promete ser enorme.

Materiales nanoestructurados y nanotecnología

Los materiales nanoestructurados (NEMs, por siglas en inglés) han despertado rápidamente un gran interés debido a la diversidad de sus aplicaciones. De acuerdo a la definición más aceptada, los materiales nanoestructurados son aquellos en los que por lo menos una de sus dimensiones se encuentra en el rango de 1-100 nm. Es decir, los NEMs son tres órdenes de magnitud más pequeños que los MEMS (sistemas microelectromecánicos, por sus siglas en inglés), e incluyen nanopartículas, nanocristales, nanoalambres, nanobarras, nanotubos, nanofibras, nanoespumas, etc. Los NEMs pueden ser semiconductores, dieléctricos, metales, orgánicos, inorgánicos, aleaciones, biomateriales, biomoléculas, oligómeros, polímeros, etc.

          Nos sorprendería saber en qué lugares están presentes los cristales fotónicos con las nuevas técnicas alcanzadas en la nanotecnología

Aunque también existen sistemas nanoestructurados de dimensiones mayores como son los cristales fotónicos. En el rango de nanómetros, los materiales presentan propiedades ópticas, eléctricas, magnéticas y mecánicas únicas y totalmente diferentes de los materiales en el rango de los micrómetros o milímetros llamados también materiales en bulto.

Para tener una idea de que tan pequeño es un nanómetro podemos mencionar que un milímetro tiene un millón de nanómetros; el diámetro del cabello humano mide entre 10,000 y 50,000 nanómetros; los glóbulos rojos y blancos miden entre 2 y 5 nanómetros mientras que el ADN mide 2.5 nanómetros.

Las propiedades de los NEMs son dominadas por los efectos de superficie mientras que las de los materiales en bulto son debidas a un efecto de volumen. La tecnología para su producción y uso se ha convirtiendo en una industria muy poderosa: la nanotecnología. La nanotecnología es la ciencia e ingeniería de producir materiales o estructuras funcionales de unos cuantos nanómetros. Es la tecnología del futuro con la cual se desarrollarán los nuevos materiales y dispositivos. Las aplicaciones son sorprendentes así como variadas, por ejemplo, la industria optoelectrónica y fotónica, biomedicina, sensores, celdas solares y de combustible, catálisis, memorias ópticas, procesadores de computadoras, fotodetectores, herramientas de corte, industria automotriz y aeronáutica, moduladores e interruptores, cosméticos, etc. Aunque todas las aplicaciones son de gran interés, sin duda alguna las aplicaciones en sistemas biológicos son las más sobresalientes. Especialmente las aplicaciones de las propiedades ópticas de los sistemas nanoestructurados.

No tarderemos mucho en asombrarnos de los logros alcanzados por la Nanofotónica en diversos apartados de la tecnología del futuro

Uno de sus aprtados es, la Nanofotónica

La nanofotónica es la fusión de la nanotecnología y la fotónica. Es un campo multidisciplinario que estudia las propiedades ópticas de los sistemas nanoestructurados y la interacción luzmateria a nivel nanoscópico. Ya mencionamos que las propiedades ópticas de las nanopartículas son dominadas por los efectos de superficie. Así, controlando el tamaño de las nanopartículas o nanoestructuras podemos controlar o amplificar ciertas propiedades de los sistemas bajo estudio. En general, las nanoestructuras pueden ser de tres tipos, semiconductoras, dieléctricas y metálicas.

Cada una de ellas produce fenómenos de especial interés cuando interactúan con una señal óptica, pudiendo así ser aplicadas en diferentes campos. Un campo de especial interés es la biología.

El estudio de las propiedades luminiscentes de sistemas nanoestructurados en sistemas biológicos es el campo de estudio de la bionanofotónica. Especialmente trata sobre el estudio de sistemas nanoestructurados en aplicaciones biomédicas. Diferentes nanopartículas han sido propuestas para ser utilizadas en la detección de bajas concentraciones de diferentes elementos como células cancerigenas, virus, ADN, ARN, proteínas, etc. También han sido utilizadas para la entrega de medicamentos en forma dirigida y controlada así como para la destrucción de tumores cancerigenos. En la última década, los avances han sido sorprendentes pero aún hay mucho por hacer. En el CIO, durante los últimos 6 años han estado trabajando en la síntesis de nanopartículas y estudiado sus propiedades ópticas a fin de poder ser utilizadas en distintas aplicaciones. Las propiedades luminescentes de nuestras nanopartículas son muy interesantes y prometen grandes oportunidades de aplicación en diferentes áreas.

 

 

puntos.png

Nanopartículas semiconductoras o puntos cuánticos

 

Los nanocristales semiconductores también llamados puntos cuánticos son nanoestructuras a base de materiales semiconductores inorgánicos y representan el grupo donde el efecto del tamaño es más evidente. El tamaño nano da lugar a lo que se conoce como confinamiento cuántico, que no es más que la localización de los electrones en un espacio bien definido, es como poner un electrón en una caja. Mientras que para tamaños mayores los electrones están no localizados. El confinamiento produce un ensanchamiento de la banda de energía prohibida del semiconductor así como la aparición de sub-bandas discretas en la banda de valencia y de conducción. Las dimensiones típicas oscilan entre uno y diez nanómetros.

Con frecuencia se les describe como átomos artificiales debido a que los electrones están dimensionalmente confinados como en un átomo y sólo se tiene niveles de energía discretos. Entre las nanoestructuras más estudiadas se encuentran las de CdSe/ZnS, CdSe/CdS, InP/ZnSe, CdTe/CdSe, entre otras. El resultado más vistoso de estas nanoestructuras es la capacidad para poder sintonizar la longitud de onda o color de la emisión.

Así, con un solo material y variando el tamaño de la nanopartícula es posible obtener múltiples colores o longitudes de onda de la señal emitida. Las aplicaciones son impresionantes y apuntan en todas las direcciones. Por ejemplo, podrían ser utilizados como colorantes inorgánicos sin problemas de degradación a diferencia de los colorantes orgánicos. También podrían ser utilizados en el diseño de los nuevos amplificadores ópticos de amplio ancho de banda tan importantes en los sistemas de comunicación óptica; en este caso cada nanopartícula con un diámetro determinado funcionaría como un amplificador, así el ancho de banda se determina con la selección adecuada de los diámetros de las partículas. O bien para la producción de fuentes de luz blanca mediante excitación con un LED u OLED o por electroluminiscencia.

Quizás una de las aplicaciones que mayor atención ha recibido es en su uso como etiquetas fluorescentes con emisión en la región visible del espectro, para la detección de una gran variedad de compuestos entre ellas células cancerigenas. Las técnicas actuales no detectan bajas concentraciones de células cancerigenas o compuestos de interés, por lo que la técnica de detección de fluorescencia de nanopartículas es una gran promesa para la detección temprana de este mal, para así incrementar el éxito en el tratamiento. Dado el tamaño tan pequeño de los puntos cuánticos actualmente se intenta desarrollar nanoestructuras más complejas formadas por puntos cuánticos o nanocristales acomplejados con diferentes componentes que desempeñan distintas funciones, detección, entrega de medicamento dirigido, efecto de la terapia, etc. Es decir, se busca una nanoestructura inteligente con múltiples funciones. El problema que presentan los puntos cuánticos es que son poco estables ya que tienden a aglomerarse, además de que se excitan con una fuente de luz UV donde la mayoría de los compuestos que se pueden encontrar en interior del cuerpo humano emiten luz lo que significa pérdida de contraste en la imagen de la célula deseada.

 

Nanopartículas dieléctricas o nanocristales

 

Los nanocristales dieléctricos son óxidos que presentan una banda de energía prohibida muy ancha y como consecuencia requieren altas energías de bombeo o luz en el UV para obtener emisión que en general es débil, aunque cuando se combina en forma adecuadacon diversos componentes son excelentes emisores de luz debido a su eficiencia y alta estabilidad. Son excelentes matrices para soportar iones de tierras raras que son muy buenos emisores de luz. En este caso no se observan efectos de confinamiento debido a que los electrones se encuentran localizados en orbitales atómicos del ion activo. Sin embargo, la dinámica de los iones emisores de luz se ve afectada por la interacción a nivel nanoscópico lo que puede producir una mejora en la eficiencia de emisión. Entre los nanocristales mas estudiados se encuentran algunos silicatos como Y2SiO5, la combinación nY2O3 + mAl2O3 que comprende puramente el óxido de itria, puramente el óxido de aluminio, cuando se combinan con n=3 y m=5 da lugar a la estructura cristalina mas utilizada en óptica para producir láseres conocida como YAG, o YAP para la combinación n=m=1 que corresponde a uno de los cristales mas sensibles a laradiación ionizante y que es utilizado para la detección de rayos X o rayos gama. El óxido de titanio (TiO2) y el óxido de zinc (ZnO) que se utilizan en los bloqueadores solares además de ser excelentes para los procesos de fotocatálisis, útiles en la reducción de contaminantes, para celdas solares y como bactericida.

Recientemente, hemos demostrado que el óxido de zirconio (ZrO2) combinado con otros elementos bloquea el rango completo de la luz ultravioleta, especialmente aquella región que produce el cáncer de piel. Este mismo nanocristal presenta excelente respuesta en la detección de radiación ionizante, UV, rayos X, gama, beta y alfa, tanto en tiempo real como en forma acumulada lo que sugiere buenas oportunidades para su uso en el diseño de dosímetros para la cuantificación de dosis recibidas.

Además, es excelente soporte para iones de tierras raras, con las cuales hemos obtenido luz visible (azul, verde y rojo) excitando con una fuente en el cercano infrarrojo. Ya que con esta fuente solo se excitan los nanocristales no hay emisión de fondo lo que mejora el contraste de las imágenes obtenidas. Estas características convierten a estos nanocristales en excelentes candidatos en aplicaciones biomédicas para la detección de diversos elementos a concentraciones bajas. La fabricación de estos nanocristales implica un tratamiento térmico para el proceso de oxidación lo que induce un tamaño de partícula grande. Se han reportado tamaños de partícula desde 10 a 90 nm.

 

 

 

 

 

Estructura de alas de mariposa son fabricadas con la nanofotónica de cristales, y, en realidad, sólo nos limitamos a copia la Naturaleza

 

Muchas veces se obtienen cristales muy pequeños pero con poca eficiencia de emisión, el reto es obtener mayor eficiencia de emisión sin incrementar demasiado el diámetro de las nanopartículas. Tamaños promedios con los que se han obtenido excelente eficiencia de emisión son entre 40 y 60 nm.

Nano partículas metálicas, plasmones.

 

 

 

Las nanopartículas metálicas tienen la habilidad de esparcir y absorber la luz incidente. En este caso, los efectos en las propiedades ópticas respecto a su contraparte en bulto se derivan de los efectos electrodinámicos y de la modificación del ambiente dieléctrico. A escala nanométrica la frontera metaldieléctrico produce cambios considerables en las propiedades ópticas.

Como resultado de la interacción entre la nanopartícula metálica y la señal óptica se obtiene la oscilación colectiva de electrones de superficie lo que genera bandas de resonancia conocidas como plasmones localizados o plasmones de superficie localizados. La longitud de onda o color a la que se obtiene dicha resonancia se le conoce como banda de absorción del plasmón que depende tanto del tamaño como de la forma de la nanopartícula y es lo que da lugar a la diferente coloración observada. Las nanoestructuras metálicas más conocidas son partículas esféricas, barras y películas con núcleo dieléctrico. Aunque más recientemente se han reportado otras estructuras como cubos, triángulos, estrellas y ovoides. En todos los casos, la banda de resonancia se recorre hacia el cercano infrarrojo en comparación con las nanopartículas esféricas cuya banda esta centrada en la región verde del espectro.

 

 

 

Los plasmones producen en la interfase un campo eléctrico intensificado que a su vez intensifica varios procesos ópticos lineales y no lineales. El campo eléctrico producido es utilizado como una interfase sensible a las interacciones ópticas y se convierte en una poderosa herramienta para el monitoreo óptico y para la formación de imágenes ópticas

localizadas. Una de las aplicaciones bien establecidas es la espectroscopia Raman de superficie mejorada (SERS por sus siglas en inglés). En este caso el espectro Raman de un componente cercano a la superficie metálica se ve fuertemente amplificado. Se ha demostrado que es posible amplificar el campo hasta 11 000 veces más cuando las partículas presentan cierta aglomeración. Otros fenómenos que presentan amplificación son la espectroscopia infrarroja de superficie mejorada, espectroscopia de fluorescencia

y la espectroscopia de resonancia de plasmones de superficie. Todas estas técnicas son complementarias y son utilizadas en la detección de componentes químicos y bioquímicos a nivel de trazas.

 

Célula cancerígena

 

Células modificadas y célula cancerigena que,la nanofotónica podrá modificar e incluso regenerar en el fiuturo

 

Quizás un proyecto más ambicioso es el de poder detectar células cancerigenas a temprana edad de lo cual ya se han reportado importantes avances. En el CIO trabajamos con nanopartículas de oro y plata a fin de desarrollar sensores ópticos para la detección de diferentes compuestos a nivel de trazas y estamos aplicado exitosamente nanopartículas deoro en la detección de células cancerigenas.

En resumen, las nanoestructuras presentan propiedades ópticas únicas que no presentan su contraparte en bulto o de escala mayor. Éstas están siendo utilizadas para el desarrollo de la nueva generación de dispositivos optoelectrónicos y/o fotónicos. Las aplicaciones son muy variadas y abarcan muchos campos haciendo de la nanociencia y nanotecnología una área

multidisciplinaria. Especial atención recibe el uso de dichas propiedades en aplicaciones biomédicas para la detección a nivel de trazas de diversos agentes patógenos. El estudio de las propiedades ópticas de las nanoestructuras ha definido una nueva área conocida como nanofotónica.

¡El futuro está aquí!

emilio silvera