martes, 21 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Cosas de Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡Preludio a la relatividad! -Las ecuaciones de Lorentz-Fitzgerald- Éste último pensaba y decía cosas comos estas:

              George FitzGerald

“…telegrafía debe mucho a Euclides y otros geómetras puro, al griego y árabe matemáticos que inventó nuestra escala de numeración y álgebra, de Galileo y Newton, quien fundó la dinámica, para que Newton y Leibniz inventó el cálculo, para que Volta descubrió la galvánica bobina, a Oersted quien descubrió la acción magnética de las corrientes, que a Ampère descubrió las leyes de su acción, a Ohm que descubrió la ley de la resistencia de los cables, a Wheatstone, de Faraday, a Lord Kelvin, a Clerk Maxwell, Hertz a .Sin los descubrimientos, invenciones, y las teorías científicas resumen de estos hombres telegrafía, ya que ahora es, sería imposible.”

“La función de la Universidad es, sobre todo, enseñar a la humanidad...en todo momento los más grandes hombres siempre han sostenido que su deber principal es el descubrimiento de nuevos conocimientos, la creación de nuevas ideas para toda la humanidad, y no la instrucción de los pocos que encuentran conveniente a residir en su vecindad inmediata.Åre las Universidades de dedicar las energías de los intelectuales más avanzados de la edad a la instrucción de toda la nación, o en las instrucciones de los pocos cuyos padres pueden pagar a uno – en algunos lugares de lujo – la educación que en la naturaleza de las cosas sólo al alcance de los ricos?”

Hendrik Antoon Lorentz.jpg

    Hendrik Antoon Lorentz

Se le deben importantes aportaciones en los campos de la termodinámica, la radiación, el magnetismo, la electricidad y la refracción de la luz.  Formuló conjuntamente con George Francis FitzGerald una teoría sobre el cambio de forma de un cuerpo como resultado de su movimiento; este efecto, conocido como “contracción de Lorentz-FitzGerald”, cuya representación matemática de ella es conocida con el nombre de transformación de Lorentz,  fue una más de las numerosas contribuciones realizadas por Lorentz al desarrollo de la teoría de la relatividad.

Fue, al igual que Henri Poincaré,  uno de los primeros en formular las bases de la teoría de la relatividad (frecuentemente atribuida primaria o solamente a Albert Einstein).  Fue ganador del Premio Nobel de Física en 1902, junto con su pupilo Pieter Zeeman,  por su investigación conjunta sobre la influencia del magnetismo en la radiación, originando la radiación electromagnética.  También fue premiado con la Medalla Rumford en 1908 y la Medalla Coplay en 1918. Lorentz era hombre humilde y sencillo y le gustaba resaltar los logros de los demás:

“Como es probable que sepas, gran parte de nuestro conocimiento sobre la electricidad y el magnetismo se basa en los experimentos ingeniosísimos realizados por Michael Faraday en la primera parte del siglo XIX. Faraday era un experimentador genial, y descubrió numerosos fenómenos desconocidos hasta entonces, como la inducción mutua. Estableció diversas leyes, pero no pudo elaborar una teoría global acerca del electromagnetismo porque sus conocimientos matemáticos no iban más allá de la trigonometría: hacía falta un teórico capaz de amalgamar el conocimiento adquirido por Faraday y otros experimentadores, como Hans Christian Ørsted, en una teoría general.

Ese teórico era otro genio, James Clerk Maxwell, que estableció un conjunto de cuatro ecuaciones diferenciales bellísimas que describían de una manera extraordinariamente precisa los resultados de casi todos los experimentos de Faraday, Ørsted y compañía. Lo más sorprendente, para el propio Maxwell y sus contemporáneos, fue una de las consecuencias inevitables de sus ecuaciones: la existencia de perturbaciones del campo eléctrico y el magnético que se propagaban por el espacio.”

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

 

 

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

AetherWind.svg

                                                                                 experimento conocido de Michelson-Morley

Todo aquello fue posible gracia a que en 1893, el físico irlandés George Francis FitzGerald emitió una hipótesis para explicar los resultados negativos del experimento conocido de Michelson-Morley.  Adujo que toda materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso.  Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

Parecía como si la explicación de FitzGerald insinuara que la Naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, para lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el nombre de “contracción de FitzGerald”, y su autor formuló una ecuación para el mismo que, referido a la contracción de un cuerpo móvil, fue predicha igualmente, y de manera independiente, por H.A.Lorentz (1853-1928) de manera que, finalmente, se quedaron unidas como “Contracción de Lorentz-Fitz Gerald”.

 

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

 

 

Después llegó Einstein que se apropió de aquella idea y, además, la amplió al contraer también el Tiempo. La contracción de la longitud ha sido verificada en el diseño, por ejemplo, del acelerador lineal de la Universidad de Stanford. Las partículas salen con una velocidad v = 0,999975c, por tanto, cada metro de tubo acelerador es “visto” por los electrones como 144 metros. Si, según la expresión anterior, un cuerpo con masa se moviera a la velocidad c desaparecería por contracción de su longitud para un observador en reposo, lo cual refuerza el carácter inalcanzable de esta velocidad. Si los objetos con masa alcanzan este límite de velocidad la estructura básica de la realidad se desvanece. Por otra parte, vemos que cualquier influencia que afecte al tiempo también lo hará con el espacio. Esto no nos debe de extrañar, ya que ambas magnitudes se encuentran íntimamente relacionadas por lo único que se nos mantiene invariable: la velocidad de la luz. En relatividad hablamos de espacio-tiempo ya que son inseparables.

A la contracción, Einstein, le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud /0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud /0 , donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11 km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 km/seg. (la mitad de la velocidad de la luz, c), sería del 15%; a 262.000 km/seg. (7/8 de la velocidad de la luz), del 50% Es decir, que una regla de 30 cm. que pasara ante nuestra vista a 262.000 km (seg., nos parecería que mide sólo 15’54 cm…, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 km/seg., en números redondos, su longitud, en la dirección del movimiento, sería cero.  Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse en el Universo. (Pero ¿existir también?).

El físico holandés Hendrik Antón Lorentz, como hemos dicho, promovió ésta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas), se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula para reducir su volumen, aumentaría su masa.  Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitz Gerald, debería crecer en términos de masa.

          Un objeto que corra a velocidades cercanas a la de la luz, verá incrementada su masa

Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación FitzGerald sobre el acortamiento. A 149.637 kilómetros por segundo, la masa de un electrón aumentaría en un 15%; a 262.000 km/seg., en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita.  Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita? El efecto FitzGerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las “ecuaciones Lorentz-FitzGerald.”

Mientras que la contracción FitzGerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas si podía serlo…, aunque indirectamente. De hecho, el muón, tomó 10 veces su masa original cuando fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores, han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

                        Nada puede viajar a la velocidad de la luz

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial que, aunque mucho más amplia, recoge la contracción de FitzGerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

¡Qué cosas!

Algunas veces pienso que, los artistas en general, y los poetas en particular, tendrían que adaptar e incluir a sus esquemas artísticos y poéticos, los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano.

Estos adelantos científicos serían así coloreados con las pasiones humanas y transformadas, de alguna forma, en la sangre, y por qué no, los sentimientos de la naturaleza humana.

Posiblemente, de haberlo hecho así, el grado general de conocimiento sería mayor.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting