domingo, 17 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El “mundo” que nos rodea

Autor por Emilio Silvera    ~    Archivo Clasificado en Caos y Complejidad    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No siempre sabemos ver el mundo que nos rodea. El que miremos no significa que estemos viendo lo que realmente hay delante de nuestros ojos y, muchas veces, no son los ojos los únicos que pueden “ver” lo que hay más allá de lo que la vista puede alcanzar. Anoche, hasta una hora avanzada, estuve releyendo el Libro “Así de Simple” de John Gribbin, y, pareciéndome interesante os saqué un pequeño resumen del comienzo. Aquí os lo dejo.

El mundo que nos rodea parece ser un lugar complicado. Aunque hay algunas verdades sencillas que parecen eternas (las manzanas caen siempre hacia el suelo y no hacia el cielo; el Sol se levanta por el este, nunca por el oeste), nuestras vidas, a pesar de las modernas tecnologías, están todavía, con demasiada frecuencia, a merced de los complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico tiene todavía más de arte adivinatorio que de ciencia; los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatorias; las fluctuaciones de la economía siguen ocasionando la bancarrota de muchos y la fortuna de unos pocos.

Sobre la posición de la salida del sol

           Sobre la posición de la salida del sol

                              

Desde la época de Galileo (más o menos, a comienzos del siglo XVII) la ciencia ha hecho progresos –enormes-, ignorando en gran medida estas complejidades y centrándose en cuestiones sencillas, intentando explicar por qué las manzanas caen al suelo y por qué el Sol se levanta por el este. Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.

Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética.

No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del universo. Las que se resisten más a rendirse ante los métodos tradicionales de la investigación científica. Realmente, es posible que seamos lo más complejo que existe en el universo. La razón es que, a escalas más reducidas, entidades tales como los átomos se comportan individualmente de un modo relativamente sencillo en sus interacciones mutuas, y que las cosas complicadas e interesantes surgen, cuando se unen muchos átomos de maneras complicadas e interesantes, para formar organismos tales como los seres humanos.

Pero este proceso no puede continuar indefinidamente, ya que, si se unen cada vez más átomos, su masa total aumenta hasta tal punto que la Gravedad aplasta toda la estructura importante y la aniquila. Un átomo, o incluso una molécula tan simple como la del agua, es algo más sencillo que un ser humano, porque tiene poca estructura interna; una estrella, o el interior de un planeta, es también algo más sencillo que un ser humano porque la gravedad aplasta cualquier estructura hasta aniquilarla. Esta es la razón por la cual la ciencia puede decirnos más sobre el comportamiento de los átomos y el funcionamiento interno de las estrellas o los planetas que sobre el modo en que las personas nos comportamos.

            Sí, hemos podido llegar a conocer lo que ocurre en el Sol, y sabemos de sus procesos interiores y exteriores, de las ráfagas de partículas que en sus épocas activas, nos envía continuamente hacía la superficie del planeta y, que no sólo provoca esas bonitas Auroras, sino que, su intensa radiación y magnetismo incide en todos los atilugios que tenemos para leer los datos de… ¡tántas cosas!

Cuando los problemas sencillos se rindieron ante el empuje de la investigación, fue algo natural que los científicos abordaran rompecabezas más complicados que iban asociados con sistemas complejos, para que por fin fuera posible comenzar a comprender el funcionamiento del mundo a una escala más humana compleja y, para ello, hubo que esperar hasta la década de 1960, que fue cuando aparecieron los poderosos y rápidos (para lo que se estilaba en aquella época) ordenadores electrónicos. Estos nuevos inventos empezaron a ser conocidos por un público más amplio entre mediados y finales de la década de 1980, primero con la publicación del libro, ahora convertido en un clásico, Order out of Chaos, de Ilya Prigogine e Isabelle Stergers, y luego, con Chaos, de James Gleick.

Las personas sencillas que, aunque tengan una educación aceptable, no están inmersas en el ámbito de la ciencia, cuando oyen hablar de Complejidad y Caos en esas áreas, sienten, de primeras, una especie de rechazo por aquello que (ellos creen) no van a comprender. Sin embargo, la cuestión no es tan difícil como a primera vista pudiera parecer, todo consiste en tener la posibilidad de que alguien, de manera “sencilla” (dentro de lo posible), nos explique las cosas dejando a un lado las matemáticas que, aunque describen de manera más amplia y pura aquellos conceptos que tratamos, también es verdad que, no siempre, están al alcance de todos. Un conocimiento básico de las cosas más complicadas, es posible. También la relatividad general y la mecánica cuántica, se consideraron, cuando eran nuevas, como unas ideas demasiado difíciles para que cualquiera las entendiera, salvo los expertos –pero ambas se basan en conceptos sencillos que son inteligibles para cualquier persona lega en la materia, siempre que esté dispuesta a aceptar su parte matemática con los ojos cerrados-. E la misma manera, el Caos y la Complejidad, también pueden ser entendidos y, si tenemos la suerte de tener un buen interlocutor que nos sepa explicar, aquellos conceptos básicos sobre los que se asientan tanto el Caos como la Complejidad, veremos maravillados como, de manera natural, la luz se hace en nosotros y podemos entender lo que antes nos parecía inalcanzable.

Se cree que las galaxias se han formado por la acumulación gravitacional de gas, algún tiempo después de la época de la recombinación. Las nubes de gas podrían haber comenzado a formar estrellas, quizás como resultado de las colisiones mutuas. El tipo de galaxia generado podría depender del ritmo al que el gas era transformado en estrellas, formándose las elípticas cuando el gas se convertía rápidamente en estrellas, y las espirales si la transformación de estrellas era lo suficientemente lenta como para permitir crecer de forma significativa un disco de gas. Lo cierto es que, hasta la fecha, nadie sabe explicar cómo se pudieron formar las galaxias a pesar de la expansión de Hubble. ¿Qué fuerza estaba allí presente para retener la materia?

http://apod.nasa.gov/apod/image/1003/m78_torregrosa.jpg

                                                               Nubes moleculares en Orión que son los materiales primigenios para complejidades futuras

Las galaxias evolucionan al convertir progresivamente su gas remanente en estrellas, si bien no existe probablemente una evolución entre las diferentes tipos de la clasificación del conocido sistema de Hubble. No obstante, algunas galaxias elípticas pudieron haberse creado por la colisión y posterior fusión de dos galaxias espirales.

NGC 5426 y NGC 5427 son dos galaxias espirales de tamaños similares involucradas en una danza espectacular. No es seguro que esta interacción culmine en una colisión y a la larga en la fusión de las dos galaxias, aunque éstas ya han sido ya afectadas. Conocidas ambas con el nombre de Arp 271, su danza perdurará por decenas de millones de años, creando nuevas estrellas como resultado de la mutua atracción gravitacional entre las galaxias, un tirón observable en el borde de las estrellas que ya conectan a ambas. Ubicada a 90 millones de años-luz de distancia hacia la constelación de Virgo (la Virgen), el par Arp 271 tiene unos 130.000 años-luz de extensión. Fue descubierta originalmente en 1785 por William Herschel. Muy posiblemente nuestra Vía Láctea sufrirá una colisión similar en unos cinco mil millones de años más con la galaxia vecina Andrómeda, que ahora está ubicada a cerca de 2,6 millones de años-luz de la Vía Láctea.

Sí, mirando las imagenes nos da la sensación de cierto Caos y Complejidad

Tenemos que entender que, algunos sistemas (“sistema” no es más que una palabra de la jerga científica para asignar cualquier cosa, como un péndulo que oscila, o el sistema solar, o el agua que gotea de un grifo) son muy sensibles a sus condiciones de partida, de tal modo que una diferencia mínima en el “impulso” inicial que les damos ocasiona una gran diferencia en cómo van a acabar, y existe una retroalimentación, de manera que lo que un sistema hace afecta a su propio comportamiento. Así, a primera vista, parece que la guía es sencilla y, nos puede parecer mentira que así sea. Sin embargo, esa es la premisa que debemos tener en cuenta. Nos podríamos preguntar: ¿Es realmente verdad, que todo este asunto del Caos y de la Complejidad se basaba en dos ideas sencillas –la sensibilidad de un sistema a sus condiciones de partida, y la retroalimentación-¿ La respuesta es que sí.

La mayor parte de los objetos que pueden verse en el cielo nocturno son estrellas, unos pocos centenares son visibles a simple vista. Una estrella es una bola caliente principalmente compuesta por hidrógeno gaseoso. El Sol es un ejemplo de una estrella típica y común. La gravedad impide que el gas se evapore en el espacio y la presión, debida a la alta temperatura de la estrella, y la densidad impiden que la bola encoja. En el corazón de la estrella, la temperatura y la densidad son lo suficientemente altas para sustentar a las reacciones de fusión nuclear, y la energía, producida por estas reacciones, hace su camino a la superficie y la irradia al espacio en forma de calor y luz. Cuando se agota el combustible de las reacciones de fusión, la estructura de la estrella cambia. El proceso de producir elementos, cada vez más pesados, a partir de los más livianos y de ajustar la estructura interna para balancear gravedad y presión, es llamado evolución estelar.

Observar una estrella a través del telescopio permite conocer muchas de sus importantes propiedades. El color de una estrella es un indicador de su temperatura y ésta, a su vez, depende de una combinación entre la masa de la estrella y su fase evolutiva. Usualmente, las observaciones también permiten encontrar la luminosidad de la estrella o la tasa con la cual ella irradia energía, en forma de calor y luz.

Todas las estrellas visibles a simple vista forman parte de nuestra galaxia, la Vía Láctea. La Vía Láctea es un sistema compuesto por unos cien mil millones de estrellas, junto con una considerable cantidad de material interestelar. La galaxia tiene forma de un disco chato sumergido en un halo débil y esférico. La gravedad impide que las estrellas se escapen y, sus movimientos, hacen que el sistema no colapse. La Vía Láctea no posee un límite definido, la distribución de las estrellas decrece gradualmente con distancias crecientes del centro. El SDSS detecta estrellas más de un millón de veces más débiles que las que podemos ver a simple vista, lo suficientemente lejos para ver la estructura de la Vía Láctea.

De algún modo, esto es como decir que “todo lo que hay” sobre la teoría especial de la relatividad es que la velocidad de la luz es la misma para todos los observadores. Sin embargo, la complejidad de la estructura que se levanta sobre este hecho sencillo resulta asombrosa y requiere algunos conocimientos matemáticos para poder apreciarla plenamente. Claro que, eso no quita para que, un buen comunicador le pueda transmitir a otras personas mediante explicaciones sencillas lo esencial de la relatividad especial y general y también, sobre la esencia de la mecánica cuántica, y, de la misma manera, podríamos hablar del Caos y de la Complejidad. Debemos ser conscientes de que, el Caos, puede surgir a partir del Orden y que, la Complejidad, siempre llega a través de la sencillez de un comienzo. Podemos estar al borde del Caos y, de manera milagrosa ver que, también a partir de él surge la normalidad y lo nuevo que, no en pocas ocasiones pueden ser nuevas formas de vida. De la misma manera, las transformaciones de los elementos sencillos, bajo ciertas condiciones, llegan a adquirir una complejidad inusitada que, de alguna manera, es necesaria para que, en este mundo que nos rodea, existan seres que, como nosotros, sean el ejemplo más real y de más alto nivel que está presente en el Universo. Y, de la misma manera que nosotros estamos aquí, en un minúsculo sistema solar habitando un pequeño planeta que reúne todas las condiciones necesarias para la vida, de la misma forma digo, estarán poblados otros muchos planetas de otros muchos sistemas solares repartidos por nuestra Galaxia y por las otras que, a cientos de miles pululan por el Universo, y, todos esos seres “racionales”, se preguntaran las mismas cosas que nosotros y estarán interesados en descubrir los mismos misterios, los mismos secretos de la Naturaleza que, presintiendo que existen, tienen la intuición de que serán las respuestas esperadas para solucionar muchos de los problemas e inseguridades que ahora, en nuestro tiempo, nos aquejan.

Claro que, la mente nunca descansa. Acordaos de Aristarco de Samos que, en el siglo III a. C., ya anunció que la Tierra orbitaba alrededor del Sol y, Copérnico, que se llevó el premio, no lo dijo hasta el año 1543. Esto nos viene a demostrar que, a pesar de la complejidad del mundo, lo realmente complejo está en nosotros, en nuestras mentes que, presienten lo que pueda ser, intuyen el por qué de las cosas, fabrican pensamientos que, mucho más rápidos que la luz, llegan a las galaxias lejanas y, con los ojos de la mente pueden, atisbar aquellas cosas de las que, en silencio, ha oído hablar a su intuición dentro de su mente siempre atenta a todo aquello que puede ser una novedad, una explicación, un descubrimiento.

vista de la tierra y el sol de la órbita (la imagen de la tierra tomada de http://visibleearth.nasa.gov) Foto de archivo - 4911867

Vista de la Tierra y el Sol de la órbita (la imagen de la tierra tomada de http://visibleearth.nasa.gov)

Ahora estamos centrados en el futuro aquí en la Tierra pero, sin dejar de la mano ese futuro que nos espera en el espacio exterior. Es pronto aún para que el hombre vaya a las estrellas pero, algún día, ese será su destino y, desde ya, debe ir preparándose para esa aventura que sólo está a la espera de tener los medios tecnológicos necesarios para hacerla posible. Mientras tanto, jugamos con las sondas espaciales que enviamos a planetas vecinos para que, nos vayan informando de lo que están hechos aquellos mundos –grandes y pequeños- que, en relativamente poco tiempo, serán visitados por nuestra especie para preparar el salto mayor.

emilio silvera

¡La mecánica cuántica! El “universo de lo muy pequeño”

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La mecánica cuántica que conocemos en nuestros días se ha conseguido gracias a la suma de muchos esfuerzos y sería preciso entrar en la historia pasada de esta disciplina que investiga como es el mundo, como funciona la Naturaleza, para saber como se llegó a moldear esos conocimientos que nos llevan al “universo” de lo infinitesimal, de los objetos más pequeños pero que, sin ellos, no podrían existir los más grandes. Ninguna duda nos puede caber ya sobre el hecho cierto de que, la mecánica cuántica, es una de las ramas principales de la Física y está entre uno de los más grandes avances del pasado siglo XX en lo que al conocimiento humano del mundo se refiere. Nos explica el comportamiento de la materia-energía y, de hecho, sin esos conocimientos hubiera sido imposible alcanzar el nivel tecnológico del que hoy podemos disfrutar.

Un día de 1900, Max Planck escribió un artículo de ocho páginas que cambió el mundo de la física. En él nos habló del cuanto, unos pequeños paquetes de energía que eran emitidos por los cuerpoos calientes y, dejó sembrada la semilla de un árbol que no ha dejado de crecer desde entonces. Más tarde llegó Einstein que inspirado en aquel trabajo de Planck, fue un poco más allá y realizó aquel famoso trabajo conocido del Efecto fotoeléctrico. Desde entonces, los físicos no dejaron de ampliar y desarrollar las bases de nuestros conocimientos actuales.

La estructura de las fuerzas familiares como la Gravedad y el magnetismo fueron desarrolladas relativamente temprano. Todos conocemos la historia de Newton y sus trabajos y que, mucho después, dejó perfeccionado Einstein en relación a la fuerza gravitatoria. Las fuerzas electromagnéticas se determinaron también bastante pronto pero, no fue hasta 1927 cuando Dirac realizaría los primeros cálculos cuánticos de interacción de la radiación con la materia y en los años cuarenta y cincuenta gracias a los trabajos de -entre otros-, Schwinger y Feynman, se construyó una teoría (electrodinámica cuántica) compatible con los principios básicos de la relatividad y la mecánica cuántica y con una capacidad predictiva asombrosa. Se han conseguido comprender éstos fenómenos, podríamos decir que al nivel de un acuerdo entre los cálculos teóricos y los resultados experimentales de más de diez cifras decimales, y, tal cosa, amigos míos, es un inmenso logro de la mente humana.

No podríamos comprender el macrocosmos sin haber descubierto antes que, en realidad, está fuertemente ligado al microcosmos, a la física subnuclear, ese mundo de lo muy pequeño que, cuando se profundiza en él, nos habla del futuro dinámico del universo y se comienza a ver con claridad como aquellas cuestiones antes no resultas, están ahí, ante nuestros ojos y para que nuestras mentes la puedan entender gracias a la dinámica activa de ese ámbito que resulta ser el campo de las partículas elementales y las fuerzas que con ellas actúan.

Las interacciones débiles y las interacciones fuertes, por su profunda lejanía, tardaron en ser comprendidas. Está claro que, el corto alcance en el que se desarrollan imposibilitaron bastante su hallazgo. Antes, los físicos no tenían acceso al mundo subatómico al que más tarde pudieron entrar de la mano de los microscopios electrónicos, los grandes aceleradores y otros ingenios de increíble alcance y precisición. Así que, a diferencia de lo que pasó con la Gravedad y el electromagnetismo, no se partía de una teoría clásica bien establecida, de manera que se tuvo que construir directamente, una teoría cuántica y relativista de ambas interacciones: la interacción nuclear débil y la interacción nuclear fuerte.

        Gerardus ´t Hooft

La empresa de comprender aquellas interacciones fue ardua y se tuvo que esperar hasta los año setenta para encontrar las teorías correctas y completas. En estos años se produjeron, primero la demostración por el holandés Gerard ´t Hooft, culminando los trabajos de su mentor, el también holandés, Martinus Veltman, de la autoconsistencia (llamada, por motivos técnicos, renormalización) de las teorías propuestas fenomenológicamente por Glashow, Wienberg y Salam para interacciones débiles; y segundo, el descubrimiento de la propiedad de libertad asintótica (por Gross, Wilczek y Plotzer) de las interacciones fuertes. Ambos grupos consiguieron el Nobel, pero los tres últimos no vieron premiados sus esfuerzos hasta 30 años después, en 2004, cuando se había comprobado de manera suficiente la veracidad de sus predicciones sobre la libertad de los Quarks en su confinamiento, cuando éstos, están juntos y los Gluones, se comportan como si no estuvieran allí, sólo actúan cuando tratan de separse.

        Frank Wilczek (su origen es polaco e italiano) junto con David Groos y David Politzer recibió el Premio Nobel de Física 2004 por el descubrimiento de la libertad asintótica en la teoría de la interacción fuerte. Ellos predijeron hace más de 30 años que, si los Quarks estaban juntos se movían con libertad y, cuando trataban de separse, entraba en acción la fuerza fuerte y los gluones lo retenían imposibiltando su alejamiento. De esa manera, es posible la existencia de los nucleones, es decir de protones y neutrones que forman el núcleo de los átomos.

En 1973, Wilczek, un estudiante graduado trabajando con David Gross en la Universidad de Princeton, descubrió la libertad asintótica que afirma que mientras más próximos estén los quarks menor es la interacción fuerte entre ellos; cuando los quarks están extremadamente próximos la interacción nuclear entre ellos es tan débil que se comportan casi como partículas libres.

Estosd avances hicieron posible obtener teorías consistentes con la relatividad y la mecánica cuántica de ambos tipos de interacciones; teorías que, además han superado con éxito las muchas confrontaciones experimentales que han sido realizadas hasta nuestros días. Aunque no hay ni cálculos teóricos, ni resultados experimentales tan exactos como en el caso de la electrodinámica cuántica, es cierto que el nivel de precisión de los cálculos con interacciones débiles llegan a cuatro y más cifras significativas y, para interacciones fuertes, estamos alcanzando el nivel del uno por ciento.

En ambas imágenes está reflejada la Interacción gravitatoria que, en las grandes estructructuras se hace presente y se deja sentir, podemos ver como funciona y cuáles son sus consecuencia. Sin embargo, en el mundo de lo muy pequeño, esta interacción, continúa siendo la cenicienta en lo que se refiere a la comprensión de la estructura microscópica y la incidencia que la interacción gravitatoria pueda tener ahí y, curiosamente, es la interacción que se conoce desde hace mucho tiempo y sabemos, perfectamente de su funcionamiento en ese ámbito de lo muy grande pero, hace mutis por el foro cuando nos acercamos al mundo de las partículas, de la mecánica cuántica. Por eso se habla tanto de que necesitamos una teoría cuántica de la gravedad.

No tenemos información alguna de la fuerza de Gravedad a nivel experimental sobre la interacción gravitatoria a cortas distancias, donde sólo se puede llegar a través de inmensas energías. A lo más que hemos podido llegar es a experimentos del tipo realizado por Eötvös, midiendo la interacción gravitatoria entre dos cuerpos a distancias del orden del centímetro: las interacciones gravitatorias entre partículas elementales (quarks, electrones o incluso núcleos) es tan minúscula que son pocas las esperanzas de poderlas medir…por ahora ni en muchom tiempo futuro, y, siendo así (que lo es), nos tenemos que dedicar a emitir conjeturas y a especular con lo que podría ser.

En el siglo XIX se consiguió uno e los logros más impresionantes que nunca pudo alcanzar la Humanidad. ¡La comprensión de los fenómenos electromagnéticos. Comprensión en la que participaron (como casi siempre) muchos científicos, entre los que podemos destacar a dos británicos: el inglés Muchael Faraday, responsable de una buena parte de la investigación y de los conceptos experimentales (de él es el concepto de campo que tan importante sería para la Física), y, el escocés James Clerk Maxwell al que le debemos la síntesis teórica que condensó en unas pocas ecuaciones fundamentales, de las propiedades de las interacciones electromagnéticas a nivel clásico, esto es, macroscópico.

Los fenómenos electromagnéticos tal y como se entendían a finales del siglo XIX, se suponían debidos a la fuerza que una carga eléctrica ejerce sobre otra: tanto si las cargas son estáticas (y entonces la fuerza viene dada por la conocida ley de Coulomb) como si están en movimiento, situación en la que se generan campos magnéticos. Las vibraciones de estos campos electromagnéticos se suponían propagándose por el éter (el “éter luminífero”) y la luz se identificaba como un caso particular de estas vibraciones electromagnéticas. La corriente eléctrica se interpretaba como una especie de fluido: recuérdese que, todavía en 1896, Lord Kelvin defendía esta naturaleza continua de la electricidad.

Lo que supuso el descubrimiento de la luz eléctrica para la Humanidad, aunque ahora lo podamos ver como cosa trivial y cotidiana, en realidad vino a cambiar el mundo que se vio de pronto, sacado bruscamente de la penunmbra para sumergirse en la más maravillosa claridad del día artificial. Aquello supuso un cambio enorme para muchos de los ámbitos sociales en las ciudades y, no digamos, más tarde, en el de los hospitales, laboratorios y también en el más cotidiano mundo doméstico.

Está claro que la luz es algo tan importante enn nuestras vidas que, sin ella, nos encontramos desamparados, desnudos y, si nos referimos a la natural, la que nos manda el Sol, la cosa sería más grave ya que, sin  ella, no podríamos estar aquí. De todo esto, como de cualquiera de los temas de Física que pudiéramos escoger al azar, nos podríamos estar hablando durante años…¡es tan fascinante! ¡son tan maravillosos! todos esos conocimientos que, de alguna manera, nos acercan a que podamos comprender en funcionamiento del mundo y nos cuentan el por qué ocurren las cosas de la, manera en que la vemos que pasan. Muchas son las historias que se podrían contar de todos estos sucesos que por el camino de los descubrimientos tuvimos que recorrer y, a cada nuevo halñlazgo o descubrimiento, surgían nuevos inventos que mejoraban nuestra manera de poder mirar el “mundo” de lo muy pequeño y también, de lo muy grande.

La teoría cuántica, recordémoslo, afirma que para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo. La teoría cuántica afirma también que nunca se conoce realmente el estado de una partícula hasta que se haya hecho una observación. Antes de que haya una medida, la partícula puede estar en uno de entre una diversidad de estados, descritos por la función de onda de Schrödinger. Por consiguiente, antes de que pueda hacerse una observación o medida, no se puede conocer realmente el estado de la partícula. De hecho, la partícula existe en un estado ultramundano, una suma de todos los estados posibles, hasta que se hace una medida.

Cuando esta idea fue propuesta por primera vez por Niels Bohr y Werner Heisemberg, Einstein se revolvió contra ella. “¿Existe la luna sólo porque la mira un ratón?“, le gustaba preguntar. Según la teoría cuántica, en su más estricta interpretación, la Luna, antes de que sea observada, no existe realmente tal como la conocemos. “La Luna puede estar, de hecho, en uno cualquiera de entre un número infinito de estados, incluyendo el estado de estar en el cielo, de estar explotando, o de no estar allí en absoluto. Es el proceso de medida que consiste en mirarla el que decide que la Luna está girando realmente alrededor de la Tierra“. Decía Einstein con ironía.

 

                      Einstein no pensó en la posibilidad de que fuera la Luna la que nos esté mirando

Edwin Schrödinger, autor de la ecuación con su función de onda, se disgustó con estas interpretaciones de su ecuación. Para demostrar lo absurdo de la situación creada, Schrödinger colocó un gato imaginario en una caja cerrada. El gato estaba frente a una pistola, que está conectada a un contador Geiger, que a su vez está conectado a un fragmento de uranio. El átomo de uranio es inestable y sufrirá una desintegración radiactiva. Si se desintegra un núcleo de uranio, será detectado por el contador Geiger que entonces disparará la pistola, cuya bala matará al gato.

 

Para decidir si el gato está vivo o muerto, debemos abrir la caja y observar al gato. Sin embargo, ¿cuál es el estado del gato antes de que abramos la caja? Según la teoría cuántica, sólo podemos afirmar que el gato está descrito por una función de onda que describe la suma de un gato muerto y un gato vivo.

Para Schrödinger, la idea de pensar en gatos que no están ni muertos ni vivos era el colmo del absurdo, pero la confirmación experimental de la mecánica cuántica nos lleva inevitablemente a esta conclusión. Hasta el momento, todos los experimentos han verificado, favorablemente, la teoría cuántica.

La paradoja del gato de Schrödinger es tan extraña que uno recuerda a menudo la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Lewis Carroll: “Allí me verás“, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.

 

                      La Mecánica cuántica, es , más fascinante el el Pais de las Maravillas de Alicia

Existen varias maneras de abordar esta dificultad de lo incomprensible en mecánica cuántica. En primer lugar, podemos suponer que Dios existe. Puesto que todas las “observaciones” implican un observador, entonces debe haber alguna “conciencia” en el universo. Algunos físicos como el premio Nobel Eugene Wigner, han insistido en que la teoría cuántica prueba la existencia de algún tipo de conciencia cósmica universal.

La segunda forma de tratar la paradoja es la preferida por la gran mayoría de los físicos en activo: ignorar el problema.

El físico Richard Feynman dijo en cierta ocasión: “Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado. Nadie sabe como puede ser eso“. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su favor es que “es indudablemente correcta”.

 http://gua30.files.wordpress.com/2008/05/mecanicacuantica.jpg

            ¿Siempre será parte del misterio?

Sin embargo, existe una tercera forma de tratar esta paradoja, denominada teoría de los muchos universos. Esta teoría (como el principio antrópico) no gozó de mucho favor en la última década, pero está siendo revitalizada por la función de onda del universo de Stephen Hawking.

Pero, bueno… ¿cómo he llegado hasta aquí? Es cierto que, los senderos de la Física te pueden llevar a tántos sitios…

emilio silvera

 

El árbol de la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La química de la vida es la química del carbono, actuando el agua como disolvente capaz de transportar moléculas de un lugar a otro. Los elementos químicos más utilizados por los organismos biológicos son Carbono, Oxígeno, Nitrógeno e Hidrógeno que se combinan entre sí junto con algunos pocos elementos más para formar moléculas orgánicas básicas (como aminoácidos y azúcares que pueden encontrarse en algunos cometas y pueden formarse libremente en el frío espacio) y luego estructuras mucho más complejas como proteínas y enzimas capaces de desarrollar una química compleja capaz incluso de permitir que algunas moléculas se repliquen. Aunque la ciencia ficción ha tratado otras posibles formas de vida basadas en elementos químicos distintos, los biólogos y los químicos no parecen estar de acuerdo argumentando a favor de las propiedades únicas de los átomos de carbono y las moléculas de agua.

http://universitam.com/academicos/wp-content/uploads/2011/09/galaxy02.jpg

La Nebulosa de Orión, también conocida como M42, es una de las nebulosas más brillantes y más famosos en el cielo. La formación de estrellas brillantes, nubes de gas y una región de estrellas jóvenes y calientes están en la foto izquierda en este mosaico marco de fuerte colorido, que incluye a la nebulosa M43 cerca del centro de la polvorienta y azulada nebulosa de reflexión NGC 1977. Situado en el borde de una gigantesca e invisible nube molecular compleja, los astrónomos han identificado lo que parecen ser numerosos sistemas solares en el inicio de su formación.

La química de la vida y la nucleosíntesis estelar

El estudio de la vida en el Universo se ha extendido en las últimas décadas en un campo científico interdisciplinar entre la astrofísica y la biología que ha acuñado el término de astrobiologíay se ocupa de cuestiones muy diversas que van desde la definición de qué es la vida a el origen de la vida en la Tierra o las posibilidades de su desarrollo en otros mundos.

En el árbol de la vida, construido a partir de comparaciones entre secuencias de nucleótidos de genes de diversos organismos, las plantas y los anumales quedan reducidos a brotes en la punta de una sóla de las ramas. La mayor diversidad de la vida y, por extensión, la mayor parte de su historia, es microbiana. Antes de explorar las rocas precámbricas en busca de rastros de las formas primeras de vida, conviene conocer algunas cosas acerca de las bacterias y las arqueas, los diminutos arquitectos de los ecosistemas terrestres.

Los investigadores, historiadores y otros estudiosos de las cosas que han pasado en el mundo, desde la vida, hasta las civilizaciones y los comportamientos de la sociedades de seres de toda índole, a menudo, tienen que habérselas con datos y documentos sesgados e incompletos e incluso, con datos contradictorios. Sin embargo, y a pesar de dichas limitaciones impuestos por relatos individuales a lo largo del tiempo, los estudiosos pueden llegar a formarse una visión equilibrada del pasado mediante la compulsa minuciosa de distintos documentos y diversas pruebas y fósiles de los quem entresacan aquellos datos que llevan al buen camino, al de la verdad de lo que pasó y que pueden mirar desde la perspectiva de la lejanía en el tiempo que va, siempre acompañada, de profundos estudios de toda índole.


En cualquier sitio de la Tierra, en el lugar más inesperado, podemos encontrar huellas de la vida pasada, mil formas diferentes en las que se configuró la vida para estar presente en este mundo y, no pudiendo adaptarse a él, sucumbrieron y quedaron sepultadas como reliquias del pasado que ahora, los científicos, buscan afanosamente para saber lo que pudo pasar y, sobre todo, algo más sobre nosotros mismos.

Algunos de los mejores biólogos de nuestro mundo, nos dicen que la historia evolutiva está presente en los genes de los organismos actuales, ahí está, el relato completo de su historia evolutiva. De ser así, se trataría de relatos limitados a los vencedores de la vida. Sólo los paleontólogos nos pueden hablar de los Tribobites, los Dinosaurios y otras maravillas biológicas que dejaron de adornar la faz de la Tierra.

Para comprender la Historia de la Vida, tenemos que urdir en una misma tela los descubrimientos de la geología y de la biología comparativa, utilizando los organismos vivos para reanimar a los fósiles y a los fósiles para averiguar cómo ha llegado a formarse la diversidad de nuestra propia era.

A pesar de su abrumadora diversidad de formas y funciones, todas las células comporten un conjunto común de características moleculares, en el que se incluye el ATP (la principal moneda de intercambio de energía de la vida), el ADN, el ARN, un código genético común (con unas pocas excepciones) la maquinaria molecular para las transcripción de la información genética del ADN  al ARN, y más maquinaria para la traducción de los mensajes de ARN a las proteínas estructurales y reguladoras de la función celular. La observación recíproca es igualmente sorprende.

A pesar de su fundamental unidad de estructura molecular, los organismos presentan una extraordinaria variación de tamaño, forma, fisiología y comportamiento. La unidad y la diversidad de la vida son ambas excepcionales a su manera, y constituyen conjuntamente los dos grandes temas de estudio de la Biología comparativa.

Aun el observador más superficial percibe que la diversidad biológica de la Tierra se manifiesta de acuerdo con un patrón de similitud jerarquizada. Los chimpancés y los Humanos son claramente distintos, pero comporten muchos rasgos de su anatomía y fisiología, lo que nos lleva a pensar que, un antecesor común que no era ni homo ni pan, fue el ancestro de ambas especies que, en un momento dado, divergieron.

El registro fósil de la ascendencia humana es notablemente incompleto, pero os restos de esquletos hallados en Áfricva y Asia confirman esta predicción. (Nótese que no cabe esperar que los miembros sucesivamente más antiguos de nuestro linaje se asemejen cada vez más a la morfología de los chimpances. Los humanos, como antes he señalado, no descienden de los Chimpancés, sino que ambos, humanos y chimpancés, divergieron a partir de un antepasado común que no era (como decimos) ni Homo ni Pan.

Claro que, es posible que, cuando oimos alguna vez hablar del “hombre mono”, se pueda referir al hecho cierto de que, en los primeros tiempos de nuestra presencia en la Tierra, nuestros antepasados no andaran tan erguidos como lo hacemos nosotros ahora y, aquella reminiscencia, quedó como “sanbenito” de una descendencia que nunca fue.

Puesto que somos grandes  animales, se nos puede perdonar que tengamos una visión del mundo que tiende a celebrar lo nuestro, pero la realidad es que nuestra perspectiva es errónea. Somos nosotros quiénes hemos evoluciuonado para encajar en el mundo microbiano, y no al revés. Que esto sea así se debe, en parte, a una cuestión histórica, pero también tiene una explicación en términos de diversidad y funcionamiento del ecosistema.

Si los animales son la guinda de la Evolución, las Bacterias son el Pastel. Nadie presta la debida atención a lo importante que son estos “bichitos” para el Planeta y para nosotros que, sin ellos, no podríamos estar aquí. Si nos metemos en las profundidades de “sus mundos” quedaríamos fascinados por las maravillas que, tan minúsculos “seres” pueden llegar a conseguir en ámbitos extremos e increíblemente difíciles de imaginar.

Podríamos estar hablando de este tema un siglo y, cuanto más profundicemos en el tema, más asombrados y maravillados estaremos de lo mucho que, esos “animalitos” han hecho por nosotros y por la atmósfera del planeta.

Nosotros, para no ir más lejos, nuestros cuerpos en seco, tienen un dieza por ciento de su masa de bacterias y, no digamos de las funciones que en nosotros desarrollan las mitocondrias que, nos dan la energía que necesitamos y, sobre todo, en el cerebro.

emilio silvera

La vida de las partículas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.

También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.

http://www.monografias.com/trabajos75/agua-pesada/image003.gif

Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, psi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.

Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.

Leer más

La Mente: Ese misterio

Autor por Emilio Silvera    ~    Archivo Clasificado en La Mente - Filosofía    ~    Comentarios Comments (10)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una galaxia es simplemente una parte pequeña del universo, nuestro planeta es una mínima fracción infinitesimal de esa galaxia, y nosotros mismos podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, todo forma parte de lo mismo, y aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras.

 

Los brazos espirales, que son una característica tan llamativa en galaxias como la nuestra, son visibles porque están bordeados por estrellas calientes de gran masa que relucen con mucho brillo. Esto significa que también son estrellas jóvenes, ya que no hay estrellas viejas que tengan gran cantidad de masa. Además, su bonito tono azulado las delata, las de más edad, son estrellas marrones oscuras que han agotado su combustible nuclear y han dejado de radiar en el ultravioleta intenso.

A estas alturas y dado el grado de evolución al que hemos podido llegar, podemos comprender que el surgir de la vida, de las mentes pensantes en nuestra Galaxia, es algo muy grande y, aunque no lo podamos comparar con otros casos similares acontecidos en otras galaxias de nuestro Universo, la lógica nos aconseja pensar que, en otros mundos como en el nuestro, ha podido surgir la vida y los pensamientos superiores que llevan a algunos seres a ser conscientes de su SER.

Leer más