miércoles, 25 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Velocidades increíbles

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://quimica.laguia2000.com/wp-content/uploads/2010/06/NUCLEO11.jpg

        El núcleo desnudo

Si bien existe confusión e intriga acerca de su uso y factibilidad, la computación cuántica no es un sueño. De hecho, muchos expertos la ven como inevitable. En los computadores tradicionales, el procesamiento paralelo divide una tarea en partes y las delega a procesadores separados. La computación cuántica hace mas o menos lo mismo, solo que el procesamiento ocurre a nivel subatómico, donde rigen las leyes de la mecánica cuántica.

Mientras que un bit magnético tradicional puede representar solo un 1 o un 0, los bits cuánticos, o “qubits”, consistentes de atomos y partículas subatómicas ofrecen una gama de posibilidades exóticas. Un computador cuántico puede guardar datos en el espín de los electrónes, o en la posición de un cierto electrón. Un qubit, por ejemplo, puede ser 0, 1 y 0 y 1 al mismo tiempo, permitiendo la construcción de procesadores inmensamente más rápidos que los procesadores tradicionales.

http://html.rincondelvago.com/000444530.jpg

En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

http://4.bp.blogspot.com/-uAPH2qzdCMA/TZIEbP_PB_I/AAAAAAAAAAQ/ptKz-ynw-uk/s1600/velocidad_luz.png

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético.

Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de energía en reposo de una partícula cualquiera, como se denota a continuación:

E = mc2

Imagen abstracta que representa la velocidad de la luz mediante una curva de rayos coloridos convergiendo juntos sobre un fondo negro.  Foto de archivo - 7441629

Imagen abstracta que representa la velocidad de la luz mediante una curva de rayos coloridos convergiendo juntos sobre un fondo negro.

Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividad tuviese tanta importancia para la física (¡y para todo el mundo!). Para que la teoría de la relatividad también sea autoconsistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad. No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz. El corazón humano es simplemente un reloj biológico y latirá a una velocidad menor cuando viaje en un vehículo espacial a velocidades cercanas a la de la luz. Este extraño fenómeno conduce a lo que se conoce como la “paradoja de los gemelos”, sugerida por Einstein, en la que dos gemelos idénticos tienen diferente edad cuando se reencuentran después de que uno haya permanecido en la Tierra mientras que el otro ha viajado a velocidades relativistas.

Einstein comprendió rápidamente que las leyes de la gravedad también tendrían que ser modificadas para que cumplieran el principio relativista.+

http://2.bp.blogspot.com/_sVrODyc0GK8/TMBnbiVhYcI/AAAAAAAAAis/92ZPG5FNx-k/s1600/Fractal.jpg

               Hipérboles y espacios curvos que dejaron muy atrás a Euclides

Para poder aplicar el principio de la relatividad a la fuerza gravitatoria, el principio tuvo que ser extendido de la siguiente manera: no sólo debe ser imposible determinar la velocidad absoluta del laboratorio, sino que también es imposible distinguir los cambios de velocidad de los efectos de una fuerza gravitatoria.

Einstein comprendió que la consecuencia de esto era que la gravedad hace al espacio-tiempo lo que la humedad a una hoja de papel: deformar la superficie con desigualdades que no se pueden eliminar. Hoy en día se conocen muy bien las matemáticas de los espacios curvos, pero en el época de Einstein el uso de estas nociones matemáticas tan abstractas para formular leyes físicas era algo completamente nuevo, y le llevó varios años encontrar la herramienta matemática adecuada para formular su teoría general de la relatividad que describe cómo se curva el espacio en presencia de grandes masas como planetas y estrellas.

métrica.

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

De la ecuación de campo de Einstein (entre otras muchas cosas) nos sale el esquema de la curvatura del espacio-tiempo que se produce en presencia de grandes masas. Ahí, también está encerrado el exótico agujerom negro. En esa breve ecuación subyace la inmensidad del Cosmos, de su geometría y configuración. Así que, en el presente comentario, vamos a explicar una serie de cosas que ocurren y están aquí con nosotros en el Universo, e incluso, formar parte de nosotros mismos o hacen posible que podamos estar aquí.

Einstein tenía la idea en su mente desde 1907 (la relatividad especial la formuló en 1905), y se pasó 8 años buscando las matemáticas adecuadas para su formulación.

Leyendo el material enviado por un amigo al que pidió ayuda, Einstein quedó paralizado. Ante él, en la primera página de una conferencia dada ante el Sindicato de Carpinteros, 60 años antes por un tal Riemann, tenía la solución a sus desvelos: el tensor métrico de Riemann, que le permitiría utilizar una geometría espacial de los espacios curvos que explicaba su relatividad general.

No está mal que en este punto recordemos la fuerza magnética y gravitatoria que nos puede ayudar a comprender mejor el comportamiento de las partículas subatómicas.

El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales) o se atraen (si tienen cargas de signo opuesto).

La interacción magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético. Las partículas cargadas en movimiento generan un campo magnético como, por ejemplo, los electrones que fluyen a través de las espiras de una bobina.

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

No siempre es todo como creemos verlo, ni siempre estamos en disposición de elegir. Nada es lo que nos dicen nuestros sentidos que es. Y, lo que entendemos por libre albedrío, de la misma manera, está distorsionado por mil parámetros ajenos a nosotros que, sólo podemos ejercer de manera parcial y hasta el punto en que, el entorno nos lo permite.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

Fuerzas invisibles actúan para preservarnos de energías nosivas provenientes del espacio interestelar. También antes hemos comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

Ley gravitacional

                   ¿Que haríamos, por ejemplo, sin la Gravedad que nos mantiene bien unidos a la superficie del planeta Tierra?

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Conforme a lo que aceptamos hoy en día, toda la materia estaría constituida a partir de estados ligados de Quarks y Leptones, es decir de los quark u “up” y d “down”, electrones (e) y neutrinos (ѵ), y sus antipartículas. De todos estos objetos, pueden existir hasta un total de otras dos familias más en las que los quarks reciben otras denominaciones y los leptones, en vez de electrones podrían ser muones (μ) y partícula tau (τ). Señalamos que estos objetos poseen distintas masas. Sin embargo, todas tienen en común que son partículas de espín ½. Si a estos objetos le añadimos los Bosones de espín 1, que son los responsables de las interacciones entre ellos, resulta que el poseer esa propiedad mecánica llamada espín es una de las características más importantes de los objetos elementales que constituyen la materia y de los vehículos que utilizan estas partículas elementales para su comunicación. Toda la materia que nos rodea se mueve y rota

Espín  electrón

El espin del muón es ½. Cuando el espin de una partícula es semi-entero, se la clasifica como perteneciente al grupo denominado fermiones. La carga eléctrica de un muón es igual que la del electrón, pero su existencia es de sólo 2,2 microsegundos. En cambio el electrón es un elemento estable en la Naturaleza.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

http://www.ehu.es/biomoleculas/isotopos/jpg/nucleo.jpg

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

http://img.seti.cl/_45085675_081007fisica02.jpg

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

La región de formación estelar S106

Todo está hecho de esas pequeñas partículas que conocemos por Quarks y Leptones y, hace unos días, en Observatorio, pudimos contemplar esta maravillosa imagen en la que la estrella masiva IRS 4 comienza a desplegar sus alas. Nacida hace sólo unos 100.000 años, el material expulsado de esta estrella recién nacida ha formado la nebulosa llamada Sharpless 2-106 (S106) que se ve en la imagen. El gran disco de polvo y de gas que orbita la fuente infrarroja IRS 4, visible en rojo oscuro cerca del centro de la imagen, da a la nebulosa la forma de un reloj de arena o de una mariposa.

Antes de seguir veamos las partículas elementales de vida superior a 10-20 segundos que eran conocidas en el año 1970.

Nombre Símbolo Masa (MeV) Carga Espín Vida media (s)
Fotón γ 0 0 1
Leptones (L = 1, B = 0)
Electrón e 0’5109990 ½
Muón μ 105’6584 ½ 2’1970 × 10-6
Tau τ
Neutrino electrónico νe ~ 0 0 ½ ~ ∞
Neutrino muónico νμ ~ 0 0 ½ ~ ∞
Neutrino tauónico ντ ~ 0 0 ½ ~ ∞
Mesones (L = 0, B = 0)
Pión + π+ 139’570 2’603 × 10-8
Pión – π 139’570 2’603 × 10-8
Pión 0 π0 134’976 0’84 × 10-16
Kaón + k+ 493’68 1’237 × 10-8
Kaón – k 493’68 1’237 × 10-8
Kaón largo kL 497’7 5’17 × 10-8
Kaón corto kS 497’7 0’893 × 10-10
Eta η 547’5 0 0 5’5 × 10-19
Bariones (L = 0, B = 1)
Protón p 938’2723 + ½
Neutrón n 939’5656 0 ½ 887
Lambda Λ 1.115’68 0 ½ 2’63 × 10-10
Sigma + Σ+ 1.189’4 + ½ 0’80 × 10-10
Sigma – Σ 1.1974 ½ 7’4× 10-20
Sigma 0 Σ0 0 ½ 1’48 × 10-10
Ksi 0 Ξ0 1.314’9 0 ½ 2’9 × 10-10
Ksi – Ξ 1.321’3 ½ 1’64 × 10-10
Omega – Ω 1.672’4 0’82 × 10-10

Para cada leptón y cada barión existe la correspondiente antipartícula, con exactamente las mismas propiedades a excepción de la carga que es la contraria. Por ejemplo, el antiprotón se simboliza con  y el electrón con e+. Los mesones neutros son su propia antipartícula, y el π+ es la antipartícula del π, al igual que ocurre con k+ y k. El símbolo de la partícula es el mismo que el de su antipartícula con una barra encima. Las masas y las vidas medias aquí reflejadas pueden estar corregidas en este momento, pero de todas formas son muy aproximadas.

Los símbolos que se pueden ver algunas veces, como s (extrañeza) e i (isoespín) están referidos a datos cuánticos que afectan a las partículas elementales en sus comportamientos.

Debo admitir que todo esto tiene que sonar algo misterioso. Es difícil explicar estos temas por medio de la simple palabra escrita sin emplear la claridad que transmiten las matemáticas, lo que, por otra parte, es un mundo secreto para el común de los mortales, y ese lenguaje es sólo conocido por algunos privilegiados que, mediante un sistema de ecuaciones pueden ver y entender de forma clara, sencilla y limpia, todas estas complejas cuestiones.

            Modelo Estándar de Partículas Elementales.

Si hablamos del espín (o, con más precisión, el momento angular, que es aproximadamente la masa por el radio por la velocidad de rotación) se puede medir como un múltiplo de la constante de Planck, h, dividido por . Medido en esta unidad y de acuerdo con la mecánica cuántica, el espín de cualquier objeto tiene que ser o un entero o un entero más un medio. El espín total de cada tipo de partícula – aunque no la dirección del mismo – es fijo.

El electrón, por ejemplo, tiene espín ½. Esto lo descubrieron dos estudiantes holandeses, Samuel Gondsmit (1902 – 1978) y George Uhlenbeck (1900 – 1988), que escribieron sus tesis conjuntamente sobre este problema en 1972. Fue una idea audaz que partículas tan pequeñas como los electrones pudieran tener espín, y de hecho, bastante grande. Al principio, la idea fue recibida con escepticismo porque la “superficie del electrón” se tendría que mover con una velocidad 137 veces mayor que la de la luz, lo cual va en contra de la teoría de la relatividad general en la que está sentado que nada en el universo va más rápido que la luz, y por otra parte, contradice E=mc2, y el electrón pasada la velocidad de la luz tendría una masa infinita.

Hoy día, sencillamente, tal observación es ignorada, toda vez que el electrón carece de superficie.

Las partículas con espín entero se llaman bosones, y las que tienen espín entero más un medio se llaman fermiones. Consultado los valores del espín en la tabla anterior podemos ver que los leptones y los bariones son fermiones, y que los mesones y los fotones son bosones. En muchos aspectos, los fermiones se comportan de manera diferente de los bosones. Los fermiones tienen la propiedad de que cada uno de ellos requiere su propio espacio: dos fermiones del mismo tipo no pueden ocupar o estar en el mismo punto, y su movimiento está regido por ecuaciones tales que se evitan unos a otros. Curiosamente, no se necesita ninguna fuerza para conseguir esto. De hecho, las fuerzas entre los fermiones pueden ser atractivas o repulsivas, según las cargas. El fenómeno por el cual cada fermión tiene que estar en un estado diferente se conoce como el principio de exclusión de Pauli. Cada átomo está rodeado de una nube de electrones, que son fermiones (espín ½). Si dos átomos se aproximan entre sí, los electrones se mueven de tal manera que las dos nubes se evitan una a otra, dando como resultado una fuerza repulsiva. Cuando aplaudimos, nuestras manos no se atraviesan pasando la uno a través de la otra. Esto es debido al principio de exclusión de Pauli para los electrones de nuestras manos que, de hecho, los de la izquierda rechazan a los de la derecha.

A bajas temperaturas los bosones tienden a tener un comportamiento cuántico similar que puede llegar a ser idéntico a temperaturas cercanas al cero absoluto en un estado de la materia conocido como condensado de Bose-Einstein.

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.

En contraste con el característico individualismo de los fermiones, los bosones se comportan colectivamente y les gusta colocarse todos en el mismo lugar. Un láser, por ejemplo, produce un haz de luz en el cual muchísimos fotones llevan la misma longitud de onda y dirección de movimiento. Esto es posible porque los fotones son bosones.

Cuando hemos hablado de las fuerzas fundamentales que, de una u otra forma, interaccionan con la materia, también hemos explicado que la interacción débil es la responsable de que muchas partículas y también muchos núcleos atómicos exóticos sean inestables. La interacción débil puede provocar que una partícula se transforme en otra relacionada, por emisión de un electrón y un neutrino. Enrico Fermi, en 1934, estableció una fórmula general de la interacción débil, que fue mejorada posteriormente por George Sudarshan, Robert Marschak, Murray Gell-Mann, Richard Feynman y otros. La fórmula mejorada funciona muy bien, pero se hizo evidente que no era adecuada en todas las circunstancias.

http://www.lhc-closer.es/img/subidas/6_2_1_2.jpg

En 1970, de las siguientes características de la interacción débil sólo se conocían las tres primeras:

  • La interacción actúa de forma universal sobre muchos tipos diferentes de partículas y su intensidad es aproximadamente igual para todas (aunque sus efectos pueden ser muy diferentes en cada caso). A los neutrinos les afecta exclusivamente la interacción débil.
  • Comparada con las demás interacciones, ésta tiene un alcance muy corto.
  • La interacción es muy débil. Consecuentemente, los choques de partículas en los cuales hay neutrinos involucrados son tan poco frecuentes que se necesitan chorros muy intensos de neutrinos para poder estudiar tales sucesos.
  • Los mediadores de la interacción débil, llamados W+, W y Z0, no se detectaron hasta la década de 1980. al igual que el fotón, tienen espín 1, pero están eléctricamente cargados y son muy pesados (esta es la causa por la que el alcance de la interacción es tan corto). El tercer mediador, Z0, que es responsable de un tercer tipo de interacción débil que no tiene nada que ver con la desintegración de las partículas llamada “corriente neutra”, permite que los neutrinos puedan colisionar con otras partículas sin cambiar su identidad.

A partir de 1970, quedó clara la relación de la interacción débil y la electromagnética (electrodébil de Weinberg-Salam).

http://2.bp.blogspot.com/-PkC41JQUSBw/TiSxyDXSfuI/AAAAAAAAAFM/0iG3BvUmf58/s320/zoho.jpg

El electromagnetismo hizo posible construir el cerebro espintrónico de este robot

La interacción fuerte (como hemos dicho antes) sólo actúa entre las partículas que clasificamos en la familia llamada de los hadrones, a los que proporciona una estructura interna complicada. Hasta 1972 sólo se conocían las reglas de simetría de la interacción fuerte y no fuimos capaces de formular las leyes de la interacción con precisión.

Como apuntamos, el alcance de esta interacción no va más allá del radio de un núcleo atómico ligero (10-13 cm aproximadamente).

La interacción es fuerte. En realidad, la más fuerte de todas.

Lo dejaré aquí, en verdad, eso que h el Modelo Estándar de la Física, es feo, complejo e incompleto y, aunque hasta el momento es una buena herramienta con la que trabajar, la verdad es que, se necesita un nuevo modelo más avanzado y que incluya la Gravedad.

Veremos que nos trae el Bosón de Higg (si es que) finalmente lo encuentra  el LHC.

emilio silvera


  1. La Naturaleza… El Universo : Blog de Emilio Silvera V., el 14 de septiembre del 2012 a las 7:36

    […] cuántico puede guardar datos en el espín de los electrónes, o en la posición de un cierto electrón. Un qubit, por ejemplo, puede ser 0, 1 y 0 y 1 al mismo tiempo, permitiendo la construcción de […]

 

  1. 1
    Víctor Sánchez
    el 27 de marzo del 2012 a las 5:33

    Saludos profesor Silvera, en una oportunidad hace algunos meses “coleccioné” todos sus temas enviados a mi correo hot mail pero corrí con la mala suerte de extraviarlos al ser eliminado dicho correo (todavía me pregunto, que sucedió ???) lo cierto es que ahora con esta nueva cuenta de gmail me volví a suscribir a su blog. Pregunto ahora, gran parte de sus disertaciones en cada envío de temas se encuentran plasmadas en su libro? (ya descargado por mi)
    Ahora con respecto a este tema que siempre me ha llamado la atención, hay explicaciones sobre el spin de las subpartículas que quisiera comprender mejor, por ejemplo, si sabemos que una partícula se mueve o rota dos veces al mismo tiempo y en sentido contrario al mismo tiempo también, las otras subpartículas también tienen este mismo comportamiento idéntico o cada una o grupo de “clases” tienen otras formas de “moverse” en su spin? 

    Responder
  2. 2
    emilio silvera
    el 27 de marzo del 2012 a las 6:06

    Amigo mío:
    Siento la pérdida de datos que, de alguna manera, podrá volver a recuperar.
    Por otra parte y en relación al espín de las partículas si nos referimos al espín isotópico (isospín), lo estaremos haciendo al número cuántico aplicado a los hadrones para distinguer entre miembros de un conjunto de partículas que difieren en sus propiedades electromagnéticas, pero que de otra forma son idéntidcos. Por ejemplo, se ignoran las interacciones electromagnéticas y débiles, el protón no puede distinguirse del neutrón en sus interacciones fuertes; el espín isotópico fue introducido para distinguirlos entre ellos. El uso de la palabra espín es sólo por analogía con el momento angular, con el que el espín isotópico tiene solo una semejanza formal.
    El espín (momento angular intriínseco) es la parte del momento angular total de una partícula, átomo, núcleo, etc., que es ditinta de su momento angular orbital. Una molécula, átomo o núcleo en un nivel de energía determinado, o una partícula elemental, posee un espín particular, igual que tiene una carga o una masa particular.
    De acuerdo con la teoría cuántica, está cuantizada y se restringe a múltiplos de h/2∏, donde h es la constante de Planck. El espín se caracteriza por un número cuántico s. Por ejemplo para el electrón , s = ± ½, queriendo decir que tiene un espín de + h/4∏ cuando está girando en una dirección y -h /4∏ cuando está girando en la otra.
    Debido a su espín, las partículas tiene sus propios momentos magnéticos intrínsecos, y en un campo magnético los espines de las partículas se alinean con la dirección del campo tomando un determinado ángulo, procesando alrededor de esta dirección (aquí tendríamos que hablar de la resonancia magnética nuclear).
    El tema del espín no es tan fácil y estáramificado en varias vertientes en la que cada una de ellas tienen sus propias particularidaes y, de esa manera, se podría hablar de espines paralelos, e, incluso, no dejaría fuera una explicación del teorema, espín-estadística.
    Claro que, la respuesta a la pregunta formulada queda arriba contestada: Todas las partículas están agrupadas en familias que tienen la semejanza en, por ejemplo, el espín.
    Saludos cordiales.

    Responder
  3. 3
    Víctor Sánchez
    el 27 de marzo del 2012 a las 6:30

    Ahora entiendo un poco más la ubicuidad de los campos magnéticos en el universo que es lo mismo que decir movimiento constante a nivel sub atómico por presencia de… Lo que me apasiona es la forma del comportamiento para la movilidad cuántica, sus resultados y. porque no? Sus propósitos. Gracias profesor Silvera por existir (no importa lo trillado de la expresión pero sinceramente es la que más se ajusta) Seguiremos en contacto.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting