lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La misteriosa Física Cuántica!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Algunos se empeñan en que, las leyes de la física se simplifican en dimensiones más altas. Y, lo cierto es que, al no haberlas visto nunca -no están en nuestro plano de universo-, nos inventamos mil y una imagen pretendiendo que las representen pero, en realidad, no lo hace, Simplemente son figuras extrañas y espacios curvos de Riemann de enrevesado diseño que son…, otra cosa.


En una de las teorías de cuerdas, la conocida como la, se tiene que desarrollar en el espacio 26–dimensional de las vibraciones de sentido contrario a las agujas del reloj de la cuerda heterótica que tiene espacio suficiente para explicar todas las simetrías encontradas en la teoría de Einstein y en la teoría cuántica. Así, por primera vez, la geometría pura ha dado una simple explicación de por qué el mundo subatómico debería exhibir necesariamente ciertas simetrías que emergen del enrollamiento del espacio de más dimensiones: Las simetrías del dominio subatómico no son sino remanentes de la simetría del espacio de más dimensiones.

Las galaxias, las estrellas y los mundos… Y muchas más cosas, respetan patrónes simétricos que hacen de cada una de sus figuras, una misma estructuración que las hacen similares en un plano general, independientemente de que cada objeto tenga sus propias peculiaridades.

Esto significa que la belleza y simetrías encontradas en la naturaleza pueden ser rastreadas en última instancia hasta el espacio multidimensional.  Por ejemplo, los copos de nieve crean bellas figuras hexagonales, ninguna de las cuales es exactamente igual a otra, han heredado sus estructuras de las formas en que sus moléculas han sido dispuestas geométricamente, determinada básicamente por las cortezas electrónicas de estas moléculas, que a su vez nos llevan de nuevo a las simetrías rotacionales de la teoría cuántica, dadas por O (3).

Del bonito arcoiris ?quién no tiene la experiencia de contemplarlo?             También aquí hay una bella simetría

 

No hay dos cristales de nieve iguales pero la simetría de todos es la misma (de aspecto exagonal aunque desde el punto de vista estrictamente cristalográfico, trigonal. La razón se encuentra en la estructura cristalina del hielo (mostrada en color en el centro) que tiene exactamente la misma simetría y la transmite a los cristales.

Podemos concluir diciendo que las simetrías que vemos a nuestro alrededor, desde un arco iris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original. Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia.

Dado el enorme poder de sus simetrías, no es sorprendente que la teoría de supercuerdas sea radicalmente diferente de cualquier otro tipo de física.  De hecho, fue descubierta casi por casualidad. Muchos físicos han comentado que si este accidente fortuito no hubiese ocurrido, entonces la teoría no se hubiese descubierto hasta bien entrado el siglo XXI. Esto es así porque supone una neta desviación de todas las ideas ensayadas en el pasado siglo XX. No es una extensión natural de tendencias y teorías populares en este siglo que ha pasado; permanece aparte.

       Las supercuerdas van más lejos que todo esto

Por el contrario, la teoría de la relatividad general de Einstein tuvo una evolución normal y lógica. En primer lugar, su autor, postula el principio de equivalencia. Luego reformuló este principio físico en las matemáticas de una teoría de campos de la gravitación basada en los campos de Faraday y en el tensor métrico de Riemann. Más tarde llegaron las “soluciones clásicas”, tales como el agujero negro y el Big Bang. Finalmente, la última etapa es el intento actual de formular una teoría cuántica de la gravedad. Por lo tanto, la relatividad general siguió una progresión lógica, desde un principio físico a una teoría cuántica.

Geometría → teoría de campos → teoría clásica → teoría cuántica.

Contrariamente, la teoría de supercuerdas ha estado evolucionando hacia atrás desde su descubrimiento accidental en 1.968. Esta es la razón de que nos parezca extraña y poco familiar, estamos aún buscando un principio físico subyacente, la contrapartida del principio de equivalencia de Einstein.

    Suponemos que las cuerdas están más allá de los Quarks

Uno de los secretos más profundos de la teoría de cuerdas, que aún no es bien comprendido, es por qué está definida solo en diez , once y veintiséis dimensiones. De todas las maneras, como nos dice Michiu Kaku, ese Físico que mira hacia el futuro, habría que tener presente las funciones modulares del Ramanujan para ver sí, dentro de ellas, están las respuestas de esas preguntas que, por ahora, nadie ha sabido contestar.

Gran parte de este trabajo es original del libro Hiperespacio de Michio Kaku, y, desde luego, como él nos anuncia, la Física tiene muchas de las respuestas que buscamos, sin embargo, también como nos dice la misma Física, algunas veces esas respuestas están situadas en la parte más simple de lo que estamos estudiando y, sin embargo, nos empeñamos en ahondar, de manera innecesaria hacia lo más profundo e incomprensible para buscar lo que tenemos delante de nuestras propias narices.

Si el límite de todas las teorías están marcados por las unidades de Planck, ya sabemos hasta dónde podemos llegar y, desde luego, la verificación de la Teoría de cuerdas, si como dicen los expertos necesita de la energía de Planck (1019 GeV) para ser verificada, entonces, nos queda mucho que esperar porque, ¿cuándo podrán tener los humanos esa energía a su disposición?

Existen límites a los que aún no han podido llegar nuestras teorías, y, el Límite de Planck es el que marca las fronteras de las teorías actuales que, nunca han podido llegar tan lejos como lo que nos dice esta simple ecuación:

longitud-planck

            Gabriele Veneziano es un físico italiano          Mahiko Suzuki

La teoría nació casi por casualidad en 1.968 cuando dos jóvenes físicos teóricos, Gabriel Veneziano y Mahiko Suzuki, estaban hojeando independientemente libros de matemáticas. Figúrense ustedes que estaban buscando funciones matemáticas que describieran las interacciones de partículas fuertemente interactivas. Mientras estudiaban en el CERN, el Centro Europeo de Física Teórica en Ginebra, Suiza, tropezaron independientemente con la función beta de Euler, una función matemática desarrollada en el S. XIX por el matemático Leonhard Euler. Se quedaron sorprendidos al descubrir que la función beta de Euler ajustaba casi todas las propiedades requeridas para describir interacciones fuertes de partículas elementales.

Según he leído, durante un almuerzo en el Lawrence Berkeley Laboratory en California, con una espectacular vista del Sol brillando sobre el puerto de San Francisco, Suzuki le explicó a Michio Kaku mientras almorzaban la excitación de descubrir, prácticamente por casualidad, un resultado parcialmente importante. No se suponía que la física se pudiera hacer de ese modo casual.

Función beta. Representación de la función para valores reales positivos de x e y. En matemáticas, la función beta1 es una función especial estrechamente relacionada con la función gamma. Fue estudiada originalmente por Euler y Legendre. No obstante, su nombre le fue dado por Jacques Binet

Tras el descubrimiento, Suzuki, muy excitado, mostró el hallazgo a un físico veterano del CERN. Tras oír a Suzuki, el físico veterano no se impresionó. De hecho le dijo a Suzuki que otro físico joven (Veneziano) había descubierto la misma función unas semanas antes. Disuadió a Suzuki de publicar su resultado. Hoy, esta función beta se conoce con el nombre de modelo Veneziano, que ha inspirado miles de artículos de investigación iniciando una importante escuela de física y actualmente pretende unificar todas las leyes de la física.

En 1970, el Modelo de Veneziano-Suzuki (que contenía un misterio), fue parcialmente explicado cuando Yoichiro Nambu, de la Universidad de Chicago, y Tetsuo Goto, de la Nihon University, descubrieron que una cuerda vibrante yace detrás de sus maravillosas propiedades.

Así que, como la teoría de cuerdas fue descubierta hacia atrás y por casualidad, los físicos aún no conocen el principio físico que subyace en la teoría de cuerdas vibrantes y sus maravillosas propiedades.

El último paso en la evolución de la teoría de cuerdas (y el primer paso en la evolución de la relatividad general) aún está pendiente de que alguien sea capaz de darlo.

     Así, Witten dice:

“Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de supercuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos del siglo XX no deberían haber tenido el privilegio de estudiar esta teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos ahora mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.”

Actualmente, Edwar Witten es el físico teórico que, al frente de un equipo de físicos de Princeton, lleva la bandera de la teoría de supercuerdas con aportaciones muy importantes en el desarrollo de la misma. De todas las maneras, aunque los resultados y avances son prometedores, el camino por andar es largo y la teoría de supercuerdas en su conjunto es un edificio con muchas puertas cerradas de las que no tenemos las llaves para acceder a su interior y mirar lo que allí nos aguarda.

Ni con esta colección podremos abrir la puerta que nos lleve a la Teoría cuántica de la gravedad que, según dicen, subyace en la teoría M

El problema está en que nadie es lo suficientemente inteligente para resolver la teoría de campos de cuerdas o cualquier otro enfoque no perturbativo de esta teoría. Se requieren técnicas que están actualmente más allá de nuestras capacidades. Para encontrar la solución deben ser empleadas técnicas no perturbativas, que son terriblemente difíciles. Puesto que el 99 por ciento de lo que conocemos sobre física de altas energías se basa en la teoría de perturbaciones, esto significa que estamos totalmente perdidos a la hora de encontrar la verdadera solución de la teoría.

Nosotros, como el gato, estamos ante un enredo que no sabemos como solucionar. Nos faltan los conocimientos para ello. Y, como nuestras mentes evolucionan al ritmo que tiene impuesto el Universo, tendremos esas respuestas cuando llegue el momento, cuando estémos preparados para ello. Sobre todo, el conocimiento necesario para manejar las implicaciones que de tales conocimientos se pueden derivar.

¿Por qué diez dimensiones?

Uno de los secretos más profundos de la teoría de cuerdas, que aún no es bien comprendido, es por qué está definida sólo en diez, once y veintiséis dimensiones. Si calculamos cómo se rompen y se vuelven a juntar las cuerdas en el espacio N-dimensional, constantemente descubrimos que pululan términos absurdos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos indeseados aparecen multiplicados por (N-10). Por consiguiente, para hacer que desaparezcan estas anomalías, no tenemos otra elección cuántica que fijar N = 10. La teoría de cuerdas, de hecho, es la única teoría cuántica conocida que exige completamente que la dimensión del espacio-tiempo esté fijada en un número único, el diez.

Por desgracia, los teóricos de cuerdas están, por el momento, completamente perdidos para explicar por qué se discriminan las diez dimensiones.  La respuesta está en las profundidades de las matemáticas, en un área denominada funciones modulares.

Al manipular los diagramas de lazos de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el número 10 aparecen en los lugares más extraños.

Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del este. Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro universo actual.

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

En los cuardenos perdidos de Ramanujan podrían estar las respuestas. Dispersas entre oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.

El número 24 aparece repetidamente en la obra de Ramanujan. Este es un ejemplo de lo que las matemáticas llaman números mágicos, que aparecen continuamente donde menos se esperan por razones que nadie entiende.   Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas. El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas.  En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda. Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas. Estas son precisamente las entidades matemáticas descubiertas por Ramanujan. Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio-tiempo debe tener 24 + 2 = 26 dimensiones espacio-temporales.

               Reflejos de luz polarizada sobre una superficie de un disco

Para comprender este misterioso factor de dos (que añaden los físicos), consideramos un rayo de luz que tiene dos modos físicos de vibración. La luz polarizada puede vibrar, por ejemplo, o bien horizontal o bien verticalmente. Sin embargo, un campo de Maxwell relativista Aµ tiene cuatro componentes, donde µ = 1, 2, 3, 4. Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell.  Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos. Análogamente, una cuerda relativista vibra en 26 dimensiones.  Sin embargo, dos de estos modos vibracionales pueden ser eliminados cuando rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.

Es posible que, en las matemáticas de Ramanujan estén algunas respuestas

Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el número 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. Este es el origen de la décima dimensión que exige la teoría. La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente. Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda. Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende. Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio-tiempo sea diez.

En el análisis final, el origen de la teoría decadimensional es tan misterioso como el propio Ramanujan. Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “no lo sé”. Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una forma cuánticamente autoconsistente), pero no sabemos por qué se seleccionan estos números concretos.

¡Son tantas las cosas que no sabemos!

Publica: emilio silvera

PD. Le damos las gracias a Michio Kaku por sus ideas y su manera futurista de ver la Física.

La Física de Partículas al Servicio de la Salud

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Transferencias tecnológicas del CERN a la Biomedicina. No todo en el CERN es buscar el Bosón de Higgs. Otras muchas actvividades han sido realizadas y en la actualidad se siguen otras que buscan un mejor futuro para la Humanidad.

                                                                                                           

                                                                                                                                Partículas y mucho más

Seguramente, todos los lectores de este Blog, han oído más de una vez hablar del CERN. Fundado en 1954, constituye el mayor laboratorio de física de partículas del mundo, con veinte países miembros y un personal de unas 3.000 personas entre físicos, ingenieros y personal técnico y administrativo de todo tipo. Seguramente están también al tanto de los grandes experimentos que se están preparando en este centro como el Large Hadron Collider (LHC), situado en un túnel circular de 27 km de longitud, destinado a elucidar el origen de la llamada ruptura de la simetría electrodébil y en última instancia el origen de las masas de las partículas elementales (no de la masa del protón o del neutrón como erróneamente se dice a veces en los medios de comunicación), o del proyecto CERN Neutrino Gran Sasso (CNGS), que consiste en enviar un haz de neutrinos de alta energía desde el CERN al laboratorio subterráneo italiano del Gran Sasso que se encuentra a 730 km, para estudiar las oscilaciones de estas huidizas partículas.

También es muy probable que muchos lectores asocien de manera natural la palabra acelerador de partículas  a los instrumentos que utilizan los físicos modernos para estudiar y comprender mejor la estructura y el comportamiento de la materia a pequeñas escalas. Sin embargo, de los 17.000 aceleradores de partículas que se estima existen en la actualidad en todo el mundo, aproximadamente la mitad de ellos se usan en medicina y sólo una parte muy pequeña se usan para investigación fundamental. Por este y otros motivos que se discutirán más adelante, en este número especial de la Revista Española de Física dedicado a la física y las ciencias de la vida, ha parecido conveniente incluir un artículo en el que, al menos brevemente, se describieran algunas de las transferencias tecnológicas (spinoffs) importantes que la actividad del CERN aporta a dichas ciencias.

         Mucho de lo que aquí se descubre, se aplica a nuestra Salud

Es bastante razonable que, como ocurre con las ciencias del espacio, mucha gente se pregunte cuál es la utilidad social de la física de partículas más allá  de la adquisición de conocimientos fundamentales de la naturaleza. Sin embargo, es preciso señalar que los aceleradores y detectores de partículas del CERN y otros laboratorios similares requieren el uso, y muchas veces el desarrollo, de tecnologías de punta que obligan a una estrecha colaboración con la industria  que redunda en beneficio de ambas partes. Las transferencias tecnológicas que se producen en este proceso se incorporan inmediatamente a nuestra vida diaria en áreas tales como la electrónica, procesamiento industrial y médico de imágenes, manejo y usos de la radiación , metrología, nuevos materiales, tecnologías de la computación y la información, tratamiento del cáncer, etc. En este artículo se pondrá el énfasis en aquellas actividades del CERN que han redundado de una forma más clara en beneficio de las ciencias biomédicas.

                                                              PET/TC o más allá de los rayos X

En el ámbito de la medicina los aceleradores de partículas se utilizan con dos finalidades; una para la formación de imágenes con propósitos diagnósticos y otra, para terapia, principalmente oncológica. Desde el descubrimiento de los rayos X por Röntgen en 1895, este tipo de radiación electromagnética ha proporcionado una información de valor incalculable y aún sigue proporcionándola. Sin embargo, mucho más recientemente, se han desarrollado otras técnicas complementarias de diagnóstico basadas en los llamados radiofármacos. Estas sustancias radiactivas presentan idealmente la propiedad de poder ser inyectadas en el organismo humano de forma segura y de fijarse exclusivamente a determinados tejidos. Posteriormente, a medida que van desintegrándose, emiten ciertas partículas que pueden ser detectadas y analizadas produciendo de esta forma imágenes estáticas o incluso dinámicas de los órganos en los que se depositaron los radiofármacos y, en definitiva, proporcionando información no solamente sobre la morfología de aquellos, sino también, en muchos casos, sobre su función y metabolismo.Los radiofármacos se producen utilizando haces de protones de alta intensidad y, como tienen una vida media muy baja, deben utilizarse cerca de donde se han creado. Se calcula que unos 20 millones de personas son diagnosticadas cada año mediante el uso de este tipo de sustancias.

Son técnicas no invasivas que dejan al descubierto lo que interesa ver y eliminar.

Una de las técnicas de este tipo más utilizada en la actualidad es la Positron Emission Tomography (PET). En su aplicación se utiliza normalmente un ciclotrón para irradiar alguna sustancia que se convierte en radiactiva por desintegración beta positiva (emisora de positrones). Esta sustancia se une por ejemplo a la glucosa y se inyecta al paciente. Los positrones producidos se aniquilan con los electrones circundantes dando lugar a dos fotones de energía muy bien definida, emitidos en direcciones opuestas. Estos fotones interaccionan con un material escintilador dando lugar a la emisión de otros fotones que pueden ser detectados por fotomultiplicadores o fotodiodos para formar la imagen de los tejidos que se pretenden estudiar en función de la distribución de la glucosa radiactiva. Por ejemplo, en el caso del diagnóstico del cáncer las células cancerosas suelen consumir más glucosa que las células sanas debido a su mayor vascularización y a su mayor actividad metabólica y reproductiva, produciendo por tanto una mayor emisión de fotones. Por el contrario, las zonas donde el tejido presente mayor número de células muertas brillarán menos debido a la menor concentración de glucosa radioactiva, lo cual puede ser muy útil para el diagnóstico de infartos y otras lesiones.

         Tecnológias que llegan más allá

De acuerdo con David Townsend, uno de los pioneros en el desarrollo de la tecnología PET, aunque ésta no fue inventada en el CERN, una cantidad esencial e inicial de trabajo desarrollado en el CERN  a partir de 1977 contribuyó de forma significativa al desarrollo del PET 3D. La tecnología PET alcanza su grado más alto de utilidad diagnóstica cuando se combina con la Computed Tomography (CT). La CT es un método de formación de imágenes tridimensionales a partir del procesamiento digital de un gran número de imágenes bidimensionales de rayos X. Inicialmente, las diferentes imágenes se obtenían alrededor de un solo eje de rotación y de ahí su nombre original de Computed Axial Tomography (CAT).

La técnica combinada PET/CT es uno de los desarrollos más excitantes de la medicina nuclear y la radiología modernas. Las reconstrucciones de imágenes CT permiten el diagnóstico precoz de tumores basándose en sus características morfológicas, mientras que la tecnología PET es capaz de diferenciar con grane eficiencia los tejidos malignos de los benignos. La fusión PET/CT permite ahora integrar las imágenes morfológica y fisiológica en una única imagen. El prototipo del scanner ART, el Partial Ring Tomograph (PRT), fue desarrollado en el CERN en 1980 y 1990 por David Townsend, Martín Wensveen y Henri Tochon-Danguy, y evaluado clínicamente en el departamento de medicina nuclear del Hospital Cantonal de Ginebra. ART puede considerarse como el precursor de la parte PET del moderno scanner PET/CT, que ha producido un impacto extraordinario en la tecnología de imágenes con fines médicos. Además, el CERN continua hoy en día contribuyendo a este campo fundamental de la medicina moderna mediante proyectos como Clear PET, Clear PEM, HPD PET etc.

Sin embargo, la importancia del CERN en el desarrollo de las tecnologías PET o CT, y en general de todo tipo de scanner, va mucho más allá. En efecto, todo este tipo de dispositivos se basa, de una forma u otra, en los detectores desarrollados a finales de los  sesenta en el CERN por George Charpak. Su trabajo fue reconocido en 1992 con la concesión del Premio Nobel de Física por su invención y desarrollo de detectores de partículas, en particular de la cámara proporcional multihilos, que produjo una revolución en la técnica de exploración de las partes más íntimas de la materia. Los detectores desarrollados por Charpak se usan aún para todo tipo de investigaciones médicas y biológicas y podrían eventualmente sustituir completamente a las placas fotográficas en la radio-biología aplicada. La velocidad creciente con la que permiten registrar las imágenes en radio medicina conducen a una menor tiempo de exposición y a menores dosis de radiación indeseada recibida por los pacientes.

Hadronterapia, o las partículas contra el cáncer

Como es bien sabido, una de las herramientas terapéuticas esenciales en el campo de la oncología es la radioterapia. Dicho tratamiento se aplica hoy en día aproximadamente a la mitad de los pacientes de cáncer. En cierto modo se puede considerar como una forma sutil de cirugía donde el bisturí es reemplazado por un haz colimado de partículas capaz de esterilizar las células malignas mediante la inactivación de su ADN, impidiendo así su reproducción. Tradicionalmente, la radioterapia se ha basado en el uso de rayos X (fotones), electrones y, más recientemente, hadrones, es decir, partículas capaces de interaccionar fuerte o nuclearmente, si bien no es ésta la propiedad más interesante de estas partículas para las aplicaciones radioterapeúticas. Los haces de rayos X y los electrones se obtienen normalmente a partir de aceleradores lineales como los del CERN, aunque mucho más pequeños, y se apuntan hacia los tumores con la energía, dirección y colimación apropiadas para optimizar su efecto destructivo sobre los mismos. Por su parte, los neutrones pierden energía en el interior del organismo de una forma diferente, lo cual les hace más indicados para el tratamiento de ciertos tipos especiales de tumores. Se obtienen a partir de las colisiones de protones, previamente acelerados en un ciclotrón, con núcleos de berilio. Este hecho hace que esta terapia sea bastante más cara que las anteriores, pero a cambio el ciclotrón puede ser usado también para la producción de radiofármacos.

                                      Cintíficos del CERN aplivcan antimateria contra el Cáncer

El estudio de las posibilidades de utilización de haces de hadrones en la terapia del cáncer tuvo su origen en el trabajo seminal de R.R Wilson titulado Radiological Use of Fast Protons (Radiology 47, 1946). En dicho artículo se ponía de manifiesto que los protones, así como otras partículas cargadas pesadas, presentan la propiedad única de que al penetrar en el cuerpo humano depositan la mayor parte de su energía a una preofundidad que depende de su energía inicial. Este hecho permite seleccionar cuidadosamente el área que se quiere irradiar, preservando de dicha radiación al tejido sano que pudiera encontrarse a menor profundidad. Además, como las partículas se detienen a una distancia de la superficie bien definida por la energía del haz, tampoco resultarían dañadas las células situadas detrás del blanco seleccionado.

En contraste, la energía depositada por los rayos X alcanza su máximo cerca de la superficie de entrada y decae exponencialmente hasta que abandona el cuerpo humano en el lado opuesto, haciendo por tanto muy difícil seleccionar la zona que quiere irradiarse sin dañar otras áreas de células sanas. El trabajo de Wilson de 1946 condujo a toda una nueva línea de investigación experimental, principalmente en el Lawrence Berkeley Laboratory, que ha dado lugar al desarrollo de una nueva clase de terapias antitumorales basadas en la irradiación con protones y más recientemente con iones de carbono. Estas técnicas han sido aplicadas en más de 40 centros de todo el mundo, y de ellas se han beneficiado hasta la fecha más de 50.000 pacientes. No obstante, continúan investigándose nuevas formas de intentar mejorar el ratio entre la energía depositada en las células tumorales y en el tejido sano.

En la actualidad, el CERN se encuentra involucrado en diversos proyectos relacionados con la hadronterapia. Por ejemplo, en el diseño de un acelerador de protones e iones de carbono dedicado exclusivamente a usos médicos conocido como Proton Ion Medical Machine Study (PIMMS). Otro proyecto interesante es la realización de las pruebas del Linear Booster ( LIBO), capaz de acelerar una haz de protones hasta 200 Mev (los hospitales habiualmente utilizan energías en torno a los 65 MeV) y que estaría especializado en el tartamiento de tumores profundos.

Finalmente, y situándonos en un plano de investigación a un nivel más básico, es interesante señalar que en octubre de 2006 se presentaron los primeros resultados de un experimento llevado a cabo en el CERN con potencial para futuras aplicaciones en la terapia del cáncer. Se trataba del Antiproton Cell Experiment (ACE), que constituye la primera investigación realizada hasta la fecha sobre efectos biológicos de los antiprotones. Los antiprotones se comportan como los protones cuando entran en el organismo, pero generan mucha más energía en el blanco seleccionado debido a du aniquilación con los protones existentes en los núcleos de los átomos de las células, y además depositan esta energía de una forma biológicamente más efectiva.

                                                                                                      Se busca antimateria contra el Cáncer

Evaluando la fracción de células supervivientes después de la irradiación con el haz de antiprotones, el experimento ACE ha encontrado que a eficiencia de éstos es unas cuatro veces mayor que la de los protones, mientras que el daño producido a las células situadas antes del blanco era básicamente el mismo. De acuerdo con Michael Holzscheiter, portavoz del experimento ACE, este hecho podría ser extremadamente importante para el tratamiento de casos de cáncer recurrente, donde este tipo de propiedad es vital. La tecnología desarrollada previamente en el CERN para la obtención de haces de antiprotones de buena calidad a la energía apropiada es esencial para este prometedor experimento, que difícilmente podría haberse realizado en ningún otro laboratorio. Éste es por tanto un magnífico ejemplo de cómo la investigación en física de partículas desarrollada en el CERN puede generar soluciones innovadores con excelentes beneficios médicos potenciales.

Los investigadores de ACE, en colaboración con otras instituciones de todo el mundo, están realizando en la actualidad nuevos tests para comprobar la eficacia de este método en el caso de tumores situados a mayor profundidad, y comparando sus resultados con los de otros métodos más convencionales como la irradiación mediante iones de carbono. Si todo sale como se espera, los beneficios clínicos de esta nueva técnica podrían empezar a producirse dentro de la próxima década.

Otro ejemplo importante de tecnología creada en el CERN con aplicaciones a la terapia del cáncer es el Neutron Driven Element Trasmuter. Se trata de un sistema de producción de radioisótopos específicos específicos a partir de un acelerador de protones cuyo desarrollo fue liderado por Carlo Rubbia, Premio Nobel de Física en 1984 por el descubrimiento de los bosones W y Z y ex director general del CERN. La idea es utilizar el haz de protones para producir neutrones los cuales provocan reacciones en un ambiente apropiado donde ciertos elementos son convertidos en los isótopos deseados.

La diferencia principal entre este método, seguro y barato, y el método más tradicional de utilizar los neutrones provenientes de un reactor nuclear, es que no requiere el uso de material fisionable ni funciona críticamente, es decir las reacciones se detienen en el momento en el que el acelerador es apagado. Más aún, el método tiene la ventaja de que sólo se producen los isótopos requeridos, lo que redunda en una importante reducción de impacto ambiental. Normalmente, el blanco utilizado es plomo, elemento idóneo por presentar el menor ritmo de captura de neutrones. Los neutrones se producen por espalación a partir del haz de protones y permanecen en el interior del blanco de plomo, que está rodeado  de un deflector de grafito, hasta que su espectro se suaviza suficientemente para cubrir un gran rango de energías que permiten su utilización para la transmutación de los elementos necesarios para la obtención de los isótopos deseados.

El Neutron Driven Element Trasmuter ha permitido, entre otras cosas, la producción de radioisótopos beta emisores como el 166Ho, 186 Re o el 188Re que son de gran importancia en braquiterapia. Dicha técnica, muy utilizada en el tratamiento de cánceres ginecológicos y en el de cáncer de próstata, es un tipo de radioterapia de proximidad donde la fuente radiactiva se sitúa dentro o muy cerca de los tejidos que requieren irradiación. Típicamente, la fuente radiactiva, de alta actividad y corta vida media, se encapsula en una semilla, filamento o tubo y se implanta en quirófano en la zona deseada. Las diferentes dosis requeridas en cada caso hacen que sea fundamental disponer del mayor muestrario posible de radioisótopos con la actividad y vida media apropiadas, lo cual convierte al Neutron Driven Element Trasmuter en una herramienta valiosísima para el futuro de este tipo de técnica terapéutica.

                                                                                    Información y computación sin fronteras

CERN, … where the web was born; éste es uno de los reclamos publicitarios que suelen utilizarse  para hacer ver al público la importancia de los retornos tecnológicos que en este laboratorio tienen lugar. Y en efecto, fue a finales de los ochenta cuando Tim Berners-Lee desarrolló estándar de Hyper Text Transfer Protocol (HTTP)  e implementó los primeros servidores web en el CERN. Su esfuerzo permitió la comunicación fácil y segura y el intercambio de todo tipo de información entre todos los ordenadores del mundo conectados a internet, dando lugar de esta forma a una de las revoluciones tecnológicas más importantes de las últimas décadas. Las repercusiones científicas, tecnológicas, culturales, comerciales y de ocio de la web son ya tan conocidas que apenas merecen comentario alguno.

El término Grid fue acuñado por Ian Foster and Carl Kesselman en su libro The Grid, Blueprint for new Computing Infraestructure (Morgan Kaufman, 1998), aunque las ideas básicas habían sido consideradas con anterioridad. No existe un acuerdo general sobre cual debería ser la definición precisa de las tecnologías Grid, pero hay un amplio concenso en que esta debería contener elementos tales como recursos compartidos, virtualización, abstracción del acceso a los recursos y estandarización. La filosofía Grid consistería, no sólo en compartir información entre diferentes usuarios, sino también recursos, como por ejemplo, procesadores, tiempo de CPU, unidades de almacenamiento, así como otros aparatos e instrumentos, de tal forma que eventualmente cada usuario tendría acceso virtual, por ejemplo, a la capacidad de cálculo de todos los demás usuarios de esa Grid. En los primeros tiempos de esta tecnología de la información se llegó a hablar de la Grid, refiriéndose a la posibilidad  de existencia de una única World  Wide Grid.

                                                                                                      Todo surgió del CERN

Hasta el momento,, sin embargo, este concepto no es una realidad y más bien lo que se encuentra es que diferentes grupos de proyectos crean su propia Grid usando sus propias implementaciones, estándares y protocolos y dando acceso restringido solamente a una cierta comunidad de usuarios autorizados. Así, aunque se siguen realizando importantes esfuerzos en cuanto a la estandarización de los protocolos, no está claro cual será el camino que este tipo de tecnología seguirá en el futuro en lo que se refiere a la futura existencia de un única Grid.

En cualquier caso es importante resaltar que una vez más el CERN ha sido pionero en este tipo de tecnología. Los detectores que se están instalando (a estas alturas, todos instalados y en marcha) en el LHC (ATLAS, CMS, ALICE, LHCb, SUSY, etc.), son tan complejos, que han requerido cada uno de ellos el concurso de muchas instituciones de todo el mundo para su construcción, y lo seguirán requiriendo para su mantenimiento cuando el acelerador empiece a funcionar (ya está en marcha), y, como no, para el análisis de los datos que se obtengan. Para hacerse una idea de la dimensión y complejidad de estos análisis baste mencionar que el compact Muon Selenoid (CMS), una vez pasado su primer filtro, deberá almacenar información sobre el resultado de las colisiones producidas en su interior a un ritmo del orden de 100 a 200 MB por segundo durante un tiempo esperado de unos cien días por año. Resulta obvio que sólo una tecnología tipo Grid puede afrontar con posibilidades de éxito un reto semejante y de hecho el CERN ha inspirado varios proyectos Grid multinacionales por este motivo. Posiblemente, el más grande de ellos hasta la fecha sea el EGEE (Enablinbg Grids for E-Science), que conecta más de 150 paises y ofrece 20 000 CPUs y más de 10 Petabytes de memoria.

De manera análoga a como ocurrió con las tecnologías de la detección y aceleración, las tecnologías Grid tendrán, y de hecho ya empiezan a tener, un fuerte impacto en las ciencias de la vida y de la salud. En este sentido, uno de los campos obvios de aplicación es la bioinformática. Gracias a los espectaculares avances llevados a cabo en los últimos años en el campo de la biología molecular, se dispone hoy en día de cantidades crecientes de información genética de diferentes especies e individuos. Dicha información codificada en el ADN en forma de secuencia de tripletes o codones de ácidos nucleicos, que constituyen los genes que contienen la estructura primaria de las diferentes proteínas, ha sido y está siendo obtenida por centenares de grupos diferentes distribuidos por todo el mundo y debe almacenarse en gigantescas bases de datos de forma eficiente para su compartición, contrastación y análisis.

Ejemplos típicos serían la búsqueda de determinadas secuencias, comparaciones, búsqueda de determinadas mutaciones o alelos, etc. Resulta evidente que esta ingente labor puede verse enormemente beneficiada por el uso de tecnologías Grid. De hecho, la Bioinformática, y en particular sus aplicaciones biomédicas, han sido una parte importante del proyecto EGEE desde el comienzo del mismo.

Finalmente, y como última muestra de cómo puede revertir en la sociedad las tecnologías de la información y la computación provenientes de la física de partículas, es interesante mencionar el Proyecto Mammogrid y su continuación Mammogrid Plus. Liderado por el CERN, dicho proyecto de la UE utiliza la tecnología Grid para crear una base de datos de mamografías que pueda ser usada para investigar un gran conjunto de datos e imágenes que, aparte de otras aplicaciones sanitarias, sea útil para estudiar el potencial de esta tecnología para servir de soporte a la colaboración entre los profesionales de la salud de la  UE.

          Ciencia, Tecnología y Sociedad

A estas alturas debería haber quedado claro que los centros científicos de élite internacionales como el CERN, no sólo nos proporcionan un conocimiento más profundo de la naturaleza, sino que las tecnologías de punta que en ellos se desarrollan acaban permeando a la Sociedad y se incorporan a nuestras vidas cotidianas. El autor del artículo, Antonio Dobado, del Departamento de Física Teórica I de la Universidad Complutense de Madrid, ha pretendido ilustrar el hecho innegable de la conexión existente entre temas tan aparentemente dispares como el de la Física de Partículas y la Biomedicina, pero ejemplos semejantes podrían haberse encontrado en prácticamente cualquier área de la actividad humana.

La Sociedad no puede permanecer por más tiempo ajena a la Ciencia y a todo lo que trae consigo. Precisamente por eso la RSEF dedica un gran esfuerzo a la difícil tarea de convencer al público de la importancia de la Física como valor científico, cultural y social, como una forma rigurosa y profunda del acercamiento al conocimiento de la naturaleza, y a la vez como generadora de nuevas tecnologías. En este sentido, es una espléndida noticia la inminente creación de un nuevo Grupo especializado en el seno de la RSEF denominado Física Médica. Y, desde aquí, aprovechamos la oportunidad para darles la bienvenida y desearles el mayor éxito en sus futuras andaduras en la búsqueda de la verdad científica.

Fuente: Revista Española de FÍSICA.

Publicada por la RSEF con el Nº 3 Volumen 21 de 2007

La presente transcripción es de:  Emilio Silvera

Miembro numerario de la RSEF y adscrito a los Grupos Especializados de Física Teórica y Astrofísica.

¡La Humanidad! ¿Cómo entenderla?

Autor por Emilio Silvera    ~    Archivo Clasificado en Humanidad    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Me maravilla la riqueza que atesoramos y la experiencia que la Humanidad ha podido tener a lo largo y a lo ancho de sus milenarias vivencias sobre este planeta. Hace unos días os contaba algunas de las lecturas que me llamaron la tención de más joven y, hoy, aunque parezca una repetición, os la traigo, otra vez, algo más ampliada. A muchos les gustó las historias.

http://2.bp.blogspot.com/-T-6gdfng5vE/TXAYG8-UnWI/AAAAAAAAAAc/CmxQA41i-1I/s1600/el_diluvio_universal.jpg

¿Cuántas veces, de pequeño nos contaron el Diluvio Universal?

Mi debilidad está en leer y enterarme de las cosas, sin límite de cuestiones a tratar, aunque sí con preferencias. Lo he tocado todo de manera más o menos profunda, y una vez pude leer (no recuerdo ahora dónde) que la mitología y los escritos antiguos nos hacen saber que el último día de la Atlántida se vio marcado por una inmensa catástrofe. Olas tan altas como montañas, huracanes, explosiones volcánicas… sacudieron el planeta entero. La civilización sufrió un retroceso y la Humanidad superviviente quedó reducida a un estado de barbarie.

http://esencia21.files.wordpress.com/2011/03/atlantida.jpg

La Atlántida, el paraíso perdido que describió el filósofo griego Platón y que supuestamente desapareció tras un gran tsunami, podría estar en España, según una investigación que comenzó hace cinco años con unas fotos satelitales. Los textos de Platón sitúan la Atlántida frente a las Columnas de Hércules, lugar atribuido al estrecho de Gibraltar que señalaba el límite del mundo conocido, y la describen como una isla más grande que Libia y Asia juntas.

Durante años, científicos y aficionados a la arqueología han reclamado haber encontrado la Atlántida, uno de los más recientes fue un ingeniero aeronáutico del Reino Unido Bernie Bamford, quien en 2009 dijo haberla encontrado utilizando el buscador Google Ocean, parte de Google Earth y que resultó ser un mapa del suelo oceánico. Sin embargo, después de dos años de investigación, un equipo internacional en el que participó el profesor Richard Freund, de la Universidad estadounidense de Hartford (Connecticut), cree que ha localizado la isla perdida en el parque nacional de Doñana, en la provincia de Huelva (a 50 Km de mi casa), en el sur de España, la noticia ha sido difundida Efe.

“Hemos descubierto un patrón geológico que no suele encontrarse en la naturaleza”, aseguró Freund, quien explicó que la estructura y la disposición de las grandes rocas detectadas demuestra que ha habido intervención del hombre y podrían ser los restos de la antigua isla. La investigación, que cuenta con el apoyo de National Geographic, ha sido seguida por el canal especializado en ciencia, que ha recreado el descubrimiento en un documental que fue difundido en Estados Unidos el 15 de marzo 2011 a las (24.00 GMT) y que llegó a España en junio.

Con la Atlántida nos pasa como con tantos otros misterios que han quedado por detrá y de los que el tiempo, no ha dejado muchas huellas. Precisamente ahora, unos arqueólogos están buscando vestigios de aquella civilización a unos 100 km de mi casa, en Doñana, en las costas del Atlántico pasado el Estrecho de Gibraltar y en pleno Golfo de Cádiz en la Provincia de Huelva.

File:British Museum Flood Tablet.jpg
La tablilla sobre el diluvio de la epopeya de Gilgamesh, escrita en acadio.

 Las tablas sumerias de Gilgamés hablan de Utnapichtiun, primer antepasado de la Humanidad actual, que fue, con su familia, el único superviviente de un inmenso diluvio. Encontró refugio en un arca para sus parientes, para animales y pájaros. El relato bíblico del Arca de Noé parece ser una versión tardía de esa misma historia.

Enkidu y Gilgamesh, representación sumeria:

Dungeons & Dragons en Español

La historia del relato más antiguo encontrado hasta ahora. La historia de un rey, Gilgamesh, que era muy presuntuoso,egolatra,tírano, que oprimía a su pueblo … en fin de todo menos un rey justo. Pero un día la amistad llegó a su vida, la amistad…

El Diluvio

El Zend-Avesta iranio nos proporciona otro relato de la misma leyenda del diluvio. El dios Ahuramazda ordenó a Yima, patriarca persa, que se preparara para el diluvio. Yima abrió una cueva, donde durante la inundación, fueron encerrados los animales y las plantas necesarias para los hombres. Así fue como pudo renacer la civilización después de las destrucciones ocasionadas por el diluvio.

http://www.bloganavazquez.com/wp-content/uploads/2008/11/diluvio.jpg

El Mahabharata de los hindúes cuenta cómo Brahma apareció bajo la forma de un pez ante Manú, padre de la raza humana, para prevenirle de la inminencia del diluvio. Le aconsejó construir una nave y embarcar en ella “a los siete Rishis” (sabios) y todas las distintas semillas enumeradas por los brahamanes más antiguos y conservarlas cuidadosamente.

Manú ejecutó las órdenes de Brahma y el buque, que le llevó con los siete sabios y con las semillas destinadas al avituallamiento de los supervivientes, navegó durante años sobre las agitadas aguas antes de atracar en el Himalaya.

La tradición hindú designa a Manali, la ciudad de Manú, en el valle de Kulu, como el lugar posible en el que se vio desembarcar a Manú. La región es generalmente conocida por el nombre de Aryavarta, país de los ríos.

La semejanza del relato de Noé y el de Manú no parece deberse a una simple coincidencia. Es un hecho conocido que en todas las evocaciones del gran diluvio, se atribuye a ciertos personajes elegidos un conocimiento previo de la proximidad de la catástrofe mundial (en este punto, algunos han apuntado la posibilidad de que seres extraterrestres intervinieron para impedir la extinción de la Humanidad en aquel momento trágico).

http://3.bp.blogspot.com/_IfgbIPoUwOo/TAsc8gaDGqI/AAAAAAAAABY/dXJOu1hsa2w/s1600/images.jpg

Según algunos estudiosos, la salida del país condenado de la Atlántida fue realizada en barco y por los aires. De apariencia fantástica, esta teoría se apoya en numerosas tradiciones históricas.

Existe entre los esquimales una curiosa leyenda, según la cual habrían sido transportados al norte glacial por gigantescos pájaros metálicos. ¿No es pasa pensar en la existencia de una especie de aviones en aquella época prehistórica? ¡Qué locura!

Los aborígenes del territorio septentrional de Australia tienen también una leyenda del diluvio y de los hombres-pájaro. Karan, jefe de la tribu, dio alas a Waark y a Weirk cuando “el agua invadió los brazos del mar, cuando el mar ascendió y recubrió el país entero, las colinas, los árboles, en una palabra, todo”. Entonces, el propio Karan levantó el vuelo y se instaló a lo largo de la Luna, observado por los hombres-pájaro.

El canto épico de Gilgamés nos da un cuadro dramático del desastre planetario:

“Una nube negra se elevó de los confines del cielo.

Todo lo que era claro se volvió oscuro.

El hermano no ve a su hermano.

Los habitantes del cielo no se reconocen.

Los dioses temían al diluvio.

Huyeron y ascendieron al cielo de Anu.”

 

 

[nubes+2.jpg]

 

¿Quiénes eran esos habitantes del cielo? ¿Quiénes eran los dioses que temían al diluvio y se refugiaron en los cielos? Si hubieran sido seres etéreos no se habrían sentido aterrorizados por el furor de los elementos. Cabe suponer que estos habitantes no eran otros que los jefes atlantes que tenían ingenios voladores, o incluso astronaves, a su disposición. ¡Una locura!

gilgamesh

     Busto de Gilgamesh

Según la religión sumeria, el cielo de Anu era la sede de Anu, padre de los dioses. Su significado estaba asociado con las palabras “grandes alturas” y “profundidades”, lo que hoy llamamos “el espacio”. Los hombres del cielo partieron al espacio; tal es nuestra interpretación hoy de este desconcertante pasaje del canto épico.

El libro de Dzyan, recibido hace más de cien años por Helène Blavatsky en un ermita del Himalaya, podría ser una página perdida de la historia de la Humanidad:

“Sobrevinieron las primeras grandes aguas y devoraron las siete grandes islas. Todo lo que era santo fue salvado; todo lo que era impuro fue aniquilado.”

Un antiguo comentario de este libro explica con perfecta claridad el modo en que se produjo el éxodo de la Atlántida.

En previsión de la catástrofe inevitable, el Gran Rey, “de rostro deslumbrante”, jefe de los hombres esclarecidos de la Atlántida, envió sus navíos del aire a los jefes, sus hermanos, con el mensaje siguiente: Levantaos y preparaos, hombres de la Buena Ley, y atravesad la Tierra mientras todavía está seca.

 

                                 Pero las aguas lo inundaron todo

La ejecución de este plan debió mantenerse secreta a los poderosos y malvados jefes del imperio. Entonces, durante una noche oscura, mientras el pueblo de la Buena Ley se hallaba ya a salvo del peligro de la inundación, el Gran Rey reunió a sus vasallos, escondió su “rostro deslumbrante” y lloró. Cuando sonó la hora, los príncipes embarcaron en vimanas (naves aéreas) y siguieron a sus tribus a los países del este y del norte, a África y a Europa. Entretanto, gran número de meteoritos cayeron en masa, como bolas de fuego, sobre el reino de la Atlántida, donde dormían los “impuros”.

Si bien que, la posibilidad de un éxodo de la Atlántida por vía aérea no debe ser necesariamente aceptada, merece, no obstante, ser objeto de examen profundo y científico.

Es curioso constatar que en la Enciclopedia de los viajes interplanetarios, publicada en la URSS por el profesor N. A. Rynin, una ilustración en la misma refleja a los grandes sacerdotes atlantes elevándose en avión, mientras al fondo, la Atlántida se hunde en los mares.

Los babilonios han conservado el recuerdo de astronautas o de aviadores prehistóricos en la persona de Etana, el hombre volador. El museo de Berlín posee un sello cilíndrico en el que aparece atravesando los aires a lomos de un águila, entre el Sol y la Luna.


Los colonizadores espaciales de las Américas

El continente americano es otra porción del planeta que guarda las misteriosas marcas de lo que parece el pasaje de extraterrestres por la historia: Palenque, el dios Quetzalcóatl, las figuras de Nazca, el candelabro de Paracas, las Piedras de Ica… y tantos otros interrogantes.

“Cuando el doctor Alberto Ruz Lhuiller entró por primera vez al interior de la pirámide de Palenque, ya debía tener la intuición de que encontraría algo muy interesante. Como miembro del Instituto Nacional de Antropología de México, él conocía lo suficiente de la cultura maya para presentir que aquella pirámide en peldaños contenía alguna cosa especial, lo bastante para colocar su nombre definitivamente en los anales del Instituto.

La pirámide de Palenque queda en la entrada de la península de Yucatán, el gran brazo de tierra que separa el golfo de México del mar del Caribe. Palenque forma parte de un gran complejo de ruinas que testimonian la presencia de la civilización maya en el territorio que hoy pertenece a cuatro países: México, Guatemala, Honduras y Belice.

En el día 15 de julio de 1952, Alberto Lhuller (el descubridor de la pirámide de Palenque) y una pequeña expedición científica se aventuraban a penetrar en aquella enorme construcción. He aquí su relato:

“En el día 15, pudimos mover la piedra y entrar en la misteriosa cámara que veníamos procurando tan ansiosamente desde 1949. El momento de trasponer el umbral fue, por cierto, de indescriptible emoción. Yo estaba en una cripta espaciosa, que parecía tallada en hielo, pues tenía paredes cubiertas por una capa calcárea lustrosa, y las numerosas estalactitas que pendían de las bóvedas como cortinas, y las grandes estalagmitas suscitaban la impresión de enormes cilios. Esas formaciones calcáreas eran resultado del agua de lluvia que se filtraba a través de la pirámide durante mil años.”

En las paredes del templo, enormes figuras representaban los guardias del sarcófago. Todos ellos poseían pico de ave y las largas plumas del pájaro místico quetzal, que representaba Quetzalcóatl el dios Venus para los mayas. En el centro del templo, un enorme monolito tapaba un sarcófago inviolado.

Es cierto que han sido encontradas cosas muy extrañas con una antigüedad que no concuerdan con la tecnología existente en aquel tiempo, pero… No se sabe a qué puede obedecer estos extraños hallazgos que no han tenido una explicación dehaciente y autoconsistente en el plano de la ciencia.

Acostumbrado con los grandiosos monumentos de la civilización maya, el doctor Alberto Lhuiller se espantó con el tamaño del sarcófago: “Lo que más me sorprendió en esta cripta fue el enorme monumento que la ocupaba casi toda. Imaginen una piedra horizontal de 3,80 por 2,20 m, esculpida de los lados y en la cara superior, reposando sobre un bloque monolítico cuyos lados son igualmente esculpidos”.

El monolito pesaba seis toneladas y la expedición tuvo que erguirlo con los únicos instrumentos a disposición en el interior de la pirámide: dos macacos de automóvil. Y lo que ellos vieron no los decepcionó.

En el interior del sarcófago había un esqueleto de un hombre de 40 a 50 años, con una máscara de jade y perlas en las manos. Aparentemente, nada había en él de anormal, a no ser el hecho de poseer 1,73 de altura, cuando los mayas nunca pasaban de 1,55 m.

El mayor choque sucedió cuando las linternas iluminaron la laja de seis toneladas que protegía los restos de aquel ser. En aquel monolito de casi 4 m de altura estaba registrada la descripción más explícita, hasta ahora encontrada, de un astronauta de la Antigüedad en el comando de su nave.”

Pakal, el "astronauta" de Palenque.

Cualquier cabeza libre de preconceptos puede percibir que aquella laja registra un ser manejando comandos manuales y pedales, mirando a través de un visor en dirección a símbolos celestes. Este ser parece estar instalado en el interior de una nave de características contemporáneas, en la cual existen llamaradas de fuego saliendo de su parte trasera.

En Palenque, Méjico, puede verse el curioso dibujo de un sarcófago extraído de una pirámide descubierta por el arqueólogo Ruz-Lhuillier. Representa, en estilo maya, un hombre sentado sobre una máquina semejante a un cohete que despide llamaradas por un tubo de escape. El hombre está inclinado hacia delante: sus manos reposan sobre una barras. El cono del proyectil contiene gran número de misteriosos objetos que podrían ser parte de su mecanismo. Después de haber analizado numerosos códices mayas, los franceses Tarade y Millou han llegado a la conclusión de que se trata de un astronauta a bordo de una nave espacial, tal como la concebía este pueblo.

Los jeroglíficos existentes en el borde significan el Sol, la Luna y la Estrella Polar, lo que vendría a apoyar la interpretación cósmica. Mas, por otra parte, las dos flechas marcadas sobre la tumba (603 y 663 d. C.) no dejan de generar dudas. Sin embargo, en el caso de que el sacerdote enterrado en la tumba no fuera simplemente un sacerdote astronauta, sino un guardián de la tradición de los “dioses astrales” de la América central, el ornamento podría explicarse como una evocación de viajes espaciales del pasado.

Todo indica que los atlantes llegaron a tener una sociedad de nivel muy elevado.

Si nos sumergimos en historias perdidas en textos muy antiguos, la sorpresa y el asombro están asegurados. Para mi caso también incluyo la fascinación, aunque con cierta reserva. Todas estas historias tienen un origen real que se pasó de generación a generación y, aunque nos puedan llegar alteradas, en los entresijos de esas historias subyace la verdad donde tienen su origen.

Hace muchos años, el doctor Lao-Tsin publicó en un periódico de la ciudad de Shangai un artículo dedicado a su viaje a una extraña región de Asia central. En su pintoresco relato, que prefiguró Horizontes perdidos (James Hilton), este médico describe la peligrosa caminata que realizó por las alturas del Tíbet en compañía de un yogui oriundo de Nepal. En una región desolada, en el fondo de las montañas, los dos peregrinos llegaron a un valle escondido, protegido de los vientos septentrionales y gozante de un clima mucho más cálido que el del territorio circundante.

Este doctor evoca en su relato “la torre de Shambhala” y los laboratorios que provocaron su asombro. Allí, amablemente, además de darles hospitalidad, por su condición de doctor le pusieron al tanto de grandes resultados científicos obtenidos en el valle. También fue testigo, según contaba, de experiencias telepáticas efectuadas a grandes distancias. Decía conocer muchas otras cosas que, haciendo honor a la palabra dada, no podía contar.

La tradición actual cuenta que en Shambhala ocurrieron en el pasado remoto cosas extraordinarias y grandes acontecimientos.

http://3.bp.blogspot.com/-9_cnXgpCwp0/ThRkxH6oxvI/AAAAAAAAGhY/kPKWnzs86UM/s1600/_MG_9425.JPG

Los mahatmas (grandes sacerdotes de estas comunidades secretas) no quieren ser molestados en su contemplación, y cuando consienten en recibir a visitantes muy especiales es bajo la firme promesa de no revelar lo que allí se les muestre. Un mahatma en una carta, para definir sus actividades, escribió:

“Durante generaciones innumerables, el adepto ha construido un templo con rocas imperecederas, una torre gigantesca del pensamiento infinito, convertida en morada de un titán que permanecerá en ella solo, si es necesario, y únicamente saldrá al final de cada ciclo para invitar a los elegidos de la Humanidad a cooperar con él y contribuir, a su vez, a la ilustración de los hombres supersticiosos.”

El texto fue escrito por el Mahatma Koot Humi en julio de 1.881.

http://3.bp.blogspot.com/-lV59AYjLt-c/TnVhGL5mBMI/AAAAAAAAArc/Vxno1QxHZxA/s1600/crystalrodsmall.jpg

Excepto por la citada ciudad, los Atlantes no solían construir grandes urbes debido a su impacto medioambiental. Según expone Murry Hope en su obra “Practical Atlantean Magic” (1991), sus comunidades eran pequeñas y las casas construidas hace unos 12.000 años eran circulares. El psíquico Dale Walker, por su parte, indica que construyeron grandes torres como faros cerca del mar… Templos de gran belleza llenaban la Tierra. En ellos, la combinación de luz, color, sonido, magnetismo y energías de pensamiento se canalizaban mediante cristales para hacer maravillas en el campo de la Sanación. Este no es el único dato que aporta Walker sobre la forma en que los Atlantes ejercían la medicina.

Esta civilización creció hasta tal punto que disponían de barcos para llegar a casi cualquier punto de la tierra. Tampoco hay que olvidar los mágicos pájaros de plata donde la gente viajaba a través del cielo, a velocidades altísimas. Y más aún, existen indicios de que en la Atlántida había naves espaciales capaces de abandonar la atmósfera terrestre y llegar a la Luna y a otros planetas. Otro campo de la ciencia de la antigua Atlántida, era la posibilidad de crear seres humanos iguales a nosotros y el uso de máquinas mentales subatómicas.

http://3.bp.blogspot.com/-yNQMYiSa2Oc/TngHu-yZ8_I/AAAAAAAAAr8/j1rnLT47R4g/s1600/AtlantisHeader.jpg

Una tecnología tan puntera tenía que ir inevitablemente acompañada de una medicina muy avanzada. Según él, tenían un pequeño instrumento que cabía en la palma de la mano del paciente y consistía en un cristal con una capucha de cobre en cada extremo: El médico podía leer el color del aura o del campo biomagnético del paciente mediante este cristal y diagnosticar la dolencia, explica Smith.

En este sentido, los informes de J. Z. Knight, convertida en canal del espíritu Atlante Ramtha, son muy elocuentes:

El origen de estas comunidades desconocidas se pierde en el origen de los tiempos. Según toda probabilidad, son nuestros predecesores en el saber de la evolución humana que ordenaron la salida de la Atlántida a los hombres de la Buena Ley.

Es posible que estas colonias secretas conserven todos los documentos y todos los resultados de orden espiritual de la Atlántida, tal como fue en sus días de esplendor, y aunque esa pequeña sociedad no esté representada en las Naciones Unidas, podría ser el único Estado permanente del planeta y el custodio de una ciencia tan vieja como las rocas. Los espíritus escépticos no deben olvidar que los mensajes de los mahatmas se conservan hasta nuestros días en los archivos de ciertos gobiernos.

Brahma - Los tres dioses más importantes de la India son:

1. Visnú: Protector y restaurador.

2. Brahma: Creador.

3. Shiva: Destructor.

Todos los rincones y pueblos de nuestro mundo tienen encerrados en sus folklores misterios del pasado que apenas dejan asomar una pequeña parte de lo que en el pasado ocurrió. Pensemos por ejemplo en la cantidad de montañas sagradas y de ciudades perdidas que existen en el ancho mundo nuestro.

En la India le atribuyen un carácter divino a las Nanda Davi, Kailas, Kanchenjunga y a otras muchas cumbres que, según ellos, sirven de residencia a los dioses. Se afirma que Siva tiene su sede en el monte Kailas (Kang Rimpoche). Se cuenta también de él que descendió sobre el Kanchenjunga, mientras que la diosa Lakshmi, por el contrario, se elevó hacia los cielos desde la cumbre.

Analizando estos mitos se llega a la conclusión de que por aquellas épocas remotas en que los dioses se mezclaban con los humanos, se producía un tráfico en los dos sentidos a través del espacio. A partir del momento en que se encaminó desde el salvajismo a los rudimentos de la civilización, la Humanidad creyó en la existencia de dioses poderosos y bienhechores. De alguna manera debían buscar el equilibrio y la fuerza necesaria para sobrevivir en aquellos peligrosos tiempos; había que creer en algo.

            ¿En qué lugar del Monte Olimpo vivían los dioses?

En la antigua Grecia se consideraban el Parnaso y el Olimpo como los lugares en que moraban los dioses. De la Mitología griega ¿qué os puedo contar? para eso está nuestro amigo Odiseo, un gran experto en esos temas que dejan al descubierto la inmensa imaginación de aquellos griegos que tenían dioses y diosas para todo y para todos. Su imaginación era desbordante.

[DSCN5148.JPG]

El arte hermético, los principios de la alquimia, su historia y los contactos de la alquimia con la ciencia moderna. Los alquimistas licenciados por la universidad de Montpellier en el s. XIII, Alberto Magno, Arnau Vilanova y Raimundo Lulio, Roger Bacon y más tarde Michael de Nostre-Dame (más conocido por su pseudónimo Nostradamus), Rebelais y Erasmo, además de médicos árabes y judíos, todos ellos adictos a la filosofía hermética, y todos interesados por la alquimia y las transmutaciones metálicas.

Más tarde me topé con la física que me enlaza directamente con las matemáticas (que por desgracia no domino), la biología, la astronomía, la astrología y la cosmología, en fin, con todo lo que realmente importa, la vida misma y el universo.

Antes de llegar a la física pasé por innumerables recorridos del sabor humano: los clásicos griegos, los filósofos, Platón, Sócrates, Aristóteles, pero sin dejar a Kepler y Galileo, ni tampoco a Newton y Darwin. Mi avidez de saber era ilimitada y más de una noche, sobre las 3 ó las 4 de la madrugada, mi madre apagaba la luz de mi mesita de noche y cerraba el libro abierto sobre mi pecho o caído en el suelo. El sueño me impedía seguir; además, muy temprano había que cumplir en el trabajo. ¡Qué tiempos!

Alternaba las matemáticas comerciales y la contabilidad con mi preparación a las oposiciones, como Diplomado en Derecho Tributario para obtener el título de gestor administrativo; dos pruebas en Madrid, una escrita, la segunda, y otra oral, la primera. Después, vinieron otras muchas para conseguir otros títulos que me dejaran trabajar como exigiá el reglamento.

                                Camile Flammarión

Pero entre libros de estudios y ratos libres, nunca dejaba otras clases de lecturas como a William Shakespeare, Dante, Goethe, Descartes, Beltran, Rusell, Flanmarion, Julio Verne, Voltaire, Isaac Asimov, y en realidad, todo lo que pillaba, hasta tostones de Homero como la Iliada y la Odisea o los de docenas de clásicos, tanto rusos como de otras nacionalidades que caían en mis manos. De los siete sabios de Grecia a los pensadores Buda o Confucio; todo para mí era saber más cosas.

Ahora recuerdo, y no tengo más remedio que reírme, que teniendo media novia aficionada a las plantas me leí un tratado de plantas de interior para poder prestarle ayuda y ofrecerle mis conocimientos. Cuando nos encontramos, muy de tarde en tarde, nos abrazamos con cariño.

Leí a Euclides y sobre los elementos (Autólico de Pitania), obra de la que se editaron bastantes ediciones (1.296 – 1.482 y otras) y la edición de Ratdolt que fue uno de los más bellos de los primeros libros científicos editados impresos y por los que me interesé en su momento.

Arquímedes pensativo. Óleo sobre tela del pintor Domenico Fetti (1620). Galeria en Dresde. a misma imagen la he visto en alguna otra parte y, el personaje era Aristarco de Samos y no Arquímedes de Siracusa. Aristarco fue el primero en anunciar que el Sol era el Centro de todo y los planetas giraban a su alrededor. Nadie escuchó lo que vativcinó y, algunos siglos más tarde, llegaría Copérnico a ponerse aquella medalla.

Fidias, Arquímedes, Alejandría o Siracusa eran para mí nombres muy familiares. He leído sobre la esfera y el cilindro, sobre la medida del círculo, sobre conoides y esferoides, sobre las espirales, cuadratura de la parábola, sobre los cuerpos flotantes y el Método, obras irremisiblemente perdidas y reconstruidas parcialmente mediante complejas estructuraciones de restos que, seguramente, dieron como resultado un híbrido de distintos autores posteriores que se basaban en el texto original.

También captó mi atención Ptolomeo y su gran síntesis astronómica, Copérnico y su mundo astronómico y, desde luego, me empapé de la civilización romana, guardián de la herencia griega y de su mitología. La Gran Enciclopedia Científico-Técnica de Cayo Plinio segundo, llamado “el Viejo” que reunió el legado de todos los antepasados y recogió el saber para evitar su pérdida.

Todas estas cuestiones me interesaron y de ellos me empapaba con la avidez y la curiosidad sin límite de un niño.

Pérgamo, (actual Turquía), 129 d. de C. – id., 216 d. de C.

GalenoMédico y filósofo griego. El pensamiento de Galeno ejerció una profunda influencia en la medicina practicada en el Imperio Bizantino, que se extendió con posterioridad a Oriente Medio, para acabar llegando a la Europa medieval, que pervivió hasta entrado el siglo XVII.

Educado como hombre de letras, a los dieciséis años Galeno decidió orientar su actividad al estudio de la medicina. Con este objeto viajó a Esmirna y finalmente a Alejandría, para regresar de nuevo a Pérgamo en el año 157, donde ejerció de médico de la tropa de gladiadores. En el 162 Galeno se trasladó a Roma, donde pronto se hizo célebre por las curas practicadas a miembros de familias patricias que con anterioridad habían sido desahuciados, así como por el empleo de una elocuente retórica en discusiones de carácter público. Galeno fue médico de los emperadores Marco Aurelio, Cómodo y Septimio Severo, antes de volver de nuevo a Pérgamo, donde murió en el 216.

Los datos de un historiador a otro no siempre coinciden y, como podeis leer abajo, las fechas son distintas ala de arriba para la describir la misma cosa.

Galeno (129 – 194) es el médico más famoso de la antigüedad. Nació en Pérgamo, hoy en la Turquía occidental. Miembro de una familia de la clase alta urbana del helenismo romano, fue médico de cuatro emperadores. En sus trabajos se apoyó en las enseñanzas de Hipócrates y Aristóteles, pero aportó sus propias ideas.

El siglo XVI vio una revolución científica con Vesalio y Copérnico.

No existe, como frecuentemente oímos o leemos, una época oscura en la historia de la Humanidad que va de los romanos de los primeros siglos de la era cristiana a los europeos del siglo XVI. Lo que hay es ignorancia de que existan otras culturas y civilizaciones de las que llamamos cultura occidental desconocida.

Había otros mundos científicos, tecnológicos y filosóficos de saberes acumulados en el orbe árabe.

Muhammad Ibn Musa al-Khwarizmi

Se realizaron avances en la teoría Ptolomaica y en la astronomía empírica en los observatorios musulmanes. Por ejemplo, los astrónomos islámicos desarrollaron un tipo de tabla astronómica llamada la tabla Zij, en las que se listaban los movimientos medios y posiciones reales de los cuerpos celestes al igual que información sobre el calendario relacionada con las salidas y puestas del sol y de la luna. Estas tablas estaban basadas en observaciones griegas, indias e islámicas. De especial influencia fue la Zij desarrollará por el matemático y astrónomo de Bagdad, Muhammad Ibn Musa al-Khwarizmi alrededor del año 840. Esta tabla fue uno de los primeros documentos de la astronomía musulmana en ser traducido, y en circular ampliamente en Europa occidental.

(Un retrato del eminente geógrafo Estrabón, quien desconfiaba de los relatos de Píteas y sus pretendidos descubrimientos)

Así, los exploradores del saber se encontraron con nombres como el del matemático y geógrafo Mamad Ibn Musa al-Iwarizmi (800 – 847), del que procede la voz algoritmo, el químico y médico al-Razi (865 – 925), el físimo Ibn al-Hatham, Alhazen (965 – 1.038), el matemático al-Biruni (973 – 1.048), el médico Ibn Sina, Avicena (980 – 1.037), el astrónomo al-Zangali, Azarquiel (1.029 – 1.087) o el médico Ibn Rushd, Averroes (1.126 – 1.198), que si la historia hubiese seguido otros caminos acaso habrían figurado de manera prominente en muchos lugares destacados de la historia.

Bueno, como es mi costumbre, mi mente me la jugó de nuevo; estaba hablando de Copérnico y Vesalio. Sin querer, me acordé de la “oscuridad” de la edad media y no pude evitar el nombrar a personajes que, en otra parte del mundo, brillaban con luz propia.

De Nicolás Copérnico, cualquier interesado en la ciencia, como los  lectores que aquí forman comunidad, poco les puedo contar que no sepan ellos. El prsonaje ha llenado muchas páginas y, desde luego, sin quitarle el mérito de haber recuperado las ideas de Aristarco de Samos, posibilitó que el mundo viera con otros ojos lo que era nuestro sistema solar.

En 1.543, el año en el que se publicaron libros (dos) que terminarían convirtiéndose en dos clásicos de la ciencia: De Revolutionibus Oebium Coelestium, de Nicolás Copérnico, y De Humani Corporis Fabrica, de Andreas Vesalio, aunque ninguno de los dos supo nunca desembarazarse de las cargas doctrinales de las disciplinas a las que se referían, Vesalio de Galeno y Copérnico de Aristóteles. Pero ambos, en sus respectivos campos, marcaron una época, un antes y un después.

No me parece oportuno continuar reseñando aquí sus biografías, y con los mencionado lo dejo. Mejor comento algo sobre Tycho Brahe (1.546 – 1.601) y Johannes Kepler (1.571 – 1.630).

Tycho era noble, rico y poderoso, y no seguía las ideas copérnicas. Kepler era de origen humilde, ferviente copérnico, siempre buscando (no con demasiado éxito) el amparo de reyes y aristócratas, no ya para poder trabajar en la ciencia que amaba, sino para simplemente vivir, alimentarse él y su familia, y sin embargo, a los ojos de la historia ambos constituyen un dúo inamovible. No fue porque compartiesen logros científicos, sino porque Brahe hubiera sido, acaso, mucho menos conocido para la posteridad de no haber sido por la relación, breve pero intensa, que mantuvo con Kepler, y porque éste seguramente no habría podido producir lo que fueron sus joyas científicas más preciosas sin acceder a los datos de las observaciones (en especial las de la trayectoria de Marte) de Brahe, el observador astronómico más importante en la era anterior a la invención del telescopio.

Brahe, con la ayuda del rey Federico II, construyó un centro astronómico: uraninburgo, en la isla Hveen de Dinamarca. Le sucedió al frente del mismo su ayudante en Praga J. Kepler que pronto, haciendo uso del material acumulado y sus propias investigaciones, publicó Astronomia Nova en el año 1.609, donde presentaba sus dos primeras leyes del movimiento planetario. En 1.619 publicó Harmonices Mundi y su tercera ley.

Haciéndola coincidir con el cuarto centenario de la aparición de Sidereus nuncius (El mensajero sideral), un tratado corto escrito por Galileo, el primer texto científico basado en observaciones astronómicas realizadas con un telescopio, un libro que se considera el origen de la moderna astronomía y la causa del colapso de la teoría geocéntrica sostenida desde los tiempos de Aristóteles y Ptolomeo, John Heilbron, profesor emérito de Historia de la Ciencia en Berkeley, ha publicado la última biografía de Galileo Galilei (Galileo, Oxford University Press, 2010).

La primera biografía del astrónomo, filósofo, matemático y físico pisano fue publicada diez años después de su muerte por el poeta y político galés Thomas Salusbury como parte de una ambiciosa edición de sus obras completas. Para no ser menos, el último discípulo y amanuense de Galileo, Vincenzo Viviani, planeó la propia biografía de su maestro, una obra que nunca concluyó. Discípulo fiel, Viviani retrató a su maestro como un genio del Renacimiento a la manera del gran Miguel Ángel Buonarroti, fallecido el mismo año (1564) del nacimiento de Galileo. Para ensalzarlo, Viviani no dudó en escribir un relato muchas veces ficticio que ha sido el origen del imaginario que rodea al científico de Pisa: la dudosa afirmación de que descubrió el isocronismo del péndulo observando el balanceo de una lámpara en la catedral de Pisa o la leyenda de que dejó caer una bola de cañón y otra de madera desde la torre inclinada para demostrar a la ciencia oficial que dos objetos de pesos diferentes caen a la misma velocidad con independencia de su peso.

                                                                                                         Veronica Franco por Tintoretto

Sin abandonar los cánones historiográficos más estrictos, los episodios en los que Heilbron deja volar su imaginación para reconstruir una historia imaginaria son originales y muy esclarecedores. Por mencionar algún ejemplo, en las biografías anteriores Marina Gamba es despachada como la amante de Galileo y la madre de sus tres hijos ilegítimos. Heilbron evita esos manidos retratos unidimensionales y se basa en los estudios históricos sobre la veneciana Verónica Franco -una de las cortesanas más célebres del Renacimiento italiano, la época más caliente, carnal y espléndida para esa profesión-, para elucubrar sobre las cualidades que Marina pudo poseer para lograr la atención del célebre Galileo. Heilbron cree que Marina pertenecía a la elite de las “oneste cortigiane” (cortesanas honestas), que procedía de una familia veneciana de “cittadini originari” (una especie de clase social entre la aristocracia y la plebe) y que poseía no solo las cualidades corporales imprescindibles para su profesión, sino también intelectuales. Verónica Franco fue una reconocida poetisa petrarquista, lo que da pie a Heilbron para imaginar que Marina ofreció a Galileo «no sólo la belleza física, sino también su talento musical y su refinado gusto por la buena poesía.»

Y así sabemos algo más de Galileo Galilei (1.564 – 1.642); la antítesis, en cuanto a estilo literario y método científico, de Kepler. Si este es, cuando se lee, la oscuridad, Galileo es la luz. Con él la fuerza de las ideas copérnicas se hizo tan patente que terminaría desencadenando acontecimientos sociales que arrastrarían con ellos al propio físico de Pisa.

Sus observaciones sacaron a la luz las deficiencias del universo aristotélico-ptolemaico. El que Galileo realizara tales observaciones resulta, en principio, sorprendente, ya que era un físico y su preocupación estaba centrada en el estudio del movimiento, por encontrar las leyes que regían fenómenos como la caída de un cuerpo esférico por un plano inclinado o el tiempo que tarda un péndulo en batir, y no un astrónomo. Sin embargo, todo cambió, su vida y a la postre, en más de un sentido, el mundo, cuando conoció la existencia de lentes (telescopios) que agrandaban las imágenes de objetos lejanos.

Construyó su propio telescopio que enfocó hacia la Luna y descubrió todas sus irregularidades con sus montañas y abismos, lo que describió en su libro Siderus Nuncius (1.610). Ese mismo año estudió Júpiter y detectó 4 satélites y otras muchas cosas. Galilio adquirió una importante notoriedad.

En 1.632 se convirtió en una leyenda con la publicación de su obra inmortal, Diálogo sobre los dos máximos sistemas del mundo, ptolemaico y coperniano, una obra maestra de la literatura científica. Escribió otros grandes libros y, en controversia con la Iglesia, finalizó sus días en arresto domiciliario, ya que la Iglesia negaba el movimiento del mundo alrededor del Sol.

http://1.bp.blogspot.com/_vSBM1favqXs/TG6FfoLySCI/AAAAAAAAAxs/hda5gUheWNQ/s1600/Descartes-Ren%C3%A9.jpg

                    René Descartes

Cuando antes me refería de pasada a mis lecturas, nombré a René Descartes (1.596 – 1.650), una de las grandes figuras del pensamiento de todos los tiempos. Casi todos le conocen por su condición de filósofo, pero se olvidan de que también contribuyó con su talento en el campo de las matemáticas, fisiología y física (especialmente en la dinámica, óptica, meteorología y astronomía), formando parte de la historia de esas disciplinas.

Según sus propias palabras, purificó el alberga, “desembarazándola” de “los múltiples números e inexplicables figuras que la abruman”. Sin duda, la aplicación más conocida de este enfoque fue en la geometría, con las coordenadas cartesianas, o geometría analítica, que presentó en La Géométrie, que apareció – junto a La Dioptrique y Les Météores – como uno de los apéndices de su obra más conocida, Discours de la Méthode (1.637).

Descartes, podemos decir sin ningún temor a equivocarnos que es merecedor de toda nuestra admiración, y con él (como con otros muchos) siempre estaremos en deuda.

Me he podido adaptar (mentalmente) en todas mis lecturas a la época del autor, en el tiempo en el que escribió el texto que ahora, muchos años después, podemos leer. Así, se puede comprender mejor lo que estamos leyendo, y sobre todo, resulta más fácil la simbiosis con el autor; lo que nos dice fluye dentro de nuestra mente con diáfana sencillez.

Es curioso observar la evolución de nuestros pensamientos, que a medida que adquirimos conocimientos, se van asentando en niveles superiores capaces de procesar en cada momento aquello que necesitamos, y para ello, obtiene múltiples y diversos datos que reúne en un todo para que exprese aquello que deseamos decir.

http://1.bp.blogspot.com/-EbBHDjv8F5A/TgMG9vmV4AI/AAAAAAAAIzw/UDNudi7_KXE/s1600/bkue+brain+4.png

   Nuestras mentes, irremisiblemente unidas al Universo, evolucionan con él

Llegará un día (si antes no lo estropeamos), en que la evolución nos llevará a convertirnos en pura energía pensante, seremos todo luz que, confundidos con el universo del que formamos parte, habremos completado el ciclo. Sabemos que nuestro origen está en las estrellas; allí nacieron los componentes de nuestros cuerpos, elementos complejos creados a partir de explosiones de supernovas. Desde allí hemos realizado un recorrido largo hasta llegar a ese punto del camino en el que fuimos conscientes de nuestro SER. Ahora continuamos (en un período joven aún) evolucionando para que, en algunos eones, podamos alcanzar la meta que nos aguarda.

Parece mentira que para algunos de nosotros, el tiempo que estamos aquí (lo que duran nuestras vidas) resulte largo o corto en función de la forma de pensar y de ver la vida, es verdad aquello que dicen algunos sabios en relación a nuestras mentes: Cada uno de nosotros creamos nuestra propia realidad del mundo que, no siempre, coincide con la verdadera realidad.

¡Ah! Se me olvidaba, aún nos quedan algunos Diluvios que vendrán.

¡Qué historias! ¡Qué personajes! ¿No os fascina poder tener toda aquella información de lo que fue?

emilio silvera

¡La Mecánica cuántica!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

LA MARAVILLA DE LOS CUANTOS

Aunque la semilla la puso Planck en 1900, fue a partir de 1930 cuando la mecánica cuántica se aplicó con mucho éxito a problemas relacionados con núcleos atómicos, moléculas y materia en estado sólido. La mecánica cuántica hizo posible comprender un extenso conjunto de datos, de otra manera enigmáticos. Sus predicciones han sido de una exactitud notable. Ejemplo de ésto último es la increíble precisión de diesciciete cifras significativas del momento magnético del electrón calculadas por la EDC (Electrodinámica Cuántica) comparadas con el experimento.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 1015 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

Poco a poco vamos avanzando y llegará el momento en el que, los más profundos secretos de la Naturaleza hayan sido desvelados

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La fórmula es:

E = h x v

Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

           El detector ATLAS funcionó, y rastrearon las partículas subatómicas

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

                      Explorar el misterio del espín de los protones ha sido uno de los objetivos clave de la investigación científica en el RHIC

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

                  ¡Y pensar que todo esto está formado por pequeñas partículas infinitesimales!

Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación.

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecanocuánticos.

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.

emilio silvera

¡El Universo! ¡Civilizaciones! ¡Los pensamientos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Cuando decimos Universo, nos estamos refiriendo a ¡tántas cosas”. En realidad, la palabra contiene en sí misma, todo lo que existe, incluyendo el Espacio, el Tiempo y la materia en todas sus formas, bien sea “inerte” o “viva” orgánica o inorgánica y, conforme a lo que sabemos, ahí está también recogida la energía en todas las formas que pueda adoptar… Creo que, incluso los pensamientos.

Cada día aquí, comentamos sobre algún aspecto de la Física o de la Astronomía (también de la vida y de los que los seres humanos hicimos a nuestro paso por este mundo), que nos puedan llevar a comprender, algo mejor, todo lo que podemos ver que ocurre a nuestro alrededor y, en nuestro entorno espacial que, con los adelantos que hemos podido conseguir, abarca ya, inmensas regiones del Universo. Sin embargo, no debemos olvidar lo que pasó.

Las estrellas que forman las galaxias, los mundos que orbitan a las estrellas, las Nebulosas que son los semilleros de estrellas nuevas, los demás objetos que en el Universo son…, todos han necesitado tiempo para conformarse en lo que son y, con el paso del tiempo, todos se convirtieron en otros objetos distintos de lo que fueron. Nada permanece, todo se transofrma y, de alguna manera, todo nace, vive y muere con el inexorable transcurrir del Tiempo.

¡EL TIEMPO!

Sí, es el tiempo el factor que juega a nuestro favor y,  en nuestra contra, depende de la perspectiva con que lo miremos: A nuestro favor para conseguir nuestros logros más difíciles, para hacer posible nuestros sueños, para aprender y llegar a saber y llegar a poder responder preguntas de las que antes no teníamos ni la menor noción, para preguntar sobre alguna cosa hay que saber que ésta existe, o, puede existir. Nunca llegaremos a poder contestarlas todas y, siempre, nos quedarán preguntas que plantear y también por contestar.

Tenemos una ventaja que el Tiempo no puede eliminar, creamos Entropía negativa mediante la replicación de la especie, hacemos surgir al mundo otros seres humanos y los educamos desde pequeños para que sigan nuestros pasos y continúen con el trabajo que comenzó hace milenios.

Mirando por ahí, he tratado de buscar algunas cuestiones que resuman (aunque sea de manera muy escueta) algo de lo que el mundo es, de lo que hicimos y dejaron atrás aquellas civilizaciones y aquellos pensadores del pasado, y, encontré un lugar (Olcicilizacións´s Blog)desde el que os traigo lo que sigue:

 ENIGMA DE PALENQUE

Los olmecas, transmitieron sus conocimientos a los toltecas, considerados por los estudiosos como una rama de los chichimecas, y éstos más tarde a los mayas.

 http://oldcivilizations.files.wordpress.com/2012/03/shangrila.jpg

 

                     Civilizaciones perdidas que construyeron mundos de fantástica belleza

 

http://oldcivilizations.files.wordpress.com/2012/06/ajanta-20.jpghttp://oldcivilizations.files.wordpress.com/2012/08/lila-avatars.jpg

                 Seres superiores que nos dejaron sus ideas y un mundo que posibilitó la diversidad de pensamientos

detrás de cada imagen se esconden historias que nos gustaría conocer. Cuentan pasajes de hechos del pasado, o del presente y, algunas veces, también quieren significar lo que será el futuro. Desde siempre, además de por medio de la escritura, hemos querido representar los hechos, personajes y obras por medio de grandiosos templos, en pinturas más o menos sofisticadas y, sobre todo, en historias contadas por dramaturgos y poetas, y, sobre todo, por los historiadores que dejaron un reflejo de su tiempo en cada  momento de nuestra Historia.

 http://oldcivilizations.files.wordpress.com/2012/09/pintura-15.jpg

                                       ¿Quien no conoce “las historias” que se esconden detrás de éstas pinturas?

 http://oldcivilizations.files.wordpress.com/2012/10/imagen21.jpg

                                                  Cada Civilización quizo dejar su huella y contar su historia a… su manera

Según el Génesis: “Tenía entonces toda la tierra una sola lengua y unas mismas palabras.” En la actualidad hay unas seis mil quinientas lenguas en nuestro mundo. De ellas, solamente veinticinco pueden considerarse importantes por su extensión y por su producción escrita. La pregunta que ha preocupado siempre a pensadores y lingüistas es inmediata: ¿De dónde surgió tal diversidad? ¿Cuál fue el origen de todas las lenguas? Ya hemos hablado aquí extensamente de los orígenes de la lengua y de la escritura y, son historias apasionantes que nos llegan del pasado.

Siempre hemos tenido imaginación y, los mitos antiguos proliferan en todas aquellas civilizaciones. Entre los antiguos mitos budistas figura el de un misterioso paraíso perdido, conocido como Chang Shambhala, que se considera la fuente de la sabiduría eterna y donde vivirían seres inmortales en armonía perfecta con la naturaleza y el universo. En la India, oculto entre los Himalayas, se le llama Kalapa, mientras que la tradición china lo ubica en los montes Kunlun.  Según las leyendas budistas, Kalāpa (‘atado, manojo’) es la mítica ciudad capital del reino de Shambhala(quizá algún lugar de Tíbet o de Cachemira). Allí el rey

Kulika reina sentado en un trono de leones. Se dice que Kalapa es una hermosa ciudad, con jardines de sándalo que contienen un gran mándala tridimensional de kala chakrá realizado por el rey Suchandra. Este rey vino desde el norte de Cachemira, y desarrolló la práctica del kalachakrá, que aprendió del propio Buda (siglo VI a. C.) en Dhania Kataka. La cordillera montañosa Kunlun es una de las más largas cadenas montañosas de Asia, extendiéndose a lo largo de más de 3.000 km. Corre a lo largo del borde occidental de China, hacia el Sur, al lado de la cordillera del Pamir, curvándose luego hacia el este para formar la frontera del Tíbet. Se extiende al sur de lo que se denomina actualmente la cuenca de Tarim, el famoso Takla Makan o desierto de las “casas enterradas en la arena“, y el desierto de Gobi. La cordillera tiene cerca de 200 picos de altura superior a los 6.000 metros. Los tres picos más altos son el Kongur Tagh (7.719 m), el Dingbei (7.625 m) y el famoso Mutzagata (7.546 m). Estos picos se encuentran en la cordillera Arkatag dentro del complejo de cordilleras. Hacia el sur, una rama de las montañas Kunlun da lugar a la zona de captación de las cuencas de los dos ríos más largos de China, el Yangtsé y el río Amarillo. La cordillera se formó en el lado norte de la placa India durante su colisión a finales del Triásico, con la placa Euroasiática, dando lugar al cierre del océano Paleo-Thetys. Las montañas son muy conocidas en la mitología china, y se considera que encierran el paraíso taoísta. El primero en visitar este paraíso fue, según la leyenda, el rey Mu (1001-947 a. C.) de la dinastía Zhou. Supuestamente descubrió el Palacio de Jade de Huangdi, el mítico Emperador Amarillo, y encontró a Xiwangmu, la Reina Madre del Oeste, que también tiene su mítico refugio en estas montañas.

Se cuentan algunas historias que… Hermes Trismegisto es el nombre griego de un personaje mítico que se asoció a un sincretismo del dios egipcio Dyehuty (Toth en griego) y el dios heleno Hermes, o bien al Abraham bíblico. Hermes Trismegisto significa en griego ‘Hermes, tres veces grande’. En latín es: Mercurius ter Maximus. Hermes Trismegisto es mencionado primordialmente en la literatura ocultista como el sabio egipcio, paralelo al dios Toth egipcio, que creó la alquimia y desarrolló un sistema de creencias metafísicas que hoy es conocida como hermética.

 

Para algunos pensadores medievales, Hermes Trismegisto fue un profeta pagano que anunció el advenimiento del cristianismo. Se le han atribuido estudios de alquimia como la Tabla de esmeralda —que fue traducida del latín al inglés por Isaac Newton— y de filosofía, como el Corpus hermeticum. No obstante, debido a la carencia de evidencias contundentes sobre su existencia, el personaje histórico se ha ido construyendo ficticiamente desde la Edad Media hasta la actualidad, sobre todo a partir del resurgimiento del esoterismo. Fueron los griegos quienes  bautizaron como Hermes Trismegisto al dios Toth egipcio, el responsable del conocimiento; aquel que, según la tradición, explicó a los habitantes del Nilo que su país era una suerte de eco de las maravillas que contemplaban en su negra bóveda celeste. De hecho, una de las teorías más populares para explicar la orientación de las pirámides es que éstas imitaban, como las catedrales harían más tarde, la situación de ciertas estrellas del firmamento nocturno. Pero no la de unas estrellas cualesquiera, sino aquellas llamadas por sus milenarios textos religiosos El Duat. Bajo ese nombre se conoció en Egipto a los tres astros que integran el cinturón de Orión -nosotros las llamamos «las tres Marías»-. Los egipcios creían que eran la puerta simbólica por la que el faraón accedía a los reinos del más allá. Las pirámides, por tanto, fueron «modelos» en piedra de esa entrada; lugares de iniciación en los que el gobernante de Egipto se preparaba para el viaje más importante de su existencia: el de su muerte.

Y, hablandio de la muerta, los humanos siempre hemos tenido mucha imaginación para ese trance final de nuestras vidas y, se han dicho muchas cosas y se han contado muchas versiones.

¿Qué es la muerte? Quizá la analogía más común sea la comparación entre muerte y sueño. Morir, nos decimos, es como dormirse.

 

Esta figura del lenguaje es muy común en el pensamiento y lenguaje de cada día, así como en laliteratura de muchas culturas y épocas. Incluso era corriente en la Grecia clásica. En la Ilíada, por ejemplo, Homero llama al sueño «hermano de la muerte», y Platón, en su diálogo la Apología, pone las siguientes palabras en boca de Sócrates, su maestro, que acaba de ser sentenciado a muerte por un jurado ateniense: “Si la muerte es sólo dormirse sin sueños, debe ser un maravilloso premio. Imagino que si a alguien se le dijese que escogiera la noche en que durmió tan profundamente que ni siquiera soñó y la comparase con el resto de noches y días de su vida y que dijese entonces, tras la debida consideración, cuántos días y noches más felices había tenido, creo que… [cualquiera] se daría cuenta de que esas noches y días son fáciles de contar en comparación con el resto. Si la muerte es así, la considero ventajosa, pues todo el tiempo, si la miramos de esa forma, puede tomarse como una sola noche”.

En   1964,    una   revista   de estudios  orientales  había  publicado   un   artículo  que  trataba  de  una  relación entre la Gran Pirámide y el Cinturón de Orión. Un   egiptólogo llamado Alexander Badawy había pedido a la astrónoma norteamericana   Virginia   Trimble,   que le ayudase a verificar su teoría de   que   el   «pozo   de   ventilación»   meridional   de   la   Cámara   del   Rey   señalaba directamente a Orión cuando se construyó la Gran Pirámide, hacia el 2550 a. de   C.   Virginia   Trimble, basada en sus cálculo,  pudo   decir  a Badawy   que,   en

 

efecto,   el   pozo   de ventilación   señalaba directamente al Cinturón de Orión hacia el 2550 a. de C. Una   persona   lo   bastante   delgada   como   para   acostarse   en   el   pozo   de ventilación hubiera visto cómo el cinturón de Orión pasaba directamente por encima   de   ella   todas   las   noches.   Por   supuesto,   pasarían   otras   estrellas, cientos de ellas… pero ninguna de semejante magnitud. Si   las   pirámides   de   Gizeh  representaban   las   tres   estrellas   del   Cinturón de   Orión   -Zeta,   Epsilón   y   Delta-,   ¿no   era   posible   que   otras   pirámides representasen a otras estrellas de Orión? De hecho, Robert Bauval se dio cuenta de que la pirámide de Nebka, en Abu Ruwash, correspondía a la estrella situada en el pie izquierdo del Cazador; y la pirámide de Zawyat al-Aryan a la estrella que   estaba   en   su   hombro   derecho.   Desde   luego,   si   otras   dos   pirámides hubieran   completado   la   forma   de   «reloj   de   arena»,   la   prueba   hubiese   sido concluyente, pero, por desgracia, estas dos pirámides o  bien nunca  se habían   construido   o   hacía   ya   mucho   tiempo   que   habían   desaparecido   bajo   la arena.

Con la originalidad de su cultura, el Antiguo Egipto ha gene­rado una gran fascinación. Los poderes de los hierofantes o magos, las profecías, la ciencia de los sacerdotes y la aspiración a la vida eterna, junto con la conservación de las momias, las increíbles construcciones sagradas y la extraordinaria validez actual de algunos papiros milenarios, nos han maravillado a lo largo de la historia.

 

Jean-Franςois Champollion

Pero ¿qué es lo que le sucede al viajero cuando llega a Egip­to? Sin dudas, un gran encandilamiento. El gusto por la aven­tura incrementa la imaginación de quien sabe abstraerse fren­te a lo majestuoso y lo secreto, conceptos estrechamente ligados a la cultura faraónica. En el período de la conquista árabe, las leyendas comenza­ron a expandir teorías en un intento por correr el velo de misterio y significación inexplicable. Las descomunales pirá­mides, de proporciones matemáticas rigurosas, habrían sido concebidas con el fin de preservar esa sabiduría de los anti­guos, manteniendo oculto el saber milenario. ¿Qué secretos esconden estos monumentos que dominan simbólicamente el Valle del Nilo desde hace 4500 años? Mucho más de lo imaginado. Pese al desconocimiento sobre el tema, los eruditos trata­ron de plasmar en manuales las formas de acceso al interior de las pirámides, regidos muchas veces por una marcada ambición de llegar a los lugares que creían repletos de ri­quezas y tesoros incalculables. Tal como dijo Napoleón: «¡Soldados! Desde lo alto de estas pirámides, cuarenta siglos os contemplan».

Los Tuareg, la legendaria reina attlante Tin Hionan, Tassili y la antigua civilización Uigur

 

Las leyendas parten de hechos reales sucedidos mucho tiempo atrás, mientras que los mitos hablan de realidades simbólicas. Es decir transmiten verdades con el lenguaje de los sueños. La historia de la Atlántida contiene leyenda y también es mítica. España es considerada dentro de la leyenda Atlante como parte directa del imperio desaparecido, con la antigua Tartessos, o bien como colonia comandada por atlantes de nombre íberos, que acabaron dando nombre a la península. Y el único país de Europa, junto con Portugal, que conservan parte del continente desaparecido: islas Canarias y Azores. En África, en 1926, el conde Byron Kûhn de Protok descubrió en sus excavaciones arqueológicas en el Sahara, lo que los tuareg llamaban la tumba de la última reina de los Atlantes Tin Hinan. En el Museo del El Bardo, en Argel, se exhibe un esqueleto de dos metros de altura. Se dice que fue una princesa huida de la Atlántida. Juan José Benítez, en algunas de cuyas obras me he basado para escribir este artículo, explica lo siguiente: “… en mi primera visita a Argel me apresuré a recorrer el museo del El Bardo, en su búsqueda. Allí estaba, casi olvidada en un rincón. La examiné con detenimiento y admiración recordando las leyendas  que circulan sobre ella. Los informes de los forenses tenían razón. Aquella mujer pudo alcanzar los dos metros de altura. Era Tin-Hinan, princesa de los tuaregs y de la etnia bereber. La única mujer conocida que gobernó al levantisco pueblo del desierto. ¿O no se trataba de una mujer?

Salomón es un personaje descrito en la Biblia como el tercer y último rey del Israel unificado (incluyendo el reino de Judá). Es célebre por su sabiduría, riqueza y poder, pues La Biblia’ ‘lo considera el hombre más sabio que existió en la Tierra. Logró reinar cuarenta años y su reinado quedaría situado entre los años 970 a.C. y el 930 a.C. aproximadamente. Construyó el Templo de Jerusalén, y se le atribuye la autoría del Libro de Eclesiastés, libro de los Proverbios y Cantar de los Cantares, todos estos libros recogidos en la Biblia. Es elprotagonista de muchas leyendas posteriores, como que fue uno de los maestros de la Cábala.

 

En el Tanaj (libro hebreo, a una versión del cual los cristianos llaman Antiguo Testamento) también se le llama Jedidías. En la Biblia se dice del rey Salomón que heredó un considerable imperio conquistado por su padre el rey David, que se extendía desde el Valle Torrencial, en la frontera con Egipto, hasta el río Éufrates, en Mesopotamia. Tenía una gran riqueza y sabiduría y administró su reino a través de un sistema de 12 distritos. Poseyó un gran harén, el cual incluía a «la hija del faraón». Honró a otros dioses en su vejez y consagró su reinado a grandes proyectos de construcción. La Biblia dice del rey Salomón que era «el más sabio de los hombres», que podía pronunciar un discurso sobre la biodiversidad de todas las plantas, «desde los cedros del Líbano hasta el hisopo que crece en los muros, y animales, y pájaros, y cosas que se arrastran, y peces».  Entre los distintos autores que han tratado sobre Salomón y el Arca de la Alianza, se distingue Erich von Daniken, que lo relata, con su estilo atrevido,  en su obra “Profeta del Pasado”, en la que me he basado para escribir este artículo.

Algunos lo explican en términos de las inundaciones anuales de la llanura Tigris-Eufrates. Conjeturan que una de tales inundaciones pudo ser especialmente severa. Campos y ciudades, hombres y animales fueron barridos por la crecida de las aguas, y los pueblos primitivos, viendo el acontecimiento como un castigo de los dioses, propagaron la leyenda del Diluvio. Sir Leonard Woolley (Londres, 1880 – 1960) fue un arqueólogo británico, conocido por sus excavacionesen la antigua ciudad sumeria de Ur (en el actual Irak) y por haber encontrado evidencia geológica del diluvio de Gilgamesh.

 

          La historia del Diluvio es conocida por muchas culturas

Se le considera el primer arqueólogo moderno, y fue nombrado caballero en 1935 por sus contribuciones a la disciplina. Graduado de la Universidad de Oxford, tras trabajar tres años en el Museo Ashmolean de la misma ciudad, viajó al actual Sudán para participar en 1907 y 1911 en la expedición arqueológica británica en el yacimiento egipcio de Wadi Halfa. En 1912 dirigió junto a T.E. Lawrence (conocido como Lawrence de Arabia) las excavaciones de la ciudad hitita de Karkemish, en la Siria septentrional, donde permaneció dos años y cuyos hallazgos publicó entre 1921 y 1953. Posteriormente pasó a Egipto para dirigir la excavación de Tell el-Amarna, la ciudad sagrada del faraón Akhenatón.

Lo cierto amigos, es que nunca nos faltó la energía necesaria para poder llevar a cabo andaduras que, miradas en la perspectiva que el tiempo nos da, nos parecen increíbles, como increíbles nos parecen aquellos pensamientos surgidos de mentes de la antigüedad, cuando aún no se tenían verdaderos conocimeintos de ninguna de las formas científicas que ahora podemos cultivar. Sin embargo, las ideas fluían, la imaginación caminaba veloz y, las mentes intuitivas de muchos pensadores, pusieron los cimientos que hicieron un buen edificio en el que ahora, confortablemente vivímos todos.

Mirar al pasado y recordar…¡es bueno!

emilio silvera