Jul
10
¡La evidencia experimental! Será el único camino
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
¿De qué está hecho el Universo?
¿Qué lo mantiene Unido?
¿Qué es, en realidad la materia?
Muchos han sido los medios que lanzando las campanas al vuelo, se atrevieron decir: “¡Por fín, se encontró la “partícula de Dios!” Cuando lo cierto es que, simplemente se publicó (31/07/2012), en los experimentos ATLAS y CMS del LHC se ha descubieto una partícula, nunca antes vista. Un Bosón con una masa cercana a los 126 GeV que, es la masa que habían pensado tendría el Higgs.
El descubrimiento se enmarca dentro de la búsqueda del Bosón de Higgs del Modelo estándar de las interacciones fundamentales, si bien no es posible afirmar aún si dicha partícula predice las propiedades intuidas por la teoría, y, siendo así (que lo es), no podemos afirmar que sea, el buscado Bosón de Higgs esa partícula observada.
Nos dicen que existen lugares que llaman los Océanos de Higgs, y, por ellos, circula libremente el dichoso Bosón que, también según nos dicen, proporciona la masa al resto de las partículas.
El modelo estándar de la física de partículas es una teoría que describe las relaciones entre las interacciones fundamentales conocidas y las partículas elementales que componen toda la materia. Es una teoría cuántica de campos desarrollada entre 1970 y 1973 que es consistente con la mecánica cuántica y la relatividad especial. Hasta la fecha, casi todas las pruebas experimentales de las tres fuerzas descritas por el modelo estándar están de acuerdo con sus predicciones. Sin embargo, el modelo estándar no alcanza a ser una teoría completa de las interacciones fundamentales debido a que no incluye la gravedad, la cuarta interacción fundamental conocida, y debido también al número elevado de parámetros numéricos (tales como masas y constantes que se juntan) que se deben poner a mano en la teoría (en vez de derivarse a partir de primeros principios).
Todo ese galimatias de más abajo, es, el Modelo estándar y aún más: Veréis…
¿Impresionados? No era mi intención asustar, solo he he puesto la fórmula para que te fijes en un detalle y comprendas por qué se empeñan los científicos en buscar el bosón de Higgs. Vuelve a mirar la ecuación y fíjate en las “H“. Ese valor representado en la fórmula es elbosón de Higgs y, aunque no lo hemos encontrado, es fundamental para que el Universo se comporte como se comporta, ya que cada vez que ponemos en marcha la ecuación, nuestras predicciones funcionan. (fuente fórmula blog inti-illimani).
Se cree que el Higgs guarda , por tanto, una relación íntima con el concepto de unificación de fuerzas y con el origen de la masa. Se trataría además de la primera partícula escalar con caracter fundamental, esto es, que no necesita estar compuesta por entidades más pequeñas. No es por tanto sorprendente que el descubrimiento reciente en el LHC de un nuevo Bosón con una masa de unos 126 GeV, con unas propiedades compatibles con el Bosón de Higgs, tanga de fiesta a toda la comunicad cientñifica del CERN que, de ser cierto el hallazgo, verían de cerca el Nobel que les otorgarían.
Claro que nadie sabe como sería el Bosón de Higgs, qué condiciones físicas debe tener y que masa, las predicciones teóricas no lo dicen en el modelo mH Es natural pensar que sea del mismo orden que la escala caracterísitica de la interacción electrodébil. mH ≈ 100 GeV – 1 TeV, y de hecho, la mayor parte de las predicciones conducen de una forma u otra a este intervalo de masas. La masa debe ser por tanto determinada experimentalmente. Una vez conocida esta, las propiedades de producción y desintegración del Bosón de Higgs están realmente determinadas por la teoría.
Ya veremos si realmente, la experimentación corrobora lo que predice la teoría y, podemos verificar los mecanismos mediante los cuáles, el Bosón de Higgs, puede “dar” masa a las partículas. Claro que, siempre en un escenario cercano al Modelo Estándar, eunbosón de higgs de 126 GeV posee una anchura de desintegración de unos pocos megas electrón voltios. Incluso para los aceleradores de mayor energía, esta anchura es aún suficientemente grande como para que la longitud media de desintegración del Bosón de Higgs sea inferior a una milésima de micra, demasiado pequeña para ser visible en un detector.
El choce de los haces de hadrones, produce una miríada de infinitesimales objetos producto de los protones rotos y que, de entre tanta “basura”, tendremos que localizar la probable partícula llamada Bosón de Higgs, lo cual, no resultará nada fácil.
El Bosón de Higgs debe aparecer por tanto como una partícula que se desintegra inmediatamente en el punto en el que los haces colisionan, además, la medida de su masa no estará condicionada por su anchura de desintegración, sino por la resolcuión energética del detector, que, en general, es al menos del orden de 1 GeV.
El Higgs se produce predominantemente en el LHC a través de un proceso de fusión de gluones: gg→ H. En cuanto se refiere a modos de desintegración, una masa de unos 126 GeV es especialmente interesante porque permite el acceso a varios canales diferentes.
Si bien la desintegración dominante para esta masa es en un par de Quarks b, el fondo enorme de otros procesos con este mismo estado final impide una búsqueda directa a partir del proceso gg→ H. Afortunadamnete existen varios canales alternativos con fracciones de desintegración aceptables, como pares de Bosones W o Z. Por último, el canal de desintegración en dos fotones, H → γγ, a pesar de su baja frecuencia, es extremadamente limpio desde el punto de vista experimental.
En todos los canales citados anteriormente, únicamente H → γγ y H → ZZ, y este último en un estado final con electrones o muones, permiten una medida precisa de mH al nivel de 1 GeV, y por tanto observar al Bosón de Higgs como exceso en el espectro de masas. Las colaboraciones ATLAS y CMS han medido mH = 120.0 ± o,4 GeV y mH = 125.3 ± 0,4 (stat.) ± 0,5 (syst.) GeV , respectivamente.
Está claro que la búsqueda del Bosón de Higgs no está nada clara y que, son muchos los parámetros que nos pueden llevar a tomar, alguna partícula parecida por ese extraño Bosón que se dedica a dar masa a las demás partículas, y, debemos comprobar, si aparece por fin, de qué mecanismo se vale para tal “milagro”, o, mejor maravilla.
Sí, se han hecho los experimentos necesarios para encontrar al dichoso Bosón y, según la masa de alguno, podría ser el que buscamos y que tanto necesita el Modelo Estándar para poder cuadrar sus cuentas… ¡En parte! Ya que otros parámetros metidos mcon calzador también ntendrán que ser justificados.
Los componentes fundamentales de la materia son tres familias de Quarks y otras tres familias de Leptonez, puntuales a 1 am, que interaccionan fuerte y débilmente de acuerdo con el Modelo. Las constantes de acoplo vienen dado por:
GF = (1.166371 ± 0,000006) 10-5 GeV-2
α-1 = 1.37.035999710 ± 0,000000000096
sin2 θW = 0,23149 ± 0,00013
M(Zº) = 91.1876 ± 0.0021
αs(Zº) = 0.1217 ± 0.0017
La constante de estructura fina y la constante de acoplo fuerte dependen de la escala a la que se han medido de acuerdo a las predicciones del grupo de renormalización.
La constante de acoplamiento resulta de gran utilidad en la teoría cuántica de campos. Un papel especial es representado en las teorías cuánticas relativistas por las constantes de acoplamiento que no poseen dimensiones, es decir, son números puros. Un ejemplo es la constante de estructura fina)
(donde e es la carga del electrón, ε0es la permitividad del vacío, es la constante de Planck racionalizada y c es la es la velocidad de la luz) es tal constante de acoplamiento sin dimensiones que determina la intensidad de la fuerza electromagnética sobre un electrón.
Claro que, todo este recorrido nos lleva a pensar que no estamos en posesión de verdad alguna, hemos podido alcanzar algunos conocimientos que nos acercan a ella y, lo cierto es que, esa verdad que buscamos, está en poder de la Naturaleza que, celosamente la esconde hasta que, nos crea preparados para que la podamos desvelar y, mientras tanto, nos deja “jugar” a física para que, nuestra curiosidad, no se sienta frustrada… del todo.
Publica: emilio silvera
Se agradece la aportación realizada por los físicos Juan Alcaráz, Javier Cuevas, Carmen García y Mario Martinez que, con su trabajo publicado en el volumen 26, número 4, de 2012, han ayudado a entender, algo mejor, el complejo tema del Bosón de Higgs.