miércoles, 18 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Lo que sabemos no parece suficiente

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Es ampliamente sabido que el planeta Tierra actúa como un gran imán cuyas líneas de campo geomagnético surgen de un polo (el polo sur magnético) y convergen en el otro polo (polo norte magnético). El eje longitudinal de este imán tiene una desviación de aproximadamente 11^o con respecto al eje de rotación. Por ello, los polos del campo magnético generado no coinciden exactamente con los polos geográficos.

Este campo geomagnético es producido por la combinación de varios campos generados por diversas fuentes, pero en un 90% es generado por la parte exterior del núcleo de la Tierra (llamado Campo Principal o “Main Field”).

Por otra parte, la interacción de la ionosfera con el viento solar y las corrientes que fluyen por la corteza terrestre componen la mayor parte del 10% restante. Sin embargo, durante las tormentas solares (eventos de actividad solar exacerbada) pueden introducirse importantes variaciones en el campo magnético terrestre.

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

[stephan_quinteto_2009_hubble.jpg]

Muchas veces he comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 1015 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

rayos_cosmicos.jpg

    Una de las fuentes productoras de rayos cósmicos es el Sol

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

http://4.bp.blogspot.com/-flEk3ifYkVI/T5crO29uW2I/AAAAAAAAANo/SjVtQ0AtTTs/s1600/particle_poster_big.jpg

 

Los físicos de más edad dejan volar a menudo sus pensamientos hacia aquellos tiempos gloriosos en los que, durante mucho tiempo, ha sido la era de los grandes descubrimientos de la primera mitad del siglo XX: La mecánica cuántica, la relatividad especial y general, la electrodinámica cuántica y los descubrimientos de las primeras partículas elementales.

El Zoo de las partículas llegó a ser tan exótico y numeroso que, Entico Fermi dejó caer aquella famosa frase: “Si tengo que saber de memoria el nombre de todas las partículas que existen,  hubiera sido  botánico”.

File:ChicagoPileTeam.png

 

Fermi (abajo a la izquierda), Szilárd (segundo desde la derecha abajo), y el resto del equipo de la pila atómica.

 

Claro que, días gloriosos también lo fueron en la década de los 70 cuando fueron colocadas en su sitio muchas piezas del gran puzzle de las interacciones débil, electromagnética y fuerte. El descubrimiento en 1974 de la J/Ψ fue el clímax. Antes de que este se produjera, aún quedaba alguna duda de que la teoría de la interacción débil fuera correcta y se consideraba la teoría de la intertacción fuerte simplemente como una idealización de algo que podría muy bien ser más complicado e insondable.

Pero, pasado algún tiempo, los experimentos llevaron a la convicción de que ambas teorías eran correctas, incluso en sus detalles. Según continuaban los experimentos las sorpresas iban en aumento a medida que surgían detalles más precisos de lo que muchos de aquellos físicos habrían esperado. Una cosa estaba muy clara: vivíamos en un mundo que obedecía meticulosamente a las leyes de las matemáticas, y las matemáticas son difíciles, pero se pueden llegar a entender completamente para poder llegar a esos misteriosos secretos que la Naturaleza trata de esconder y nosotros, de desvelar.

Antes os mencionaba la J/Ψ.  Cuando una partícula J/Ψ se desintegra (o decae), por lo general produce un par de muones. Observa atentamente los dos eventos mostrados a continuación. ¿Hay pruebas de pares de muones (trayectorias en rojo) en uno de estos eventos o en ambos? ¿Podría ser cualquiera de estos eventos un candidato para J/Ψ? ¿Es esta evidencia débil o fuerte? ¿Está seguro de tus conclusiones?

Más aún desde que en 2002 se demostrase (“Data Tables for Lorenztz and CPT Ciolatión”),  Ene 2010, arXiv;) que violar la simetría CPT implica cargarse la invariancia (o covariancia) de Lorentz,  Esta invariancia es uno de los pilares que deben cumplir todas las teorías que pretendan tener sentido físico, aunque luego pueda haber casos de ruptura espontánea de la simetría. Pero la teoría viola Lorentz de entrada, no puede ser válida. Esto es un puntal muy fuerte para la teoría CPT.

Hubo que esperar 40 años, hasta los años 80, en que se relacionara directamente a los kaones con la simetría CP y el problema de la bariogénesis en el universo. Es decir, ¿por qué si hay simetrías por todas partes, el universo está constituido de materia y no de materia y antimateria por partes iguales? ¿Por qué el universo no es una aburrida sopa de fotones?

Claro, si en el inicio del universo se hubiera encontrado la misma cantidad de materia que de antimateria, todo se habría aniquilado haciendo que el universo fuera un gas de fotones de lo más aburrido. Nada de lo que existe, existiría. Pero como de hecho existe, hay que encontrarle explicación. Y en eso consiste el problema de la bariogénesis asimétrica.

          La simetría resulta estar por todas partes aunque sea de diferntes colores

Como sea que ocurriera, aunque de hecho hubiera mucha materia y antimateria que se aniquilara, al final la materia venció esta batalla épica que se libró durante la época de Planck. Pero resulta que no es posible modificar nuestro modelo invocando otro campo de Yang . Mills, Las partículas de espín 1 siempre preservan la simetría PC. ¿Podría ser esta la razón por la que la que la simetría PC es tan tenue?.

Motivos para la sorprea surgen todos losa días, por ejemplo, se han detectado nuevas partículas que nacen dentro de las enanas blancas de Helio y, cualquiera de estos días encontraremos estrellas de Quarks y Gluones, es decir, hechas de materia extraña. Lo cierto es que, a la vista de la realidad que vamos descubrimiento continuamente es arriesgado decir… ¡que sabemos!

Podríamos imaginar el efecto que tendría otra partícula de espìn cero, preferiblemente que también sufriera algún tipo de condensación Bose, el resultado sería lo que llamamos la “violación espontánea de PC”. Sin embargo, los modelos resultantes que se obtienen así no son muy populares. Deseamos evitar partículas de espín cero tanto como sea posible, porque añaden muchos parámetros arbitrarios a la interacción. Los modelkos con tales partículas parecen muy artificiales. En si mismo, un argumento de este tipo no es, desde luego, suficiente para escluir una posibilidad, pero ducede que existen alternativas más interesantes.

 

 

Gloshosow            Iliopoulos         Maiani

 

¿Recordaréis que Glashow, Iliopoulos y Maiani habían introducido el quarks encanto para entender la estructura simétrica de la interacción débil? Bien, lo que se propuso fue hacerlo de nuevo. Esta vez necesitamos introducir dos quarks más. Los cuatro primeros habían formado pares ( u y d, c y s), con cargas eléctricas + 2/3 y – 1/3. El nuevo par se tenía que parecer a este, pero los nuevos quark podrían fácilmente ser mucho más pesados. Siendo quarks análogos a los “arriba” y “abajo” se llamaron “cima” (t) y “fondo” (b), respectivamente. Pero a veces las mismas letras se utilizan pa<ra darles nombres más poéticos: “verdad” y “belleza”.

Era inevitablemente necesaria una partícula de espín cero para que la interacción débil tuviera las simetrías que tiene a través del mecanismo de Higgs-Kibble. Esta partícula de Higgs se acopla ahora con los quarks y a los leptones para dotarlos de masa. Pero la misma partícula de Higgs también puede producir transiciones entre varios tipos de quarks. Si no existiera interacción débil en absoluto, los qu quarks podrían permanecer en todas clases de estados estables. Es pues, una conspiración entre la interacción débil  y la interacción de Higgs lo que permite muchos tipos de desintegración de los hadrones extraños y con encanto.

 

 

http://3.bp.blogspot.com/-cT8X-d8wLtI/TxNInv_uemI/AAAAAAAAGKc/omGutn2f7aE/s400/atomo.gif

 

 

Cuanto mayor sea el número de fermiones introducido, más tipos de interacción  puede experimentar el campo de Higgs con esos quarks. Los físicos japoneses Kobayashi y Maskawa escribieron la expresión matemática más general que se puede obtener para las fuerzas. Resultó que uno de los términos de sus ecuaciones no tienen simetría PC, y que ese término sólo aparece si hay, al menos, seis tipos de quarks. Esto hizo que comezaran a buscarse partículas que contuvieran otras especies de quarks.

Podríamos seguir por este camino que hoy he tomado (no muy convencido), sin ver nunca el final de donde podríamos acabar. Hay cuestiones de la Física que me resultan farragosas, espesas, poco diáfanas y que, por mucho que me empeñe, no puedo explicar de manera amena y sencilla que la gente, el posible lector, se involucre en el tema.

Los del LHC hicieron el anuncio de que por fín, habían encontrado el Bosón de Higgs. Sin embargo, no acabo de estar convencido de que ese “famoso bosón” exista en realidad, a veces, el tener que justificar enormes presupuestos y seguir consiguiendo nuevos… La verdad es que, no tengo nada claro muchos de los conceptos y explicaciones que los físicos manejan sobre todo este peliaguado asunto del Bosón de Higgs. Hay veces en la que los físicos, al tratar temas de la mecánica cuántica,  me producen la sensación de ser una especie de magos que, mediante “trucos” ingeniosos apoyados por las matemáticas, nos quieren convencer de cómo es el “mundo”.

¡Ya veremos en qué queda todo esto!

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting