domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Magnetismo, Gravedad, las fuerzas Nucleares, y… ¿Qué más?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Podrá el magnetismo y la Gravedad estar unidos en un universo de más dimensiones? Cuando Einstein oyó hablar de esta idea se entusiasmó con ella,  pero pronto comprendió que con esa teoría no se podía predecir nada y la abandonó. Cuando recibió la carta de Kaluza en la que le mostraba que en cinco dimensiones se podían unir el magnetismo y la Gravedad, se quedó perplejo y, aunque el abandonó pronto la idea, años más tarde, daría lugar a la teoría de cuerdas.

La característica esencial del diagrama que vemos más abajo es que la materia, junto con las ecuaciones de Yang-Mills y de Einstein, está ahora incluida en el mismo campo de supergravedad de 11 dimensiones. Veámoslo así:

La materia con todas las fuerzas fundamentales de la naturaleza. Los bosones intermediarios o partículas portadoras de las fuerzas como el fotón para el electromagnetismo, los gluones para la fuerza nuclear fuerte, las partículas W y Z para la nuclear débil y, en la partícula portadora de la gravedad, el gravitón, ponemos el signo de interrogación, ya que se sabe que esta ahí en algún sitio pero hasta la fecha no ha sido detectado.

Los expertos en supergravedad redescubrieron esta idea de Kaluza y Klein.Una vez que hemos empezado a considerar muchas dimensiones extra, entramos en una especie de Valhalla de las matemáticas donde podemos enrollar las cosas de muchas maneras diferentes. Las componentes de los campos de fuerza gravitatorias en las direcciones enrolladas actúan como diferentes campos gauge. Obtenemos así, prácticamente por nada, no sólo electromagnetismo sino también otras fuerzas gauge. El número mágico de dimensiones es 11, tres de las cuales forman el espacio ordinario, una el tiempo y las siete restantes están enrolladas. Haciendo ciertos trucos con los números, este sistema resulta tener una simetría mayor que nuestro viejo sistema espacio-temporal de cuatro dimensiones. Los campos y las partículas observadas ahora pueden ser fácilmente acomodados, ya que una simetría mayor significa que los indeseados infinitos se cancelan unos a otros con mayor perfección que antes.

Ciertamente esta idea, esta idea parece ser la contraria a la noción de que el espacio y el tiempo sean nada más que puntos aislados, ya que entonces la noción de “dimensión” deja de tener sentido. Pero los matemáticos no se sienten amenazados por tales contracciones aparentes. De acuerdo con ellos,  hay todo tipo de relaciones entre los espacios enrollados y la matemática de los números enteros, “sueltos” (uno podría indicar los puntos aislados del espaciotiempo con enteros). ¿Podría ser que exitieran diferentes formas de describir nuestro espacio y el tiempo que todas fueran matemáticamente equivalentes? Simplemente no lo sabemos.

Lo que sospecho es que la Supergravedad de dimensión once puede que sólo sea, en el mejor de los casos, la punta de un amravilloso Iceberg que nosotros podemos intuir pero, también es simplemente posible  que sea errónea. Los caminos de la Mente no son bien entendidos y resultan demasiado complejos. He hecho, se han podido lograr conocimientos que la Naturaleza mantenía profundamente escondidos y, sin embargo, ahí están al descubierto y desnudos por medio de nuestros pensamientos que fueron capaces de llegar, hasta las entrañas mismas del Universo.

                                          No siempre podemos ver todo lo que hay

En cuanto a las teorías físicas más avanzadas, no deberíamos olvidar en este  momento que estamos tratando de suposiciones y que los argumentos teóricos que la sustentan son aún, extremadamente débiles. ¿Por qué supersimetría? ¿Por qué Once Dimensiones? ¿Por qué en este mundo todo debería ser maravillosamente simétrico? Y, sobre todo, ¿por qué un continuo, si ya sabemos que el espacio y el tiempo han perdido su significado habitual a distancias ultracortas? Además está la dificultad persistente en esta clase de teorías de que las interacciones entre partículas son siempre tratadas como perturbaciones que afectan a sus trayectorias las cuales, de otra manera, serían perfectamente rectilineas.

Pero entonces habrá nuevas (y diferentes) perturbaciones sobre esas trayectorias perturbadas, y perturbaciones sobre ellas, y así sucesivamente. esta serie de perturbaciones no acaba nunca y este es un problema que se impone en cualquier proceso de formulación exacta.

Es cierto que este problema también afecta al viejo “modelo estándar”, pero al menos allí se podría argüir que, donde realmente importaba, las fuerzas podrían mantenerse pequeñas  y que la serie de perturbaciones convergía rápidamente. Esto no se puede mantener así en nuestra teoría de la (super)  Gravedad, ya que a distancias pequeñas las interacciones se hacen fuertes.

CNO Cycle.svg

Los Quarks permacen confinados dentro del núcleo formando protones y neutrones y, cuando tratan de separase, la fuerza nuclear fuerte aumenta, en cambio, cuando los Quarks están juntos, se mueven con facilidad y la fuerza disminuye: Libertad asintótica de los Quarkas.

Es cierto que fue un alivio descubrir aquellas primeras dificultades serias en esta teoría, y resultó que no era posible tener infinitos que se cancelasen en diagramas con más de siete lazos cerrados. La teoría, o mejor dicho, la especulación de que esto fuese una “teoría de todo” se abandonó (como otras veces ocurrió) porque algo más interesante apareció en el horizonte de la Física. ¡Las Supercuerdas!

Aunque hemos hablado mucho de ellas, creo que debemos profundizar algo más en esta prometedora teoría y, aunque de momento es sólo una especulación avanzada…¿quién sabe? lo que nos podrían traer esas ideas avanzadas que han dado lugar a matemáticas profundas de un 2universo topológico” incomprensible para muchos y fascinantes para unos pocos.

Los tiempos cambian, y, con los cambios llegan las nuevas doctrinas o creencias, o, ¿por qué no? nuevas teorías. Desde hace algún tiempo venimos dando vueltas y vueltas, en el campo de la Física, a esas avanzadas teorías que no podemos demostrar, toda vez que, al contrario del Modelo Estándar, no son (por ahora) verificables sus predicciones. Me estoy refiriendo, como habeis podido suponer a la Teoría de supercuerdas, La cuerdad Heterótica, la Supergravedad y Supersimetría, y, finalmente, la última versión que viene a ser un compendio de todas las demás, la Teoría M.

Como nos dice Brian Greene en uno de los capítulos del libro El tejido del cosmos, que él titula: “Especulaciones sobre el espacio y el tiempo en la teoría M”, hoy, tres décadas después de la articulación de la teoría de cuerdas,la mayoría de los que trabajan en ella, creen que aún no tenemos una respuesta general para la pregunta fundamental: ¿qué es la teoría de cuerdas? A pesar de que sabemos bastante de la teoría, sus características más elementales son familiares y, a estas alturas, casi cercanas. Tampoco debemos despreciar los éxitos que ha cosechado y, desde luego, es bien sabido todo lo que nos promete y también ¿cómo no? los desafíos que suponen lograr todas esas promesas que en ella están encerradas.

La relatividad especial tiene la constancia de la Velocidad de la luz, la relatividad general tiene el principio de Equivalencia, la mecánica cuántica tiene, el principio de Incertidumbre y, sin embargo, los teóricos de cuerdas aún siguen buscando algo de lo que carece la teoría de cuerdas que, precisamente es: el tipo de principio nuclear que se encontraron en aquellas otras teorías y le dan razón de ser y la sólida base que toda teo´ria necesita para ser.

 

 

 

Esa nueva teorías quiere explicarlo todo. Nada puede estar fuera de ella: El Universo que es, todo lo que existe, ahí estará

Un universo de Supercuerdas. El sueño de Einstein comienza a tomar realidad, a través de un nuevo paradigma de la ciencia que viene a romper con la toda la visión del mundo y del universo que teníamos hasta ahora, más allá de lo imaginable. Si la Teoría de cuerdas, finalmente resultase ser cierta, ese descubrimiento llevaría al mundo y a la conciencia humana hasta una nueva dimensión de su propia conciencia.

El sueño de Einstein es el sueño de la física teórica moderna: unificar la gravedad con las otras interacciones fundamentales de la naturaleza. Un artículo publicado en Nature estudia cómo se ve afectado el electromagnetismo (una teoría gauge abeliana) debido a la existencia de la gravedad. Las constantes de acoplamiento que caracterizan la “fuerza” de las interacciones fundamentales cambian con la energía. A energías muy altas, o distancias muy cortas, las tres constantes convergen entre sí (de forma aproximada en el modelo estándar y de forma exacta en las teorías supersimétricas). Sin embargo, el comportamiento de la gravedad a distancias ultracortas, en el rango entre 10-32 m y 10-35 m, influye o afecta a las constantes de acoplamiento incluso aunque no se conoce la teoría cuántica correcta de la gravedad, ya que dicha teoría solo es necesaria a distancias menores de 10-35 m. El nuevo análisis indica que el efecto de la gravedad sobre las otras interacciones fundamentales podría ser observado a distancias entre 10-33 m y 10-35 m; en concreto se observaría  un cambio en el fenómeno llamado libertad asintótica de las constantes de acoplamiento.

La Libertad Asintótica nos habla de que las fuerzas entre partículas como los Quarks se hacen más débiles a distancias más cortas (es decir, a altas energías) y se anulan a medida que las distancias entre las  partículas tienden a cero. Este fenómeno se puede observar en la fuerza nuclear fuerte, entre los quarks que si se alejan los unos de los otros aumenta la fuerza y, cuando se juntan, esta disminuye.

Lo primero que debemos entender es la inevitabilidad de la gravitación en la Teoría de Cuerdas. Una vez conjugamos efectos cuánticos con el carácter extenso de la cuerda aparece inevitablemente en el espectro un gravitón, y es esta inevitabilidad de la gravitación la que nos aporta una comprensión nueva de la escala de longitud de la cuerda. En breves palabras, si parametrizamos por g la amplitud cuántica de que una cuerda se divida en dos y por  L la escala de longitud de la misma, nos encontramos conque gL es precisamente la longitud de Planck:

Dicho de otra manera, la constante de Newton  G, que define la intensidad gravitatoria, ¡es simplemente (gL)! Y, este hecho, tiene importantísimas consecuencias. En efecto, si la longitud de Planck está definida de manera intrínseca, podemos asociar, sin salirnos de la propia teoría, con cualquier modo de vibración de la cuerda de masa M su radio gravitacional, o, si se prefiere, su tamaño gravitatorio: R(M) = MG. Una vez hacemos esto aparece de manera inmediata una masa o energía crítica por encima de la cual el modo de vibración de la cuerda adquiere un tamaño gravitacional mayor que su propia longitud.

 

 

Este modo de vibración se ha convertido en ¡un agujero negro! Dicho con otras palabras, cuando profundizamos en el ultravioleta llega un momento en el que las excitaciones de la cuerda no nos desvelan una estructura de constituyentes más elementales sino algo completamente nuevo, a saber: agujeros negros cuyo tamaño en vez de disminuir con la energía aumenta. El paradigma de teoría cuántica de campos Wilsoniana caracterizado por la libertad asintótica, en suma por unos constituyentes casi libres, se transforma, en la Teoría de Cuerdas, en una oscuridad asintótica controlada por agujeros negros. En otras palabras, la cuerda, de manera inevitable, se completa en el ultravioleta gravitacionalmente sin desvelar una subestructura Wilsoniana de constituyentes más fundamentales regidos por alguna teoría conforme.

Es importante que apreciemos que la manera en la que la teoría se completa en el ultravioleta no es en término de un espectro nuevo, como podrían ser los quarks y gluones en el caso de la QCD, sino en término de objetos, como son los agujeros negros, cuya definición no nos exige en ningún momento invocar nuevos grados de libertad, sino tan solo la propia dinámica de la teoría.

Así, la Teoría de Cuerdas es una teoría cuántica cuya física en el ultravioleta profundo, a distancias más pequeñas que la propia longitud de la cuerda, está dominada por agujeros negros clásicos. ¿Cómo derivar estos comentarios a un principio rector y definitorio de la Teoría?

http://www.cosmonoticias.org/wp-content/uploads/2011/07/evento-experimento-cms.jpg

Lo cierto es que hemos creado enormes aceleradores de partículas para poder llegar hasta las entrañas de la materia y, estamos tratándo de “ver” si al menos, podemos atisbar aunque sólo sea las sombras de las cuerdas vibrantes que, con sus resonancias, crean contiunuamente nuevas partículas. Pero no, la potencia utilizada en estas colisiones, no dejan ver las cuerdas que están mucho más allá de las energías que ahora podemos utilizar, se necesitaría la energía de Planck para poder acercarnos a ese mundo soñado de las cuerdas que residen en el pais de las once dimensiones.

Hay que conseguir que se puedan hacer consistentes los principios de la Mecánica Cuántica con nuevos postulados: el de la existencia de una longitud mínima. Cuando intentamos combinar estos dos principios de una manera consistente nos encontramos con una teoría en el ultravioleta, es decir, más allá de la longitud mínima, debe poder ser descrita no en términos de constituyentes más primitivos sino necesariamente en términos de configuraciones o entidades de la propia teoría cuyo tamaño efectivo es necesariamente mayor que la longitud mínima. Esta descripción “infrarroja” (grandes distancias) del mundo ultravioleta es lo que se conoce como correspondencia UV/IR y es el corazón de la celebradísima e importantísima correspondencia descubierta hace ya más de diez años por Juan Maldacena.

Todo esto es fascinante pero, no todos lo podemos comprender.

emilio silvera

Buscando lo desconocido

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comentarios desactivados en Buscando lo desconocido

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las fuerzas que podemos sentir en la vida cotidiana, es decir, la Gravedad y el electromagnetismo, aumentan con la cercanía: así, cuando más cerca está un clavo de un imán o una manzana del suelo, más se verán atraídos.

Por el contrario, la interacción fuerte, encargada de mantener estable el núcleo de los átomos,  disminuye cuanto más cerca y juntas están las partículas en el interior de los átomos, aumentando cuando las partículas se alejan las unas de las otras. Si los Quarks que forman los protones y también los neutrones, están juntos, la fuerza es débil. Sin embargo, cuando los Quarks se quieren separar los unos de los otros, los Gluones los agarran con la fuerza más poderosa del Universo y los mantiene confinados en su sitio para que la estabilidad atómica sea posible.

El descubrimiento de esta extraña propiedad, llamada libertad asintótica, supuso toda una revolución teórica en los años 70 (se publicó en 1.973), pero ya plenamente respaldada por los experimentos en los aceleradores de partículas, aconsejó, a la Academia, conceder 30 años más tarde, el Premio Nobel de Física a sus autores.

“Ha sido un gran alivio.  He estado pensando en ello durante mucho tiempo”, comentó al enterarse de la noticia Franck Wilczek, uno de los tres premiados.

“No estaba claro que fuera un adelanto en aquel momento. La teoría que propusimos era descabellada en muchos aspectos y tuvimos que dar muchas explicaciones”, reconoció el investigador.”

 

Tanto Wilczek como Politzer eran aun aspirantes a doctores en 1.973, cuando publicaron su descubrimiento en Physical Review letters.  Junto a su informe, la misma revista incluyó el trabajo de David Gross, que unido al de los dos estudiantes ha dado lugar a la celebrada teoría de la Cromodinámica Cuántica (QCD).

                               La fuerza nuclear fuerte

Siguiendo una arraigada costumbre de la Física de partículas, los investigadores emplearon nombres comunes y desenfadados para señalar sus nuevos descubrimientos y llamaron “colores” a las intrincadas propiedades de los quarks.

Por ello, su teoría es conocida en la actualidad por el nombre de Cromodinámica (cromo significa “color” en griego), a pesar de que no tienen nada que ver con lo que entendemos y llamamos color en nuestra vida cotidiana, sino con el modo en que los componentes del núcleo atómico permanecen unidos.  En este sentido, resulta mucho más intuitiva, aunque no menos divertida, la denominación de las partículas que hacen posible la interacción fuerte, llamadas gluones (glue es “pegamento” en inglés).

Al igual que en la teoría electromagnética, las partículas pueden tener carga positiva o negativa, los componentes más diminutos del núcleo atómico pueden ser rojos, verdes o azules.

Además, de manera análoga a como las cargas opuestas se atraen en el mundo de la electricidad y el magnetismo, también los quarks de distinto color se agrupan en tripletes para formar protones y neutrones del núcleo atómico.

Pero estas no son las únicas similitudes, ni siquiera las más profundas, que existen entre las distintas fuerzas que rigen el Universo. De hecho, los científicos esperan que, en última instancia, todas las interacciones conocidas sean en realidad la manifestación variada de una sola fuerza que rige y gobierna todo el cosmos.

     David Gross, David Plitzer eta Frank Wiczek

Según la Academia Sueca, el trabajo premiado a estos tres Físicos, “constituye un paso importante dentro del esfuerzo para alcanzar la descripción unificada de todas las fuerzas de la Naturaleza”.  Lo que llamamos teoría del todo.

Según Frank Wiczek, que ahora pertenece al Instituto Tecnológico de Massachussets (MIT), su descubrimiento “reivindica la idea de que es posible comprender a la Naturaleza racionalmente”.  El físico también recordó que “fue una labor arraigada en el trabajo experimental, más que en la intuición”, y agradeció “a Estados Unidos por un sistema de enseñanza pública que tantos beneficios me ha dado”.

Sabemos que los quarks (hasta el momento) son las partículas más elementales del núcleo atómico donde forman protones y neutrones.  La interacción fuerte entre los quarks que forman el protón es tan intensa que los mantiene permanentemente confinados en su interior, en una región ínfima. Y, allí, la fuerza crece con la distancia, si los quarks tratan de separarse, la fuerza aumenta (confinamiento de los quarks), si los quarks están juntos los unos a los otros, la fuerza decrece (libertad asintótica de los quarks).  Nadie ha sido capaz de arrancar un quak libre fuera del protón.

gran colisionador de <a href=

Con aceleradores de partículas a muy altas energías, es posible investigar el comportamiento de los quarks a distancias muchos más pequeñas que el tamaño del protón.

Así, el trabajo acreedor al Nobel demostró que la fuerza nuclear fuerte actúa como un muelle de acero, si lo estiramos (los quarks se separan), la fuerza aumenta, si lo dejamos en reposo, en su estado natural, los anillos juntos (los quarks unidos), la fuerza es pequeña.

Así que la Cromodinámica Cuántica (QCD) describe rigurosamente la interacción fuerte entre los quarks y, en el desarrollo de esta teoría, como se ha dicho, jugaron un papel fundamental los tres ganadores del Nobel de Física de 2004 cuyas fotos y nombres hemos puesto antes.

Trabajos y estudios realizados en el acelerador LEP del CER durante la década de los 90 han hecho posible medir con mucha precisión la intensidad de la interacción fuerte en las desintegraciones de las partículas z y t, es decir a energías de 91 y 1,8 Gev, los resultados obtenidos están en perfecto acuerdo con las predicciones de ACD, proporcionando una verificación muy significativa de libertad asintótica.

Ahora, estamos a la espera de utilizar la más alta energía jamás empleada en un Acelerador y, el LHC, se prepara para los 8 TeV que, ya veremos que nos podrá traer si, el Bosón de Higgs del que ya han podido atisbar algunos indicios o, por el contrario, partículos exóticas que, como los hipo´téticos axiones nos lleven a otras teorías.

emilio silvera

En el Universo se crean estrellas y… !pensamientos!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mucho antes de que llegara las revoluciones científicas que todos tenemos en la mente, la Naturaleza parecía estar regida por el Caos: Terremotos, volcanes que oscurecían el cielo lanzando el negro humo acompañado de cenizas, lluvias torrenciales y el rayo, tifones, enfermedades incurables de la que morían millones de personas, las hanbrunas que azotaban a tantas criaturas y, nadie podía explicar el comportamiento del viento, aquellas tempestades marinas, o, temblores de la Tierra inesperados que traían la destrucción y la muerte.

Todo aquello, tenía que ser el resultado de que, enfurecidos dioses castigaban las impurezas del mundo y de sus criaturas. En absoluto sugería nadie que pudieran existir leyes “sencillas” y ordenadas con las que se pudieran explicar tal confusión en el comportamiento de una Naturaleza que, lo mismo se presentaba esplendorosa que rugía sembrando el miedo y el dolor de mil maneras distintas.

El sistema solar

Allí donde se percibía orden en el universo, este orden se atribuía a la respuesta que daban los objetos físicos a una necesidad de que se preservaran la armonía y el orden siempre que fuera posible -se suponía las órbitas de los planetas y del Sol alrededor de la Tierra y que eran círculos, porque los círculos eran perfectos-, los objetos caían hacia el suelo porque el centro de la Tierra marcaba el centro de todo y todo tendía a confluir hacia aquel lugar, el centro de simetría de todo el universo. Acordaos que, el filósofo Aristarco de Samos, se atrevió a expresar sus ideas y dijo que, la Tierra y todos los planetas se movían alrededor del Sol. ¡Claro, nadie le prestó la menor atención! y, muchísimos años más tarde, tuvo que venir Copérnico, allá por el año 1543,  diciendo lo mismo para pasar a la historia. Su libro De Revolutionibus Orbium Coelestrum quedó terminado en lo esencialen 1530 y, a cuando se publicó, hizo exclamar, en 1539, a Martín Lutero: “Este loco desea volver de revés toda la astronomía; pero las Sagradas Escrituras nos dicen que Josué ordenó al Sol que se detuviera, no a la Tierra”. Galileo replicó más tarde, respondiendo a críticas similares: “La Biblia nos muestra la manera de llegar al cielo, no la manera en que se mueven los cielos”. Tuvo que llegar Kepler, quien, utilizando las observaciones munuciosamente recopiladas por Tycho Brahe, señaló, para aqueloos que tuvieran los ojos bien abiertos que, el planeta Marte no sólo se movía alrededor del Sol sino que, su órbita, era elíptica, echando así por tierra la antigua perfección circular, preferida por los clásicos griegos .

Ahora, pasado el tiempo y mirando hacia atrás, podemos ver con diáfana claridad, muchos ejemplos que podrían ilustrar la diferencia tan brutal que existe entre la ciencia de los antiguos y la de tiempos posteriores a partir de Galileo. Es cierto que los antiguos griegos fueron unos matemáticos excelentes, en particular, unos  geómetras de primera. También es cierto que aquella geometría que imperó durante más de dos mil años entre nosotros (aún hoy,  alguna perdura), tenía sus raíces en culturas más antiguas.

[FNT 2]

Galileo y el péndulo. La imagen nos habla del primer experimentador serio de la historia. Experimentó para demostrar el tiempo que invertía el péndulo en realizar una oscilación completa que resultó ser siempre la misma, tanto si recorría un amplio arco como si describía uno pequeño. Experimentos posteriores demostraron que ese tiempo dependía de la longitud del péndulo. Este es el fundamento del reloj de péndulo (diseñó uno que llegó a construir su hijo). Posteriormente utilizó el péndulo como cronómetro preciso cuando realizó experimentos para estudiar el comportamientode unas bolas que rodaban hacia abajo por una rampa. Estos experimentos le servían para estudiar la caída de objetos para investigar los efectos que producía la Gravedad sobre los cuerpos en movimiento. Él desarrolló el concepto de aceleración: Una velocidad constante de 9,8 metros por segundo significa que cada segundo el objeto en movimiento cubre una distancia de 9,8 metrtos. Él descubrió que los objetos que caen se mueven cada vez más rápidos, con una velocidad que aumenta cada segundo y que el aumento, era uniforme, siempre el mismo. También observó como aquellas bolas que caen por la rampa, se frenan a causa del rozamiento. Aquello era física pura dándo sus primeros pasos y camino de la relatividad, la termodinámica y la mecánica cuántica.

Fue un grande entre los gigantes. Se le suele recordar como el fundador del método experimental de la física; su imagen va asociada con la del telescopio y el plano inclinado, con los instrumentos que diseñó y armó para observar y medir. También es famosa su polémica con los aristotélicos de su tiempo que se limitaban a citar a los clásicos y pensar cómo debían ser los movimientos de los cuerpos, en vez de observarlos. Por último, ¿quién no conoce la anécdota del atrevido maestro arrojando dos cuerpos de diferente peso desde la Torre de Pisa? (Anécdota probablemente apócrifa pero, como dicen los italianos, Se non è vero… è ben trovatto! ).

Fue una combinación del descubrimiento de las órbitas elípticas por parte de Kepler, y de la teoría de Galileo sobre la aceleración y el método científico, lo que preparó el camino para el mayor descubrimiento científico del siglo XVII, y quizá de todos los siglos: la Ley de la Gravitación universal de Newton que cerró con el broche de oro que conocemos por su gran obra: Philosophiae Naturalis Principia Mathemática, más conocida coloquialmente como los Principia, publicada en 1687.

Newton adoptó y perfeccionó la idea de Galileo, valorando de manera positiva los modelos deliberadamente simplificados (como los planos sin rozamiento) para utilizarlos en la descripción de aspectos concretos del mundo real. Por ejemplo, una característica fundamental de los trabajos de Newton sobre la Gravedad y las órbitas  es el hecho de que, en sus cálculos realtivos a los efectos de la Gravedad, él consideró objetos tales como Marte, la Luna o una manzana, como si toda su masa estuviera concentrada en un solo punto, y de esta manera, siempre que nos encontremos en el exterior del objeto en cuestión, su influencia gravitatoria se mide en función de nuestra distancia a dicho a dicho punto, que es el centro de masa del objeto /y asimismo el centro geométrico, si el objeto es una esfera).

Allí quedaron para las generaciones venideras las Leyes del movimiento de Newton, que copnstituyen la base de trescientos años de ciencia, pero que puede resumirse de una forma muy sencilla y que marcan el desarrollo del modo científico de observar el mundo.

Para resolver un problema en mecánica, lo único que necesito es aplicar las tres leyes de Newton

– Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas transmitidas sobre él.

– El cambio de movimiento es proporcional a la fuerza motriz transmitida y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

– Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.

Esta última y tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.

El problema de los tres cuerpos fue, totalmente inabordable por Newton que, en aquellos casos en los que se veía imposibilitado, siempre recurría a Dios para que le solucionara el asunto. Claro que, ante tal sugerencia, siempre se encontraba de frente con Leibniz que, comparó el universo ordenado y determinista de Newton con un reloj, afirmando con sarcasmo que el Dios de Newton debía ser un relojero bastante torpe si era incapaz de hacer un reloj que marcara siempre la hora correcta, pues para que funcionara bien tenía que intervenir cada vez que se estropera.

Aquel problema de los tres cuerpos (del que hablaremos en otra ocasión), continuó sin solución hasta finales del siglo XVII, cuando el matemático francés Pierre Laplace, aparentemente puso orden en el sistema solar (claro que, también tendríamos que ver lo que dijo Poincaré, otro francés, al respecto).

Así, poco a poco, se pudo ir poniendop orden y buscando explicación para todos aquellos fenómenos de la Naturaleza que no tenían explicación y que, sólo la Ciencia, nos la podía dar.

Mas tarde llegarían Faraday y Maxwell que investigaron la naturaleza de la luz el primero y, supo expresarla en ecuaciones el segundo. Aquello, fue un paso de gigante para comprender el mundo que nos rodea y cómo funciona, en algunos aspectos, la Naturaleza. Podemos decir que aquello fue uno de los mayores triunfos de la Ciencia del siglo XIX. La explicación dada por Maxwell sobre la radiación electromagnética se basó en la obra de Faraday y, entre ambos, dijeron al mundo que electricidad y magnetismo eran dos aspectos distintos de la misma cosa.

Las ecuaciones de Maxwell llevaban consigo dos características muy curiosas: una de ellas pronto tendería un profundo impacto en la física, y la otra fue considerada hasta tiempos muy recientes sólo como una rareza de menor importancia. La primera de aquellas características innovadoras era que daban a la velocidad de la luz un valor constante, independientemente de cómo se mueva la fuente de luz con respecto a la persona (o aparato) que mida su velocidad. Ya sabeis que fue esto, lo que lelvó a Einstein a desarrollar la teoría de la relatividad especial en 1905.

La nebulosa Cabeza de Caballo

Antes que Eisntein Planck y después muchos otros, vinieron a poner los conocimientos de la Ciencias Físicas y Astronómicas en un  lugar privilegiado en el que, podíamos mirar las galaxias y también a los átomos. El mundo de lo muy grande y el de lo muy pequeño, quedó al alcance del entendimiento humano. Claro que, Como dijo Kart Raimund Popper, filósofo británico de origen austriaco (Viena, 1902 – Croydon, 1.994) que realizó sus mas importantes trabajos en el ámbito de la metodología de la ciencia: “cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos pero, mi ignorancia, es infinita“.

Está claro que la mayoría de las veces, no hacemos la pregunta adecuada porque nos falta conocimiento para realizarla. Así, cuando se hacen nuevos descubrimientos nos dan la posibilidad de hacer nuevas preguntas, ya que en la ciencia, generalmente, cuando se abre una puerta nos lleva a una gran sala en la que encontramos otras puertas cerradas y tenemos la obligación de buscar las llaves que nos permitan abrirlas para continuar. Esas puertas cerradas esconden las cosas que no sabemos y las llaves que las pueden abrir son retazos de conocimientos que nos permiten entrar para descorrer la cortina que esconde los secretos de la Naturaleza, de la que en definitva, formamos parte.

¡Cuánto hay ahí, en esa bella Nebulosa de arriba! En espesas nubes moleculares que se concentran en vórtices obligadas por la Gravedad, nacen nuevas estrellas y nuevos mundos. Ahí se transforman los matriales sencillos como el Hidrógeno en otros más complejos y, la radiación de las jóvenes estrellas nuevas masivas, tiñen de rojo el gas y el povo del lugar, mientras ellas, presumidas, se exhiben rodeadas de ese azul suave que las distingue de aquellas otras más antiguas, que tiñen de amarillo y rojo toda la región.

http://univerpuebla.files.wordpress.com/2010/12/espacio.jpg

¿Qué sería de la cosmología actual sin ? Es la ecuación de Einstein donde es el tensor energía-momento que mide el contenido de materia-energía, mientras que es el Tensor de curvatura de Riemann contraído que nos dice la cantidad de curvatura presente en el hiperespacio. Este pequeño conjunto de signos es uno de los pensamientos más profundos de la mente humana y… ¡Nos dice tánto con tan poco!

También esa ecuación nos habló de la existencia de Agujeros negros, esos objetos de densidad “infinita” en los que dejan de existir el espacio y el tiempo. La singularidad es el punto matemático en el que ciertas cantidades físicas alcanzan valores infinitos. Así nos lo dice la relatividad general general: la curvatura del espacio-tiempo se hace infinita en un Agujero Negro.

La cosmología estaría 100 años atrás sin esta ecuación. Einstein  con sus dos versiones de la realtividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares, nos descubrio un Universo nuevo, un mundo fantástico de posibilidades ilimitadas en el que podían ocurrir maravillas como, por ejemplo, conseguir que el tiempo transcurriera más lentamente y dónde reside la fuente de la energía. Claro que, al mérito de Einstein (que lo tiene), tendríamos que sumar el de Faraday, Maxwell, Mach, Lorentz, Planck y algunos otros de cuyas ideas él supo aunar un todo que clarificó el mundo y que, por separado, no decían tanto.

No puedo evitarlo, siento debilidad por las estrellas, esos objetos brillantes del cielo en los que, se “fabrican” los elementos complejos que son la materia primaria para la vida. Nosotros, como he comentado muchas veces, estamos hechos de polvo de estrellas.

En ellas, en las estrellas, se producen cambios y transformaciones de cuyos procesos, debemos conocer para saber lo que allí ocurre y el pro qué de esas mutaciones de la materia. Siempre llamó mi atención las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo (como la nebulosa cabeza de caballo en la imagen de arriba) se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

La Tierra desde el espacio

A nosotros nos puede parecer enorme, es el planeta que acoge a toda la Humanidad. Sin embargo, en el contexto del Universo y comparada con otros objetos cosmológicos, es menos que una mota de polvo y, si pensamos en ello, quizás (sólo quizás), podamos llegar a la conclusión de que debemos cambiar y mirar las cosas desde otras perspectivas, al fin y al cabo no somos tan importantes como algunas veces podemos creer.

http://1.bp.blogspot.com/_xyYFMwz4t6g/S7-euKLPDFI/AAAAAAAACkY/ur2Aaiw1zHg/s1600/conciencia+03.jpg

          ¡Sí, la Galaxia está en nuestra Mente y, nuestra Mente, en la Galaxia!

La evolución del Universo que está prescrita por el paso del Tiempo (con la ayuda de la Entropía), es inexorable, y, nosotros, nuestras mentes que son el producto evolucionado en su más alto grado de la materia, también evolucionamos al mismo ritmo que el universo nos marca. De esa manera, el transcurrir de los siglos posibilitan la apertura mental de nuevas ideas y, el conocimiento del mundo, de la Naturaleza, se hace cada vez más patente para nosotros que, al final de toda esta historia, volveremosa fundirnos con todo, en el mismo lugar del que partimos: ¡Las estrellas! allí está nuestro origen y, algo me dice que volveremos a él.

¿Será cuando llegue Andrómeda y le de el beso de amor a la Vía Láctea?

emilio silvera

¡Aquella célula replicante!

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Somos el Producto de Mensajes Genéticos

En julio de 1997, un grupo de científicos de una Universidad norteamericana, distribuyeron fotografías de una guitarra no mayor que un glóbulo rojo humano. Sus cuerdas apenas tenían cien átomos de grosor. Este instrumento liliputiense estaba esculpido en silicio cristalino, utilizando una técnica de gravado que utiliza un haz de electrones. Pretendía ser un reclamo publicitario, pero ilustraba espectacularmente un desarrollo tecnológico importante: ahora pueden hacer máquinas que son demasiado pequeñas para que puedan verse a simple vista. Los científicos han fabricado engranajes invisibles, motores del tamaño de una cabeza de alfiler, y conmutadores electrónicos tan minúsculos como moléculas individuales.

 

 

Una célula es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano.. Las células suelen poseer un tamaño de 10 μm y una masa de 1 ng, si bien existen células mucho mayores.

Ingenieros de cierta Empresa de computación han sido capaces incluso de imprimir las iniciales de la Compañía átomo a átomo sobre una superficie cristalina. El campo en desarrollo de la nanotecnología –construcción de estructuras y dispositivos que miden en la escala de milmillonésimas de metro- promete revolucionar nuestras vidas.

Estas hazañas de microingeniería son impresionantes por sus implicaciones, pero no debemos perder de vista el hecho de que la Naturaleza las consiguió primero. Me explico: Cada célula está repleta de diminutas estructuras que podrían haber salido directamente del manual de un ingeniero. Abundan las pinzas, tijeras, bombas, motores, palancas, válvulas tubos, cadenas e incluso vehículos minúsculos. Pero, por supuesto, la célula es más que una simple caja de artilugios. Los diversos componentes encajan para formar un todo que funciona sin problemas, como una elaborada línea de montaje de una fábrica. El asombro de la vida no es que esté hecha de nanoherramientas, sino que estas minúsculas piezas diversas están integradas de una forma fuertemente organizada.

http://img.robotikka.com/wp-content/uploads/2011/05/avances-inteligencia-artificial.jpg

 

            A más organización será difícil que se llegue alguna vez: ¡La Vida! ¡Los pensamientos!

¿Cuál es el secreto de esta sorprendente organización? ¿Cómo puede ser obra de átomos estúpidos? Tomados de uno en uno, los átomos solo pueden dar empujones a sus vecinos y unirse a ellos si las circunstancias son apropiadas. Pero colectivamente consiguen ingeniosas maravillas de construcción y control, con un ajuste fino y una complejidad todavía no igualada por ninguna ingeniería humana. De algún modo la Naturaleza descubrió cómo construir intrincadas máquinas que llamamos célula viva, utilizando sólo todas las materias primas disponibles, todas en un revoltijo. Repite esta hazaña cada día en nuestros propios cuerpos, cada vez que se forma una nueva célula. Esto ya es un logro fantástico. Más notable incluso es que la Naturaleza construyó la primera célula a partir de cero. ¿Cómo lo hizo?

http://2.bp.blogspot.com/-EWkminHkVOk/ThuAP-Do5XI/AAAAAAAAAzU/gm_fBGp_T4c/s1600/Fractal_10.jpg

 

 

Como físico teórico hecho así mismo, algo ingenuo y con un enorme grado de fantasía en mis pensamientos, cuando pienso acerca de la vida a nivel molecular, la pregunta que se me viene a la mente es: ¿Cómo saben lo que tienen que hacer todos estos átomos estúpidos? La complejidad de la célula viva es inmensa, similar a la de una ciudad en cuanto al grado de su elaborada actividad. Cada molécula tiene una función específica y un lugar asignado en el esquema global, y así se manufacturan los objetos correctos. Hay mucho ir y venir en marcha. Las moléculas tienen que viajar a través de la célula para encontrarse con otras en el lugar correcto para llevar a cabo sus tareas de forma adecuada.

Todo esto sucede sin un jefe que dé órdenes a las moléculas y las dirija a sus posiciones adecuadas. Ningún supervisor controla sus actividades. Las moléculas hacen simplemente lo que las moléculas tienen que hacer: moverse ciegamente, chocar con las demás, rebotar, unirse. En el nivel de los átomos individuales, la vida es una anarquía: un caos confuso y sin propósito. Pero, de algún modo, colectivamente, estos átomos inconscientes se unen y ejecutan, a la perfección, el cometido que la Naturaleza les tiene encomendados en la danza de la vida y con una exquisita precisión.

File:A-B-Z-DNA Side View.png

 

 

Ya más recientemente, evolucionistas tales como el inglés Richard Dawkins, han destacado el paradigma del “gen egoista”, una imagen poderosa que pretende ilustrar la idea de que los genes son el objetivo último de la selección natural. Los teóricos como Stuart Kauffman, asociado desde hace tiempo al famoso Instituto de Santa Fe, donde los ordenadores crean la llamada vida artificial, insisten en la “autoorganización” como una propiedad fundamental de la vida.

¿Puede la ciencia llegar a explicar un proceso tan magníficamente autoorquestado? Muchos son los científicos que lo niegan al estimar que, la Naturaleza, nunca podrá ser suplantada ni tampoco descubierta en todos sus secretos que, celosamente nos esconde. Sin embargo…Tengo mis dudas. Ellos piensan que la célula viva es demasiado elaborada, demasiado complicada, para ser el producto de fuerzas ciegas solamente y, que debajo de esa aleatoriedad y de un falso azar, deben estar escondidas otras razones que no llegamos a alcanzar. La Ciencia podrá llegar a dar una buena explicación de esta o aquella característica individual, siguen diciendo ellos, pero nunca explicará la organización global, o cómo fue ensamblada la célula original por primera vez.

Claro que, negar el poder de la Ciencia es, ir demasiado lejos. La Ciencia debe ofrecer, finalmente, una explicación convincente del origen de la vida, pero sólo si el problema se aborda desde dos niveles:

Los protobiontes fueron los precursores evolutivos de las primeras células procariotas. Los protobiontes se originaron por la convergencia y conjugación de microesferas de proteínas, carbohidratos, lípidos y otras substancias orgánicas encerradas por membranas lipídicas. El agua fue el factor más significativo para la configuración del endoplasma de los protobiontes.

–         El primero en el nivel molecular. En este es donde se han hecho progresos más impresionantes. Durante la última década la Biología molecular ha dado paso gigantesco en dilucidar qué moléculas hace qué. Siempre se encuentra que las nanomáquinas de la Naturaleza actúan según leyes y fuerzas físicas perfectamente normales. No se ha descubierto ningún tejemaneje raro. Sería erróneo, sin embargo, suponer que las moléculas son todo lo que hay en la vida. No explicamos la vida catalogando sus actividades moleculares, de la misma forma que no explicamos el genio de Mozart o Einstein determinando como trabaja una neurona. Para utilizar el tópico, el todo es más que la suma de las partes. La misma palabra “organismo” implica cooperación en un nivel global que no puede captarse en el estudio de los componentes individuales. Sin comprender su actividad colectiva, la tarea de explicar la vida está hecha solo en parte.

–         La reproducción, esa podría ser la segunda parte. ¡Replicarse! ¡Replicarse! Es una propiedad definitoria de la Vida. Sin ella, y en ausencia de inmortalidad, toda la vida cesaría más tarde o más temprano. Durante mucho tiempo los científicos tuvieron una idea muy pobre de cómo se reproducen los organismos. Unas vagas nociones relativas a genes invisibles que transmiten mensajes biológicos de una generación a la siguiente revelan muy poco acerca del funcionamiento real de las células. No obstante, con la llegada de la Biología Molecular y el descubrimiento del ADN, el misterio fue finalmente resuelto. Reducido a sus aspectos esenciales, el secreto de la reproducción está en la replicación molecular. La idea de una molécula que hace una réplica de sí misma puede parecer más bien mágica, pero en realidad resulta ser bastante sencilla. El principio subyacente es, de hecho, un ejercicio de geometría elemental.

El primer punto que captar quizá sea obvio, pero tiene una importancia crucial: las moléculas tienen formas definidas. Las moléculas orgánicas no son simples gotas más o menos esféricas, sino que disponen de todo tipo de apéndices, tales como brazos, codos, cavidades y anillas. Aunque las fuerzas interatómicas dictan a que adherirse (o qué repeler), es la estructura global tridimensional de las moléculas orgánicas las que determinan en general, sus capacidades biológicas: Los filósofos pitagóricos, quiénes creían que la geometría era la clave del universo, se habrían sentido encantados con ello.

 

Con un microscopio electrónico podremos llegar muy lejos en el universo de lo muy pequeño. Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y complejo como una ciudad, y con sus límites delineados por la pared celular. Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Los datos históricos del ADN contribuyeron a ir aportando luces sobre su composición y estructura. Pero ninguno de ellos era realmente concluyente, hasta que Watson y Crick, recogiendo estos datos y otros relativos a las características moleculares de las bases nitrogenadas, proponen lo que se conoce como modelo de la doble hélice.

SPL_E_H400040-Watson_and_Crick_with_their_DNA_model-SPL

El modelo no sólo resultaba coherente con las pruebas disponibles entonces, sino que, haciendo alarde de una gran intuición, les permitió, tan solo unos meses más tarde, avanzar una hipótesis sobre el mecanismo de duplicación de la molécula, requisito indispensable para justificar su papel de material genético, que ya había sido reconocido desde los experimentos realizados por Avery, MacLeod y McCarty en 1944.

El ADN es el banco de datos genético, y la replicación de esta macromolécula está en el corazón de la reproducción biológica. Permitidme describir cómo hace el ADN para copiarse así mismo, utilizando simple geometría. La estructura del ADN es la famosa doble hélice que descubrió Crick Watson a principio de los años cincuenta. Su forma se muestra esquemáticamente….

Bueno, no podemos hacer aquí una narración completa de lo que actualmente la ciencia entiende que es la vida, y, lo dejaremos en esta sencilla explicación de algunos de sus complejos sistemas que, por otra parte, nos van dando una idea de cómo funcionan algunas de las regiones que están implicadas en eso que llamamos vida y que, sin temor a equivocarnos, podríamos decir que es, la más grande complejidad presente en el Universo.

Si algún día me encuentro con ánimos suficientes, quizá os hable sobre la paradoja del Huevo y la Gallina que, no es, precisamente, el cuento de nunca acabar, sino que, aunque no lo creáis, tiene una explicación lógica.

emilio silvera