Jul
28
¿Que hay el núcleo de un Púlsar? ¿Existen estrellas de Quarks-Gluones?
por Emilio Silvera ~ Clasificado en Astrofísica ~ Comments (0)
La pasta nuclear podría limitar el período de rotación de los Púlsares. Parece que con el nuevo descubrimiento se ha dado un paso más, hacia la comprensión de la materia y las formas que puede adoptar bajo ciertas circunstancias.
Jose A. Pons, profesor de la Universidad de Alicante
Un estudio liderado por el grupo de Astrofísica Relativista de la Universidad de Alicante ha detectado la que podría ser la primera evidencia observacional de la existencia de una nueva fase exótica de la materia en la corteza interna de las estrellas de neutrones (púlsares).
Los púlsares son estrellas de neutrones (estrellas ultracompactas y fuertemente magnetizadas) en rotación, residuos de una explosión Supernova. Estas estrellas nacen rotando muy velozmente (hasta 100 veces por segundo), pero van perdiendo momento angular debido a la emisión de radiación electromagnética, de la misma forma que un gigantesco imán que gira perdería energía. Algunas de estas estrellas de neutrones emiten ondas de radio en la dirección de sus polos magnéticos que, cuando incidentalmente apuntan a la Tierra, pueden ser detectadas. El primer descubrimiento de estas señales muy periódicas se produjo en 1967 por Jocelyn Bell y Anthony Hewish, y significó que le concedieran el premio Nobel en 1974 a Anthony Hewish.
Con el paso de las décadas, y el nacimiento de la astronomía de rayos X, (o en general de altas energías) se empezaron a detectar púlsares no sólo en radio, sino también en rayos X o en rayos gamma. Una de las incógnitas en el campo de los púlsares de rayos X es la existencia de un límite superior de 12 segundos en los periodos de rotación. Históricamente, se conocía que los radio-púlsares (aquellos que detectamos en ondas de radio) tenían un límite superior observado a su periodo de rotación que se atribuía a un simple efecto observacional: los que giran más lentamente emiten ondas de radio con menor intensidad y más focalizadas, con lo que es más difícil observarlos. Sin embargo, las misiones espaciales de la última década han detectado un creciente número de púlsares aislados de rayos X, y hemos visto con sorpresa que tampoco ninguno de ellos presenta un periodo de rotación superior a 12 segundos, pero no existía ninguna explicación teórica para este fenómeno.
Dado que, para estrellas aisladas, el ritmo de perdida de energía de rotación depende del campo magnético de la estrella de neutrones, se esperaba que las estrellas de campo magnético alto se frenarán muy rápidamente, pudiendo alcanzar periodos de rotación de varias decenas o incluso centenares de segundos, mientras aún están suficientemente calientes para ser visibles en rayos X. Sin embargo, se vio con sorpresa que hay un acumulamiento de fuentes con periodos entre 10 y 12 segundos, pero sin que nunca se haya encontrado un pulsar de rayos X, que no forme parte de un sistema binario, con periodos de rotación superiores.
En un estudio reciente, publicado en el último número de Nature Physics, aparecen los resultados de la investigación, basada en simulaciones por ordenador de la evolución del campo magnético de los púlsares, que aborda este misterio. La idea fundamental es que el campo magnético no permanece constante, sino que se disipa muy rápidamente debido a la alta resistividad eléctrica de una capa de la corteza interna, donde las corrientes eléctricas que soportan el campo magnético ultraintenso de las estrellas de neutrones tienden a a desplazarse. Lo localización de dicha capa resistiva coincide con las predicción de un nuevo estado de la materia nuclear, llamado “pasta nuclear”.
¿Lasaña o espagueti?
La pasta nuclear, llamada así por similitud con la pasta italiana, sucede cuando la combinación de la fuerza nuclear y electromágnetica, a densidades cercanas a la de los núcleos atómicos, favorece el ordenamiento de los nucleones (protones y neutrones) en formas geométricas no esféricas, como láminas o filamentos (lasaña o espagueti).
Esta puede ser la primera evidencia observacional de la existencia de la fase de “pasta nuclear” en el interior de estrellas de neutrones, lo cual puede permitir que futuras misiones de observatorios de rayos X puedan usarse para aclarar aspectos de cómo funciona la interacción nuclear que aún no están del todo claros. Es una oportunidad única, ya que probablmente no hay otro lugar en el Universo, aparte de las estrellas de neutrones, donde podamos encontrar las condiciones necesarias para que se forme la “pasta nuclear”.
Los púlsares nacen girando muy rapidamente, sin embargo sus intensos campos magnéticos los frenan a lo largo de su vida, con lo cual su periodo de rotación aumenta. Entre tanto, en la capa de “pasta” las corrientes se disipan y el campo magnético de la estrellas se vuelve débil, hasta que ya no es capaz de frenar significativamente la rotación de la estrella: el púlsar está “al dente”, con un periodo de alrededor de 10-12 segundos.
Referencia: A highly resistive layer within the crust of X-ray pulsars limits their spin periods, J. A. Pons, D. Viganò, N. Rea, Nature (2013), doi:10.1038/nphys2640.
Después de leer el artículo del profesor Pons, se me ocurre que la materia, en realidad, es una gran desconocida y guarda secretos que debemos desvelar para poder obtener de ella todo lo que nos ofrece que es mucho y que no hemos sabido aprovechar por el momento en toda su extensión y sus muchas posibilidades que nos llevarán hacia otra forma de ver el universo.
En otra ocasión os hablé aquí de la posibilidad (nunca podemos negar nada que nuestra imaginación pueda idear), de que existieran estrellas hechas de materia extraña, es decir de una especie de pasta densa compuesta de Quarks-Gluones y que estaría en la escala intermedia entre las estrellas de neutrones y los agujeros negros.
La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los modelos canónicos teóricos de las Estrellas de Neutrones ( ENs ). Decimos que son hipotéticas porque se conjetura que estarían formadas por Materia Extraña ( ME ). La comunidad astrofísica espera evidencias observacionales que permitan diferenciarlas de las ENs, ya que podrían explicar un conjunto de observaciones astronómicas que aún resultan una incógnita. Es sabido que una EN es el remanente del colapso de una estrella masiva. El colapso de la estrella, la supernova, da lugar a un núcleo compacto hiperdenso de hierro y otros metales pesados que sigue comprimiéndose y calentándose. Su densidad continúa aumentando, dando lugar a una “neutronización“ (recombinación de electrones con protones que resultan en neutrones) y el gas degenerado de neutrones frena el colapso del remanente.
Se especula con la posibilidad de que existan estrellas de Quarks que estarían hechas de materia extraña de Quaks y Gluones.
Una EQ, a diferencia de una EN, no se originaría necesariamente de una evolución estelar después del agotamiento del combustible nuclear de una estrella normal. Sería, probablemente, producto de la transición de fase hadrón-quark a altísima densidad. La Cromodinámica Cuántica (CDC), la Teoría de las Interacciones Fuertes que ocurren dentro de los nucleones (protones y neutrones), concibe teóricamente la idea de la transición de fase hadrón-quark a temperaturas y/ o densidades extremadamente altas con el consecuente desconfinamiento de quarks y gluones, que formarían una especie de “sopa “. Sin embargo, los quarks libres no se han encontrado aún, en uno u otro límite, en ningún experimento terrestre.
La “sopa“ que mencionamos antes, se conoce como Plasma Quark-Gluón ( PQG ). En el límite de altas temperaturas, el PQG está tratando de obtenerse en el laboratorio y existen fuertes indicios de que se logre con éxito experimentos de altas energías como el Colisionador Relativista de Iones Pesados (conocido por sus siglas en ingles como RHIC) de Brookhaven, New York.
Por otro lado, se espera que a través de observaciones astronómicas se compruebe que la transición a altas densidades se hubiese producido en el interior de alguna EN. Esto se debe a que los valores de densidades estimados para que dicha transición tuviese lugar coinciden con densidades del orden de (3 exp. – 12) ρ0 (siendo ρ0 ̃ 0, 17 fmˉ ³ la densidad de equilibrio nuclear) que son típicas del interior de las ENs. Los cálculos basados en diferentes ecuaciones de estado de la materia nuclear muestran estos resultados, por lo que sería razonable que el núcleo de las ENs estuviese formado por materia de quarks.
Recientemente, la relación entre campo magnéticos y materia densa está atrayendo la atención de los astrofísicos, especialmente después de las observaciones de emisiones peculiares de pulsares anómalos de rayos X, que se interpretan como ENs en rotación, y de emisiones de radiación γ de baja energía de los llamados repetidores de rayos γ suaves ( SGRs – soƒt gamma-ray repeaters ). El motor central de esas radiaciones podría ser un campo magnético mayor que 4 x 10¹³ Gauss, que es el campo crítico previsto por la Electrodinámica Cuántica.
Muchas observaciones astronómicas indirectas sólo se explicarían a través de la existencia de campos magnéticos muy intensos en los núcleos de ENs en EQs, de manera que el papel que juega el campo magnético en la ME aún constituye un problema abierto y de sumo interés en la Astrofísica.
En particular, en un trabajo reciente, se ha analizado la ME considerando neutralidad de carga, equilibrio β y conservación del número bariónico. En dicho trabajo se obtuvo una cota superior para el valor del campo magnético que determina una transición de fase cuya explicación requiere ser estudiada en profundidad ya que sería independiente de la interacción fuerte entre los quarks. También se ha comprobado que la presencia de de campos magnéticos intensos favorece la estabilidad de la ME.
Por otro lado, estudios teóricos han demostrado que si la materia es suficientemente densa, la materia de quarks deconfinada podría estar en un estado superconductor de color. Este estado estaría formado por pares de quarks, análogos a los pares de Cooper (constituidos por electrones) existentes en los superconductores ordinarios.
Los quarks, a diferencia de los electrones, poseen grados de libertad asociados con el color, el sabor y el espín. Por este motivo, dependiendo del rango de densidades en el cual estamos trabajando, algunos patrones de apareamiento pueden verse favorecidos generando la aparición de distintas fases superconductoras de color. Según estudios teóricos, la fase superconductora más favorecida a densidades extremadamente altas sería la Color Flavor Locked (CFL), en la cual los quarks u, d y s poseen igual momento de Fermi, y en el apareamiento participan los tres colores y las dos proyecciones de espín de cada uno de ellos. Estudios recientes sobre la fase CFL han incluido los efectos de campos magnéticos intensos, obteniendo que bajo determinadas condiciones el gas superconductor, que corresponde a la separación entre bandas de energía en el espectro fermiónico, crece con la intensidad del campo. A esta fase se la llama Magnetic Color Flavor Locked (MCFL).
Son muchos los misterios que contiene el Universo y, nosotros, debemos recorrer los caminos que sean necesarios para desvelarlos. Cuando las cosas son conocidas, se evitan las sorpresas y, además, se les puede sacar más rendimiento, Así, si conocemos las posibilidades que nos ofrece la Naturaleza…
En la superconductividad electromagnética usual, un campo magnético suficientemente fuerte destruye el estado superconductor. Para la superconductividad de color no existe aún un consenso de cómo, la presencia del campo magnético, podría afectar al apareamiento entre los quarks.
En este trabajo describiremos brevemente la materia extraña, con el objetivo de explicar su formación en el interior de una EN y entender la composición y características de una EQ. Posteriormente, utilizaremos el modelo fenomenológico de bag del Massachussets Institute of Technology (MIT) para encontrar las ecuaciones de estado de la ME en condiciones determinadas, comprobando la estabilidad de la misma, frente a la materia de quarks ordinaria formada sólo por quarks u y d. Presentaremos, además, algunas candidatas posibles a EQs según observaciones astrofísicas. Por último, trataremos de entender la superconductividad de color y la influencia del campo magnético intenso en las fases superconductoras.
Materia de Quarks:
Uno de los mayores logros alcanzados por los físicos en el último siglo, fue la construcción del Modelo Estándar en la física de partículas elementales. Este modelo sostiene que la materia en el Universo está compuesta por fermiones, divididos en quarks y leptones, que interactúan a través de los llamados bosones de calibre: el fotón (interacción electromagnética), los bosones W± y Zº (interacción débil), y 8 tipos de gluones (interacción fuerte). Junto con los bosones de calibre, existen tres generaciones de fermiones: ( v e, e ), u, d ); ( vµ, µ ), ( c, s ) ; ( v….); y sus respectivas antipartículas. Cada “ sabor “ de los quarks, up ( u ), down ( d ), charme ( c ), strange ( s , top ( t ) y bottom ( b), tiene tres colores ( el color y el sabor son números cuánticos ). La partícula que aún no ha sido descubierta experimentalmente es el bosón de Higgs, que cabe suponer sería responsable del origen de la masa de las partículas.
Muchos son los científicos que buscan respuestas
Los quarks son los componentes fundamentales tanto de los hadrones fermiónicos (bariones formados por la combinación de tres quarks) como de los bosónicos (mesones formados por un quark y un antiquark). ES sabido que el núcleo de un átomo está compuesto por nucleones (protones y neutrones) que a su vez están compuestos por quarks (protón = udd). David Gross y Franks Wilczek y David Politzer, descubrieron teóricamente que en la CDC el acoplamiento efectivo entre los quarks disminuye a medida que la energía entre ellos aumenta (libertad asintótica). La elaboración de esta teoría permitió que recibieran el Premio Nobel de Física en el año 2004. En los años 60, la libertad asintótica fue comprobada experimentalmente en el acelerador lineal de Stanford ( SLAC ).
Sin embargo, la CDC no describe completamente el deconfinamiento en un régimen de alta densidad y baja temperatura, debido a su complejidad matemática y a su naturaleza no lineal para bajas energías. No obstante, es posible recurrir a una descripción fenomenológica para intentar entender la física de la formación de la materia de quarks en las ENs. La materia de quarks, es decir, el plasma de quarks deconfinados y gluones, es una consecuencia directa de la libertad asintótica cuando la densidad bariónica o la temperatura son suficientemente altas como para considerar que los quarks son partículas más fundamentales que los neutrones o protones. Esta materia, entonces, dependiendo de la temperatura y del potencial químico (µ) de los quarks, aparecería esencialmente en dos regímenes. Uno de ellos, el PQG, constituiría la fase “caliente” de la materia de quarks cuando T >> µ constituyendo la mencionada ME, que se formaría en el interior de las Ens. Esta transición de fase estaría ocurriendo en el Universo cada vez que una estrella masiva explotara en forma de supernova, con la consecuente aparición de una EN.
Las estrellas de Quarks, aunque de momento son una conjetura su existencia, hasta donde podemos saber, no sería nada extraña que, en cualquier momento, se pudieran descubrir algunas y, pasarían a engrosar la lista de los objetos más masivos del Universo. Ellas estarían entre las estrellas de Neutrones y los Agujeros Negros.
En 1971 A.R. Bodmer propuso que la ME es más estable que el Fe, que es el más estable de todos los núcleos ordinarios. Por lo tanto, según su hipótesis, la ME constituía el estado más fundamental de la materia. En la Naturaleza, la presencia de núcleos atómicos ordinarios. Por lo tanto, según su hipótesis, la ME constituía el estado más fundamental de la materia. En la Naturaleza, la presencia de núcleos atómicos ordinarios no se halla en contradicción con la mayor estabilidad que presenta la ME. Esto se debe a que la conversión de un núcleo atómico en ME, requiere que se transformen quarks u y d en quarks extraños s. La probabilidad de que esto ocurra involucra una transición débil que hace que los núcleos con peso atómico A ≥ 6 sean estables por más de 10 exp60. Años. De manera que si la hipótesis de la ME fuera correcta, estaríamos en presencia del estado más estable de la materia hadrónica y para su formación se necesitaría un ambiente rico en quarks s o la formación de un PQG, Como ya mencionamos, podríamos alcanzar dicho estado en las colisiones de iones pesados relativistas, segundos después del Big Bang en el Universo primordial y en el interior de las Ens.
A) Formación de Materia Extraña en una Estrella de Neutrones:
Inmediatamente después de la transición de fase hadrónquark en el interior de la estrella, no existe una configuración de equilibrio químico entre los quarks. Esto puede entenderse de la siguiente forma: en el punto de transición, la materia bariónica predominante son los quarks u y d con una pequeña cantidad de electrones. Así, la densidad del quark d es aproximadamente dos veces la densidad del quark u, Nd ~ 2Nu, debido al hecho de que la materia en las estrellas compactas es eléctricamente neutra. Por el principio de exclusión de Pauli, sería energéticamente más favorable para los quarks d decaer en quarks s hasta restablecer el equilibrio entre sabores vía interacciones débiles. Dado que la densidad bariónica de la materia de quarks en el interior de la estrella sería ~ 5ρ0, los potenciales químicos de los quarks deberían ser grandes respecto de las masas. Esto implicaría que las densidades de los quarks fueran prácticamente iguales. De esta forma, la configuración más estable en el interior de la EN, sería un núcleo de ME con una densidad bariónica Nb = Ni ( i= u , d, s ). Si el interior de una EN estuviese compuesto por ME, cabe entonces preguntarnos: ¿podría transformarse una EN en una EQ?
B) EQs: Formación y características:
Para los astrónomos ha quedado bien establecido que el remanente estelar después de la explosión de una supernova podría resultar ser una Enana Blanca, una En o un Agujero Negro, dependiendo de la masa de la estrella de origen. Observaciones astronómicas recientes sugieren un remanente aún más exótico: las EQs. La idea de la existencia de estas estrellas apareció en 1969, cinco años después de la predicción de Gell- Mann de la existencia de los quarks. En el año 1984, Farhi y Jaffe, basándose en el modelo de bag del MIT, mostraron en sus cálculos que la energía por barión de la ME era menor que la del núcleo atómico más estable, el Fe. Esto daba mayor solidez a la hipótesis de Bodmer- Witten e inmediatamente se comenzaron a desarrollar modelos teóricos de Eqs. En el año 2002, el Observatorio de Rayos X Chandra, de la NASA, reportó el descubrimiento de dos estrellas candidatas a ser Eqs.
Para que una EN se transforme en una EQ pura, necesitamos algún mecanismo mediante el cual su densidad aumente cada vez más. Pensemos, por ejemplo, que la EN forma parte de un sistema binario. Para considerar que dos estrellas están en un sistema binario, debe analizarse su proximidad comparando el tamaño de las mismas con el radio del lóbulo de Roche, que es la región que define el campo de la acción gravitatoria de una estrella sobre otra.
Si el radio de cada estrella es menor que el lóbulo de Roche, las estrellas están desconectadas. Por el contrario, si una de ellas llena el lóbulo de Roche, el sistema es semiconectado y la materia puede fluir a través del punto de Lagrange interno. El potencial gravitatorio de un sistema binario se consume la masa de la estrella compañera. Cuando la masa de la EN alcanza el valor de ~2 M (M corresponde a la masa solar), sufre un colapso gravitatorio, pudiéndose transformar en una EQ.
¿Podría el colapso de una supernova dar origen a la formación de una EQ? Esta pregunta nos conduce a otra hipótesis teórica acerca de la formación de la EN, hay conservación del momento angular. La proto-estrella de neutrones tiene una fracción pequeña de su radio original, que era el de la supernova, por lo que su momento de inercia se reduce bruscamente. Como resultado, la EN se forma con una altísima velocidad de rotación que disminuye gradualmente. Los períodos de rotación se hacen cada vez más largos debido a la pérdida de energía rotacional por la emisión de vientos de electrones y positrones y de la radiación bipolar electromagnética. Cuando la alta frecuencia de rotación o el campo electromagnético alcanzan un valor crítico, la EN se transforma en un pulsar que emite pulsos del orden de los milisegundos. Debido a la enorme fuerza centrífuga en estos objetos, la estructura interna se modifica, pudiendo alcanzar una densidad crítica por encima de la que corresponde a la transición de fase hadrón-quark. En estas condiciones, la fase de materia nuclear relativamente incomprensible se convertiría en la fase de ME, más comprensible, cuyo resultado final sería la aparición de una EQ.
La identificación de una EQ requiere señales observacionales consistentes. Con esto nos referimos a propiedades físicas de la estrella tales como su masa máxima, radio, período mínimo de rotación, enfriamiento por emisión de neutrinos. Todas estas propiedades dependen de una única ecuación de estado para la materia densa de quarks que aún no ha sido completamente establecida. Sin embargo, existe un rango de valores aceptados para las cantidades antes mencionadas, con base en datos observacionales recientes, que marcarían importantes diferencias entre las posibles Eqs y los demás objetos compactos.
Un rasgo característico de las Eqs es que la materia no se mantendría unida por la atracción gravitacional, como ocurre en las Ens, sino que sería consecuencia directa de la interacción fuerte entre los quarks. En este caso, la estrella se dice autoligada. Esto implica una diferencia sustancial entre las ecuaciones de estado para las dos clases de estrellas. Las correcciones perturbativas a la ecuación de estado de la materia de quarks y los efectos de superconductividad de color complican aun más este punto. Otra característica para poder diferenciar las Eqs de las Ens es la relación entre su masa M y el radio R. Mientras que para una EQ, M ~ R³. De acuerdo con esta relación, las Eqs tendrían radios más pequeños que los que usualmente se le atribuyen a las Ens. Además, las Eqs violarían el llamado límite de Eddington. Arthur Eddington (1882-1994) observó que las fuerzas debido a la radiación y a la gravitación de las estrellas normales dependían del inverso del cuadrado de la distancia. Supuso, entonces, que ambas fuerzas podían estar relacionadas de algún modo, compensándose para que la estrella fuera más estable. Para estrellas de altísima masa, la presión de radiación es la dominante frente a la gravitatoria. Sin embargo, debería existir una presión de radiación máxima para la cual la fuerza expansiva debido a la radiación se equilibrara con la gravedad local. Para una estrella normal, el límite de Eddington está dado por una ecuación que omito para no hacer más complejo el tema.
Para cualquier valor de radiación que supere este límite, no habrá equilibrio hidrostático, causando la pérdida de masa de la estrella normal. El mecanismo de emisión en una EQ produciría luminosidades por encima de dicho límite. Una posible explicación a este hecho sería que la EQ es autoligada y por lo tanto su superficie alcanzaría temperaturas altísimas con la consecuente emisión térmica.
Por otro lado, una alternativa para explicar algunas observaciones de destellos de rayos γ, sería suponer que las emisiones provienen de Eqs con radios R ~ 6 km, valores demasiados pequeños si pensáramos que los destellos provienen de ENs.
En esta sección, hemos presentado algunas características de las Eqs que las diferenciarían de las Ens. Futuras evidencias experimentales y observacionales nos permitirían saber si las Eqs realmente existen en la naturaleza.
C) Observaciones astrofísicas: posibles Eqs
El mes de febrero de 1987 fue la primera oportunidad de poner a prueba, a través de las observaciones directas, las teorías modernas sobra la formación de las supernovas. En el observatorio de Las Campanas, en Chile, fue observada la Supernova 1987A en la Gran Nube de Magallanes. Algunas características de la emisión de neutrinos de la SN 1987ª, podrían explicarse sin una hipotética fuente de energía subnuclear como la ME contribuyera a su explosión. El remanente estelar que ha quedado como consecuencia de la explosión de la Supernova 1987ª, podría ser una EQ, ya que el período de emisión de este pulsar es de P= 0.5 ms. Una EN canónica no podría tener una frecuencia de rotación tan alta.
El observatorio Chandra de rayos X de la NASA también encontró dos estrellas inusuales: la fuente RX J1856.5-3754 con una temperatura de 10 exp5. K y la fuente 3C58 con un período de 65 ms. RX J1856.5-3754 es demasiado pequeña para ser una EN convencional y 3C58 parece haberse enfriado demasiado rápido en el tiempo de vida que se le estima.
Combinando los datos del Chandra y del telescopio espacial Hubble, los astrónomos determinaron que RX J1856. 5 – 3754 radia como si fuera un cuerpo sólido con una temperatura de unos 1x 10 exp5. ºC y que tiene un diámetro de alrededor de 11 km, que es un tamaño demasiado pequeño como para conciliarlo con los modelos conocidos de las Ens.
Las observaciones realizadas por el Chandra sobre 3C58 también produjeron resultados sorprendentes. No se pudo detectar la radiación que se esperaba en la superficie de 3C58, una EN que se cree producto de la explosión de una supernova vista por astrónomos japoneses y chinos en el año 1181 de nuestra era. Se llegó a la conclusión de que la temperatura de la estrella, de menos de un millón de grados Celsius, era un valor mucho menor que el que predice el modelo. Estas observaciones incrementan la posibilidad de que los objetos estelares mencionados sean Eqs.
D) Ecuación de estado para la materia de quarks:
Las técnicas utilizadas para resolver las ecuaciones de la CDC no proveyeron aún un resultado aceptable para densidades bariónicas finitas como en el caso de la Electrodinámica Cuántica para el núcleo atómico. Como consecuencia, es necesario recurrir a modelos fenomenológicos para describir la materia de quarks dentro de las estrellas compactas cuando se consideran las propiedades de confinamiento y de libertad asintótica de la CDC. Uno de los modelos más usados es el modelo bag del MIT. En este modelo los hadrones son considerados como quarks libres confinados en una región finita del espacio: el “Bag“ o bolsa. El confinamiento no es un resultado dinámico de la teoría fundamental, sino que se coloca como parámetro libre, imponiendo condiciones de contorno apropiadas. Así, el modelo bag del MIT se basa en una realización fenomenológica del confinamiento.
Está claro que, las estrellas de Quarks, aunque con certeza no han sido aún detectadas, es casi seguro que andarán pululando por el inmenso Universo que, en relación a la materia bariónica, en muy buena parte, está conformado por Quarks.
La fuente de esta segunda parte del trabajo aquí expuesto, la encontré en una Revista publicada por la RSEF.
Jul
28
Las Sinfonías de los Agujeros Negros binarios
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (24)
Lo que nos cuentan Kip S. Thorne y otros especialistas en Agujeros negros nos posibilitan para entender algo mejor los mecanismos de estos extraños objetos que aún esconden misterios que no hemos sabido resolver. Está claro que muchas de las cosas que sobre agujeros negros podemos leer, son en realidad, especulaciones de cosas que se deducen por señales obervadas pero que, de ninguna manera, se pueden tomar como irrefutables verdades, más bien, las tomaremos como probables o muy probables de acuerdo a los resultados obtenidos de muchos experimentos y, ¿por qué no? de muchas horas de prácticas teóricas y pizarras llenas de ecuaciones que tratan de llegar al fondo de un saber que, desde luego, nos daría la clave de muchas cuestiones que en nuestro Universo son aún desconocidas.
En el corazón de una galaxia lejana, a más de 1.000 millones de años-luz de la Tierra y hace 1.000 millones de años, se acumuló un denso aglomerado de gas y cientos de millones de estrellas. El aglomerado se contrajo gradualmente, a medida que algunas estrellas escapaban y los 100 millones de estrellas restantes se hundían más hacia el centro. Al cabo de 100 millones de años, el aglomerado se había contraído hasta un tamaño de varios años-luz, y pequeñas estrellas empezaron, ocasionalmente, a colisionar y fusionarse, formando estrellas mayores. Las estrellas mayores consumieron su combustible y luego implosionaron para formar agujeros negros; y, en ocasiones, cuando dos de estos agujeros pasaban uno cerca del otro, quedaban ligados formando pares en los que cada agujero giraba en órbita alrededor del otro.
Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.
Puesto que la curvatura-espaciotemporal es lo mismo que la gravedad, estas ondulaciones de curvatura son realmente ondas de gravedad, u ondas gravitatorias. La Teoría de la Relatividad General de Einstein predice, de forma inequívoca, que tales ondas gravitatorias deben producirse siempre que dos agujeros negros orbiten uno en torno al otro.
Cuando parten hacia el espacio exterior, las ondas gravitacionales producen una reacción sobre los agujeros de la misma forma que una bala hace retroceder el fusil que la dispara. El retroceso producido por las ondas aproxima más los agujeros y les hace moverse a velocidades mayores; es decir, hacen que se muevan en una espiral que se cierra lentamente y hace que se vayan acercando el uno hacia el otro. Al cerrarse la espiral se genera poco a poco energía gravitatoria, una mitad de la cual va a las ondas y la otra mitad va a incrementar las velocidades orbitales de los agujeros.