miércoles, 02 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Energía Geotérmica

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Energías!    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mientras llega la Fusión Nuclear, esa energía limpia y sin residuos contaminantes (es el helio su desecho), tendremos que ir pensando en promocionar más intensamente otras fuentes de energía que, estando aquí, en el planeta, no le prestamos la debida atención. La Humanidad exige cada día más y más energía para poder desarrollar las nuevas formas de vida, las investigaciones, las metas y objetivos propuestos. Una de esas formas de energías es la que podemos obtener de la giotérmica del planeta.

        Planta de energía geotérmica en las Filipinas.

 

 


Introducción_____________________________________

Geotérmico viene del griego geo (Tierra), y thermos (calor); literalmente “calor de la Tierra”. La energía geotérmica es aquella energía que puede obtenerse mediante el aprovechamiento del calor del interior de la Tierra. El calor del interior de la Tierra se debe a varios factores, entre los que cabe destacar el gradiente geotérmico, el calor radiogénico, etc.

Historia_________________________________________

En el Siglo XVI y XVII se excavaron las primeras minas a unos cientos de kilómetros hacia el centro de la tierra que el hombre tuvo que deducir gracias a las sensaciones térmicas, ya que la temperatura aumentaba mientras se incrementaba con la profundidad.

Las primeras mediciones con termómetros, fueron realizadas en 1740, en una mina cerca de Belfort, en Francia.

 En 1870 se comienza a incrementar el método científico para estudiar el régimen termal de la tierra, pero no fue hasta el siglo XX, y el descubrimiento del calor Radiogénico (balance térmico) cuando empezó a cobrar importancia.

Los modelos Termales de la nueva tecnología, necesariamente, toman en cuenta el calor continuamente producido por el decaimiento de los isótopos radioactivos de larga vida del uranio (U234, U235), Torio (Th232) y Potasio (K40) presentes en la Tierra (calor radiogénico).

Además del calor radiogénico, están otras posibles fuentes de calor como la energía primordial de la acreción planetaria.

En 1980, se dispuso una teoría de estos modelos, cuando se comprobó que había un equilibrio entre el calor radiogénico producido en el interior de la tierra y el calor disipado al espacio desde la tierra.

Las aguas termales se han utilizado a lo largo de la historia en diversas tareas domésticas, pero sólo desde comienzos del siglo XX los fluidos geotérmicos han sido destinados a otros usos más sofisticados.

Gracias a la presencia de volcanes, fuentes termales y otros fenómenos similares, llevó al hombre antiguo a suponer que el interior de la tierra poseía altas temperaturas.

 Ya durante el siglo XIX se extraían productos químicos de las emanaciones gaseosas en Larderello (Italia), hasta que en 1904 se realizó el primer intento para utilizar el vapor geotérmico en la generación de energía eléctrica. Actualmente, estas instalaciones generan 3.000 millones de MW.h/año de electricidad y son la base de una importante industria química de extracción de

Ácido bórico, amoníaco y helio.

En Islandia se utilizó por primera vez agua caliente geotérmica en 1925 y actualmente es el país con mayor aprovechamiento de calefacción geotérmica del mundo, extendiéndose su uso tanto en el ámbito doméstico como en el agrícola e industrial, al 80 % de la población. Otros países donde la energía geotérmica ha adquirido gran importancia son Nueva Zelanda, México, El Salvador, así como en algunas zonas de California (EE.UU.). Obsérvese que todas estas zonas coinciden con la localización de los cinturones sísmicos y áreas de volcanismo reciente

Puede afirmarse finalmente que el interés mundial por la energía geotérmica partió de la “Conferencia de Nuevas Fuentes de Energía” de la ONU (Roma, 1961). Así, en la actualidad existen en funcionamiento numerosas plantas de producción de energía eléctrica geotérmica, el uso de la energía geotérmica para electricidad ha crecido mundialmente a cerca de 8.000 megawatt de los cuales EE.UU. genera 2.700 MW.

geotermia agua Geotermia: Agua supercrítica

Si queremos reducir las emisiones de CO2 y producir energía limpia en una escala que hará la diferencia, tendremos que ir mucho más abajo en la tierra misma.

Funcionamiento de las Centrales Geotérmicas__________

En muchos lugares de la Tierra se producen fenómenos geotérmicos que pueden ser aprovechados para generar energía útil para el consumo. Estas fuerzas se desarrollan en el interior de la corteza terrestre, normalmente a profundidades de 50 km, en una franja llamada sima o sial; algunas de sus manifestaciones sobre la superficie son los volcanes activos.

Conforme descendemos hacia el interior de la corteza terrestre se produce un aumento gradual de temperatura, estimado en 1 grado cada 37 metros de profundidad. Sin embargo, en determinadas zonas de nuestro planeta, por ejemplo en algunas islas volcánicas de Canarias, las altas temperaturas se encuentran a nivel de la superficie. En estos casos, es cuando una instalación geotérmica resulta más rentable.

Para aprovechar la energía geotérmica se recurre a sistemas similares a los empleados en energía solar con turbina, es decir, calentamiento de un líquido que puede tener distintas aplicaciones, pero que habitualmente se destina a producir vapor con el que se da impulso a la turbina, que a su vez mueve un generador eléctrico.

Los sistemas geotérmicos producen un rendimiento mayor con respecto a otros sistemas, y además tienen un costo de mantenimiento menor. De hecho, la única pieza móvil de una central geotérmica es el sistema de turbina-generador, y por tanto todo el conjunto tiene una vida útil más larga. Además, la energía utilizada está siempre presente, lo cual apenas implica variaciones, como sucedería en otros sistemas que dependen, por ejemplo, del caudal de un río o del nivel de radiación solar.

Planta geotérmica

El funcionamiento de una central geotérmica es bastante simple: consta de una perforación practicada a gran profundidad sobre la corteza terrestre (unos 5 km), con objeto de obtener una temperatura mínima de 150º C, y en la cual se han introducido dos tubos en circuito cerrado en contacto directo con la fuente de calor.

Una vez que se dispone de pozos de explotación se extrae el fluido geotérmico que consiste en una combinación de vapor, agua y otros materiales. Éste se conduce hacia la planta geotérmica donde debe ser tratado. Primero pasa por un separador de donde sale el vapor y la salmuera y líquidos de condensación y arrastre, que es una combinación de agua y materiales. Esta última se envía a pozos de reinyección para que no se agote el yacimiento geotérmico. El vapor continúa hacia las turbinas que con su rotación mueve un generador que produce energía eléctrica. Después de la turbina el vapor es condensado y enfriado en torres.

A pesar de su sencillez, el sistema está pensado fundamentalmente para aplicaciones que no requieran un suministro de energía a gran escala, debido a las características geotérmicas de las rocas. Al contrario de lo que sucede con los metales, las rocas o la arena no tienen capacidad conductora del calor, es decir, la conservan, por eso si se utilizase una central geotérmica con intención de producir energía a gran escala llegaría un momento en que el proceso se detendría. El motivo, es que la sima del interior de la corteza terrestre donde está el calor aprovechable se va enfriando progresivamente conforme se le inyecta agua fría, y si el régimen de inyección es alto llegará un momento en que la sima ha cedido más calor del que puede recuperar, precisamente por su baja capacidad de conducir la temperatura. Este inconveniente impide el funcionamiento continuo de la central, deteniéndose a determinados intervalos hasta que la roca recupera una temperatura suficiente para reanudar el funcionamiento normal.

En algunas regiones de la tierra este inconveniente no se produce, porque las altas temperaturas están casi a flor de tierra, lo que permite extender tuberías en horizontal, en vez de en vertical, garantizándose que la recuperación de la temperatura de la roca o de la arena se realice casi a la par que su enfriamiento

geotermica

 

 

La energía geotérmica es aquella que se obtiene gracias al calor acumulado en las rocas o al agua depositada en el interior de la Tierra a una temperatura elevada. Y sus ventajas son muchísimas.

Tipos:

1) El tipo que se construya depende de las temperaturas y de las presiones de la reserva. Una reserva de vapor “seco” produce vapor pero muy poca agua. El vapor es entubado directamente en una central de vapor “seco” que proporciona la fuerza para girar el generador de turbina. El campo de vapor seco más grande del mundo es The Geysers, unas 90 millas al norte de San Francisco.

2) Una reserva geotérmica que produce mayoritariamente agua caliente es llamada “reserva de agua caliente” y es utilizada en una central “flash”. El agua que esté entre 130 y 330ºC es traída a la superficie a través del pozo de producción donde, a través de la presión de la reserva profunda, algo del agua se convierte inmediatamente en vapor en un “separador”. El vapor luego mueve las turbinas.

3) Una reserva con temperaturas entre 110 y 160ºC no tiene suficiente calor para producir rápidamente suficiente vapor pero puede ser utilizada para producir electricidad en una central “binaria”. En un sistema binario el agua geotérmica pasa a través de un intercambiador de calor, donde el calor es transferido a un segundo líquido que hierve a temperaturas más bajas que el agua. Cuando es calentado, el líquido binario se convierte en vapor, que como el vapor de agua, se expande a través y mueve las hélices de la turbina. El vapor es luego recondensado y convertido en líquido y utilizado repetidamente. En este ciclo cerrado, no hay emisiones al aire.

Costa Rica

Costa Rica es un país rico en energías renovables, de hecho a día de hoy obtiene un 99 % de la energía de fuentes renovables. Dispone de una amplia gamas de fuentes de energía como la geotérmica, quema de caña de azucar y otros residuos de la biomasa, energía solar y energía eólica. Bueno, también tiene otras energías.

Países a la cabeza________________________________

Islandia es uno de los países con mayor potencial para aprovechar la energía geotérmica de alta temperatura. Chile, Perú, México, Estados Unidos, Canadá, Rusia, China, Japón, las Filipinas, Indonesia y otros países a lo largo del anillo del fuego (un área de alta actividad volcánica que cerca la cuenca del océano Pacífico) son ricos en energía geotérmica. Otro punto caliente geotérmico es el gran valle del Rift de África, que incluye países como Kenia y Etiopía. En todo el mundo, 39 países con una población de 750 millones de personas obtienen recursos geotérmicos suficientes para cubrir todas sus necesidades de electricidad.

Los países que actualmente están produciendo más electricidad de las reservas geotérmicas son Estados Unidos, Nueva Zelanda, Italia, México, las Filipinas, Indonesia y Japón, pero la energía geotérmica está siendo también utilizada en otros muchos países.

Nueva Zelandia es quizá el país más experto del mundo en materia de centrales geotérmicas, debido a su topografía volcánica que hace idóneo el uso de este tipo de energía. Puso en funcionamiento la segunda central geotérmica del mundo (la primera se instaló en Italia).

El Instituto Geotérmico de Nueva Zelanda, dependiente de la Universidad de Auckland, es pionero en la investigación geotérmica y en el desarrollo de tecnología para aprovechar esa energía. Fue creado en 1978, a petición de las Naciones Unidas en el marco de su Programa de Desarrollo, ante la necesidad de un centro que pudiese formar a nuevos expertos en energía geotérmica procedentes de otros países. Otros centros similares se encuentran en Islandia, Italia y Japón.

Nueva Zelandia reposa sobre los bordes de dos placas tectónicas que se presionan la una a la otra, originando terremotos y vulcanismo. La principal región termal del país se extiende a través de la Isla del Norte, ocupando 247 Km de longitud por 59 de ancho. En ella se encuentran tres volcanes activos. Las centrales de Wairakei y Ohaaki están enclavadas en esta región.

Central Eléctrica De Wairakei, Nueva Zelandia

Central geotérmica de Wairakei (Nueva Zelanda).

Producción Mundial_______________________________

Los Estados Unidos lideran el mundo en la generación de electricidad del calor de la tierra. En agosto de 2008, la capacidad geotérmica en Estados Unidos sumó casi 2.960 megavatios en siete estados: Alaska, California, Hawaii, Idaho, Nevada, New México y Utah. California, con 2.555 megavatios de capacidad instalada -más que cualquier otro país en mundo- produce casi el 5 % de su electricidad con energía geotérmica. La mayor parte de esta capacidad está instalada en un área llamada los Geysers, una región geológicamente activa al norte de San Francisco.

La electricidad generada de los recursos geotérmicos cuesta ahora igual que la electricidad basada en combustibles fósiles en muchos mercados de los Estados Unidos occidentales. Con la economía favorable, la industria geotérmica está experimentando una oleada de actividad. En agosto de 2008, cerca de 97 nuevos proyectos confirmados de energía geotérmica con hasta 4.000 megavatios de capacidad estaban en desarrollo en 13 estados, con unos 550 megavatios ya en la fase de la construcción. Se espera crear 7.000 trabajos a tiempo completos permanentes. La nueva capacidad incluirá numerosos grandes proyectos, tales como los 350 megavatios y los 245 megavatios de los proyectos de Vulcan Power cerca de Salt Wellsy de Aurora, en Nevada; los 155 megavatios proyectados por CalEnergy cerca de Salton Sea en el sur de California; y los 120 megavatios proyectados por  Davenport Power cerca del volcán de Newberry, en Oregón.

El Ministerio de Energía de EE.UU. estima que con las tecnologías a baja temperatura emergentes se podrían desarrollar por lo menos 260.000 megavatios de recursos geotérmicos estadounidenses. Un estudio llevado a cabo por el Instituto de Tecnología de Massachusetts indica que con una inversión de cerca de mil millones de US$ en investigación y desarrollo geotérmico durante 15 años (cerca del coste de una sola nueva central eléctrica de carbón) se podría alcanzar el despliegue comercial de 100.000 megavatios antes de 2050.

  

                                                                                  Planta de energía Geotérmica en Filipinas

Diez de los 15 países líderes que producen electricidad geotérmica están en el mundo en desarrollo. Filipinas, que genera el 23 por ciento de su electricidad de la energía geotérmica, es el segundo productor del mundo por detrás de Estados Unidos. Las Filipinas apuntan a aumentar su capacidad geotérmica instalada antes de 2013 en más del 60 %, a 3.130 megavatios. Indonesia, el tercero del mundo, tiene incluso mayores planes, añadiendo 6.870 megavatios de nueva capacidad geotérmica en desarrollo durante los 10 siguientes años, igual a casi el 30 % de su capacidad de generación de electricidad actual de todas las fuentes. Pertamina, la compañía indonesia del petróleo del estado, proyecta la construcción de la mayor parte de esta nueva capacidad, agregando su nombre a la lista de compañías de energía que están comenzando a diversificar en el mercado de la energía renovable.

El potencial de desarrollo geotérmico del gran Valle del Rift en África es enorme. Kenia es el primero en el esfuerzo para alcanzar este potencial. En junio de 2008, el presidente Mwai Kibaki anunció un plan para instalar 1.700 megavatios de nueva capacidad geotérmica durante los próximos 10 años, 13 veces más que la capacidad actual y una vez y medio mayor que la capacidad de producción total de electricidad del país de todas las fuentes. Djibouti, ayudado por Reykjavik Energy Invest, que se comprometió a proporcionar 150 millones de US$ para proyectos de energía geotérmica en África, tiene el objetivo de extraer el calor de la tierra para producir casi toda su electricidad durante los próximos años. Otro desarrollo es la African Rift Geothermal Development Facility (ARGeo), una organización internacional financiada en parte por el Banco Mundial que intenta aumentar el uso de la energía geotérmica en el gran Valle del Rift, protegiendo a los inversionistas contra pérdidas durante los primeros tiempos de desarrollo.

Papua Nueva Guinea

 

 

Más de mil nuevas especies han sido descubiertas en la isla de Nueva Guinea entre 1998 y 2008, pero la tala y la conversión del bosque a la agricultura, entre otras actividades, están poniendo a muchas de estas criaturas únicas en riesgo. Estudios independientes han demostrado que 24% de los bosques del este de la isla fueron talados o degradados a través de la tala o la agricultura de subsistencia entre 1972 y 2002, según señala Final Frontier: Newly Discovered species of New Guinea (1998-2008), elaborado por el Fondo Mundial para la Naturaleza (WWF).

Nueva Guinea es la mayor isla tropical de la Tierra -dividida entre Papua Nueva Guinea en el Este e Indonesia en el Oeste- y contiene la tercera selva tropical más grande del mundo. El informe muestra que 218 nuevos tipos de plantas, 43 reptiles y 12 mamíferos han sido encontrados en la isla durante un período de diez años. A esta explosión de biodiversidad hay que añadir nada menos que 580 especies de invertebrados, 134 especies de anfibios, dos especies de aves y 71 especies de peces, entre ellas un raro tiburón de río.

¿Tendrá algo que ver con dicha explosión de la vida, la presencia de energías geotermales en la región?

La industria, que es responsable de más del 30 % del consumo mundial de energía, también está comenzando a acercarse a la energía geotérmica fiable y barata. En Papúa Nueva Guinea, una central eléctrica geotérmica de 56 megavatios propiedad de Lihir Gold Limited, una compañía global líder de oro, da respuesta al 75 % de la demanda de energía corporativa a un coste notablemente más barato que la producción de energía con combustible fósil. En Islandia, cinco centrales eléctricas geotérmicas planeadas cerca de Reykjavik, que se calcula que tendrán una capacidad total de 225 megavatios cuando están terminadas en 2012, proporcionarán electricidad a las nuevas refinerías de aluminio.

A pesar del potencial de desarrollo medido en centenares de millares de megavatios, la explotación de esta fuente renovable de energía todavía está en su infancia. Pero a medida que más y más líderes nacionales comienzan a ver la energía renovable como una alternativa rentable y con poco carbono a los combustibles fósiles tan volátiles en su precio e intensivos en carbono, se espera que la producción de energía geotérmica se mueva rápidamente desde un afluente marginal a la corriente principal.

La geotermia es una de las grandes desconocidas cuando hablamos de energías verdes. Se trata de la energía que se encuentra en el subsuelo, siempre asociada a actividad volcánica, aguas termales, géiseres o fumarolas, y con multitud de beneficios. Los yacimientos pueden llegar a alcanzar temperaturas superiores a los 100-150ºC (llamados de alta entalpía), o por debajo de los 100ºC (de baja entalpía). ¿Aún no conoces las ventajas de la energía geotérmica?

Las ventajas de la energía geotérmica

Energía geotérmica

        Una energía respetuosa con el Medio ambiente

Una de las principales ventajas de esta energía es su mínimo impacto medioambiental. La utilización de esta fuente energética no sólo no produce prácticamente residuos sino que, además, reduce drásticamente el consumo de combustibles fósiles y, por tanto, de emisiones de CO2. Por otro lado, el coste de producción de electricidad es menor que el de las plantas de carbón e, incluso, que el de las centrales nucleares.

Impacto Ambiental________________________________

El impacto visual suele ser considerable si las plantas geotérmicas se ubican en campos geotérmicos que suelen coincidir con espacios de gran valor natural y paisajístico (géiseres, termas, etc.)

También, aunque en mucho menor grado, existe la posibilidad de disminuir los niveles de agua subterránea, con las consiguientes pérdidas de presión, hundimientos del terreno, compactación de formaciones rocosas, etc. Para evitarlo es preciso controlar y mantener la presión de las reservas de agua.

Las plantas de aprovechamiento de la energía geotérmica pueden estar sometidas a potenciales sucesos catastróficos.

En zonas con alta actividad tectónica, la reinyección de fluidos en el terreno, durante la explotación de las reservas, puede aumentar la frecuencia de pequeños terremotos en la zona.

Estos efectos pueden ser minimizados reduciendo las presiones de reinyección al mínimo y asegurando que los posibles edificios afectados por los movimientos sísmicos estén preparados para soportar la intensidad de estos terremotos. La actividad sísmica de mayor intensidad podría causar filtraciones de fluidos a algunas partes indeseadas del sistema.

Las erupciones hidrotermales suelen ser atípicas y ocurren cuando la presión de vapor en los acuíferos se intensifica y eyecta hacia arriba la tierra que lo cubre, creando un cráter.

Mantener la presión en las reservas puede ayudar a reducir la frecuencia de la ocurrencia de erupciones, también se deben evitar las excavaciones en terrenos con actividad termal.

Muchos de los proyectos de aprovechamiento de la energía geotérmica se encuentran en terrenos accidentados y, es por eso, que son más susceptibles que un terreno llano a deslizamientos del suelo. Esto puede ocasionar graves accidentes si las rocas que caen dañan los pozos o las tuberías, lo que podría resultar en el escape de vapores y líquidos a alta temperatura.

La probabilidad de que esto ocurra puede ser minimizada conteniendo todas las pendientes susceptibles de sufrir deslizamientos de tierra, aunque esto podría aumentar el impacto visual del proyecto.

                                                                                                                                     La perfecta ecología

Ventajas e inconvenientes__________________________

Ventajas

  1. Es una fuente que evitaría la dependencia energética del exterior.
  2. Es ecológica.
  3. Los residuos que produce son mínimos y ocasionan menor impacto ambiental que los originados por el petróleo y el carbón.
  4. Sistema de gran ahorro, tanto económico como energético.
  5. Ausencia de ruidos exteriores.
  6. Los recursos geotérmicos son mayores que los recursos de carbónpetróleogas natural y uranio combinados.
  7. No está sujeta a precios internacionales, sino que siempre puede mantenerse a precios nacionales o locales.
  8. El área de terreno requerido por las plantas geotérmicas por megavatio es menor que otro tipo de plantas. No requiere construcción de represas, tala de bosques, ni construcción de conducciones (gasoductos u oleoductos) ni de depósitos de almacenamiento de combustibles.
  9. La emisión de CO2, con aumento de efecto invernadero, es inferior al que se emitiría para obtener la misma energía por combustión.
Los vertidos de estas chimeneas de una fábrica alteran y contaminan la atmósfera.

Contaminación por vertido de petróleo no es la mejor imagen.

 

Inconvenientes

  1. En ciertos casos emisión de ácido sulfhídrico que se detecta por su olor a huevo podrido, pero que en grandes cantidades no se percibe y es letal.
  2. Contaminación de aguas próximas con sustancias como arsénicoamoníaco, etc.
  3. Contaminación térmica.
  4. Deterioro del paisaje.
  5. No se puede transportar (como energía primaria).
  6. No está disponible más que en determinados lugares.

Aquí finalizamos el presente trabajo referido a la energía geotérmica en el que, de manera básica se han explicado las principales características de este tipo de energía que, en definitiva, tiene su fuente el calor de la Tierra.

Aunque la Tierra se formara inicialmente a partir de materia fría que se contrajo por acción de la Gravedad, durante la formación posterior del núcleo líquido y en los períodos de intensa actividad volcánica, se ha liberado una enorme cantidad de calor. Los frecuentes impactos de objetos pesados también han contribuido al calentamiento de la superficie. Hay mucha incertidumbre sobre la historia térmica de la Tierra de los últimos 3.000 millones de años, durante los cuales el planeta se ha ido enfriando y una gran parte de este flujo de calor ha alimentado los movimientos geotectónicos globales, creando nueva corteza en las dorsales oceánicas, un proceso que ha ido acompañado de terremotos recurrentes y erupciones volcánicas de lava, cenizas y agua caliente.

Solamente hay dos posibles fuentes de calor terrestre, pero la importancia relativa de las respectivas contribuciones no está aún clara. El calor basal, liberado por un lento enfriamiento del núcleo terrestre, debe representar una gran parte del flujo total, si bien cálculos basados en la desintegración radiactiva de ²³⁵U, ²³⁸U, ²³²Th y ⁴ºK sugiere que éste representa al menos la mitad y quizás hasta nueve décimos del flujo total del calor del planeta. Esta disparidad obedece a la incertidumbre en la concentración de ⁴ºK en la corteza terrestre. Pero sea cual sea la proporción, el flujo total, basado en miles de medidas realizadas desde los años cincuenta, está próximo a los 40 TW.

La desintegración radiactiva sería la piedra filosofal definitiva, la piedra que los alquimistas pensaban que podía convertir el plomo en oro o, de manera más general, un elemento químico en otro diferente.

desintegracion-radiactiva-esquema-nuclear

La energía implicada en la radiactividad proviene de la conversión de masa. Si medimos las masas de los productos finales de una desintegración radiactiva, encontraremos que poseen menos masa que el núcleo  original.

El sobrante entre las masas de antes y después se convierte en energía según la ecuación E=mc2, y es esta energía la que podemos ver como la energía asociada con la radiación.

Aunque inicialmente se pensó que los flujos caloríficos continentales y oceánicos eran aproximadamente iguales, en realidad difieren de forma sustancial. Las regiones del fondo oceánico más recientes contribuyen con más de 250 mW/m², cantidad que supera hasta tres veces las zonas continentales más recientes. El flujo medio para el fondo marino es aproximadamente igual a 95 mW/m², lo que representa el 70 por ciento más que el correspondiente a la corteza continental. El flujo medio global es de 80 mW/m², unos tres órdenes de magnitud inferior al valor medio del flujo de calor de la radiación solar global.

La distribución espacial de los flujos de calor refleja la edad de las rocas de la corteza y la intensidad de las fuerzas geotectónicas. Las tasas de máxima producción se encuentran en el Pacífico Oriental, coincidiendo con las zonas de mayor crecimiento de corteza oceánica. Los máximos puntuales en el interior de esas zonas calientes provienen de emisiones hidrotermales localizadas a lo largo de las dorsales oceánicas. Estos emisores que se conocen como humeros negros debido a los sulfuros ennegrecidos que inyectan en las corrientes,, expelen agua que pueden alcanzar temperaturas de 360ºC y una potencia de 25-30 MW. Dado que el orificio de salida es bastante pequeño, estos flujos alcanzan densidades de potencia de 106-107 W/m², solo comparables a las mayores erupciones volcánicas.

Algunos de estos emisores hidrotermales más fríos emiten agua a temperaturas inferiores a 30ºC y constituyen el ambiente adecuado para el desarrollo de ecosistemas únicos basados en la producción primaria de bacterias quimioautótrofas. Estos organismos similares a los que se encuentran en ambientes terrestres ricos en azufre, toleran ambientes con alta acidez y obtienen su energía de la oxidación H2S abundante en el agua emergente. Pero esa, es ya otra historia que se aparta del sentido central de este trabajo que doy aquí por finalizado entendiendo que, el objetivo principal ha sido cumplido sobradamente.

Emilio José Silvera Toscano

El cuarto estado de la materia: ¡Plasma! ¿Habrá otros?

Autor por Emilio Silvera    ~    Archivo Clasificado en Los estados de la materia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En la Naturaleza hay muchos sistemas que exhiben estructuras, patrones y comportamientos dinámicos que no se esperan a priori dadas las leyes que gobiernan el comportamiento de los elementos que los componen. Se les llama sistemas complejos.

[DSC05850_resize.jpg]

               En un Bosque Tropical, por muchas razones, también está presente la complejidad

Hay varios ingredientes comunes a casi todos ellos. Son en su mayoría sistemas que se mantienen fuera del equilibrio termodinámico por acción externa. En ellos, se establecen fuertes interacciones no-lineales entre un gran número de componentes o grados de libertad; existen umbrales locales para la excitación de inestabilidades; asimismo, hay abundantes fluctuaciones y ruidos de distinto tipo y naturaleza. Ejemplos de estos sistemas son los Forestales, las Placas Testónicas e incluso muchos sistemas sociales y económicos. Pero, en este caso, nos centraremos en un sistema complejo que está presente en el Universo y que, es en realidad el estado más común que adopta la materia conocida: ¡El plasma!

Sección del reactor Tokamak de ITER, el más rentable y prometedor de todos los reactores de fusión termonuclear.

La dinámica del plasma es extremadamente compleja, y en la actualidad no se ha logrado comprenderla por completo. Científicos del Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), que han trabajado en el cálculo de plasmas para el Stellarator español TJ-II, y del Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) de la Universidad de Zaragoza realizan simulaciones de plasmas que se obtendrán en el proyecto ITER.

Pero continuémos con el artículo…

Comportamientos de este tipo son también comunes en muchos Plasmas, un estado de la materia similar a un gas en el que las partículas están ionizadas y que son extremadamente comunes en nuestro Universo. Aunque las ecuaciones que las gobiernan son relativamente simples, su comportamiento es muy variado debido a la extrema sensibilidad que tienen a la presencia de campos magnéticos y eléctricos.

En nuestro Universo, el Plasma está presente en mucho lugares y, de hecho, es la forma más común de la materia conocida y que podemos observar, es decir, la Bariónica, la que emite radiación. Todas las estrellas del cielo están compuestas de materia en forma de plasma. También son filamentos de plasma los que podemos observar en los remanentes de supernovas.

                                                                      Condensación de Bose-Einstein

¿Cómo cuarto estado? ¿Es que no existen tres estados? Existe el gas, el líquido y el sólido…¿existen mas estados? Pues sí que existen y, además del Plasma, existe todavía un quinto estado de la materia: los condensados de Bose-Einstein, predichos por Bose y Einstein en 1924, realizados en el laboratorio durante el año 1995 por Eric Cornell, Wolfgan Ketterle y Carl Wieman. Ganadores éstos del Nobel en el 2001, pudieron enfriar átomos hasta casi dejarlos inmóviles. Éste nuevo estado poseen propiedades que otros estados no poseen como la superconductividad y la superfluidez. Sigamos.

Por ello, los Plasmas se encuentran a menudo en la frontera entre comportamiento ordenado y desordenado, siendo tan inadecuado describirlos usando funciones matemáticas sencillas y suaves como mediante formalismos puramente aleatorios. En este artículo, Raúl Sánchez, Boudewijn Ph, van Milligen y Juan M.R. Parrondo, repasan algunos de los comportamientos complejos observados en Plasmas diversos, desde los de interés para generar energía de fusión hasta Plasmas atmosféricos, solares y astrofísicos.

 

¿Qué son los Plasmas Astrofísicos?  Pues arriba, en la imagen de la Nebulosa de Orión está presente

Las características de los plasmas astrofísicos (su densidad, su temperatura y su campo magnético) cubren un amplio rango de valores en el Universo. La densidad puede ser de menos de una partícula por centímetro cúbico (como en el medio intergaláctico) hasta muchos millones de millones de partículas por centímetro cúbico como (en el interior de las estrellas). La temperatura va desde algunos miles o decenas de miles de grados en los espacios intergaláctico e interestelar hasta varios millones en el interior de las estrellas. Y los valores del campo magnético también cambian muy drásticamente, desde valores de millonésimas de Gauss en el plasma intergaláctico hasta cientos de miles de Gauss en algunas estrellas. En astrofísica, pues, es fundamental la investigación de los plasmas magnetizados.

En las últimas décadas ha adquirido gran popularidad la llamada comunmente teoría de la complejidad. El número de artículos, libros y trabajos que de una manera u otra se engloban dentro de lo que se llama complejidad es gigantesco. Sin embargo, no existe tal teoría de la complejidad, al menos en el sentido tradicional de una teoría cerrada al estilo de la relatividad o la mecánica cuántica.

File:Mandel zoom 12 to 13.png

    Si observamos con atención, podemos ver cómo en el Universo, muchas cosas se repiten y tienden a copiar patrones

Lo que se conoce como teoría de la complejidad es más bien un conjunto de ideas, modelos paradigmáticos, técnicas y herramientas que pueden ser útiles para caracterizar la dinámica de los llamados sistemas complejos. La definición de los mismos es también imprecisa, habiendo posiblemente tantas definiciones diferentes como investigadores trabajando en ese campo.

Aquí, introduzco algunos comentarios míos que vienen a dejar en el aire preguntas que quisiéramos tener resueltas, como por ejemplo:

¿Por qué la ciencia se las arregla para un cohete a un planeta distante, haciéndonos saber qué día y a qué hora llegará, pero nos deja inciertos sobre el pronóstico meteorológico del fin de semana? ¿Existen sistemas que no se pueden predecir? ¿Por qué? ¿Cuáles son? Causas y azares cuenta la historia del caos y de los sistemas complejos, de cómo se descubrió que pequeñísimas variaciones en las condiciones iniciales de un sistema podrían dar lugar a resultados insospechados, es decir, cómo los sistemas son capaces de comportarse caóticamente.

En este artículo, los autores también expondrán sus definiciones, y, para ellos, un sistema complejo cuando está compuesto de un gran número de partes o grados de libertad que interaccionan no-linealmente entre sí y que, como resultado de esta interacción, exhiben comportamientos dinámicos no extendibles como la simple suma de los comportamientos individuales de sus componentes. Entre estos comportamientos se suelen mencionar fenómenos de auto-organización y emergencia, así como la exhibición de propiedades como auto-similaridad espacial y temporal, o la importancia de la memoria en la dinámica del sistema.

          Muchos son los sistemas que están auto-organizados y siguen una dinámica que les dicta la memoria.

Por auto-organización se entiende que el hecho de que el Sistema evoluciona expontáneamente, sin ser guiado desde fuera, hacia un punto fijo de la dinámica en el que, manteniendose fuera del equilibrio terrmodinámico, se exhiben el resto de propiedades. Entre las propiedades emergentes destacan la aparición de patrones espaciales o temporales y estructuras macroscópicas y coherentes. En muchos casos, estos estados atractores de la dinámica son invariantes bajo cambios de escala (es decir, auto similares) y su evolución temporal tiene una fuerte dependencia de la historia previa del sistema, lo que se conoce como memoria. Los Plasmas son un estado de la materia similar a un gas, pero en el que una fracción más o menos grande de los átomos que lo componen se encuentran ionizados.

Enorme cantidad de átomos ionizados están presentes en esa protuberancia del Sol que, al estar formados por partículas cargadas, son extremadamente sensibles a la presencia de campos eléctricos y magnéticos, los cuales pueden cambiar rápidamente debido al movimiento de las cargas, , que hacen que cualkquier perturbación de los mismos se atenúe o, por el contrario, crezca exponencialmente dando lugar a algunas de las múltiples inestabilidades posibles en estos sistemas..

La descripción más sencilla de estos Plasmas viene dada por el sistema acoplado formado por una ecuación cinética que describa la evolucíón de la función de distribuición de iones y electrones, más la ecuación de Maxwell incvluyendo en sus fuentes las densidades de cargas y corrientes debidas al movimiento de las cargas que forman el Plasma.

Fenómenos emergentes en Plasmas

Debido a este acoplamiento tan fuerte y no-lineal entre partículas cargadas y campos, existen en todo momento un gan número de grados de libertad en constante interacción en estos plasmas, lo que hace que sean medios extremadamente turbulentos. Por ello, los plasmas son un gran medio de cultivo en el que aparecen dinámicas complejas en el sentido anteriormente descrito.

Ejemplos de fenómenos emergentes pueden encontrarse en las dinamos solares y galácticas, procesos por el cual estrellas y galaxias son capaces de generar un campo magnético macroscópico no nulo o reforzar un campo preexistente a través de la interacción no linela entre grados de libertad cinéticos y magnéticos de los Plasmas que las componen.

Por ejemplo, la dinámo solar es el proceso por el cual se genera el campo magnético dipolar del Sol. El mecanismo detallado de su generación es aún desconocido, aunque parece claro que es generado por una corriente eléctrica que fluye en su interior, producida por la rotación diferencial de la gran bola de plasma que es el Sol.

En general, el tipo de dinamo producido depende de la estructura de este flujo diferencial. Por ejemplo, en presencia de un campo semilla externo, el movimiento diferencial del fluido lo retuerce y lo refuerza. En otros casos,  la dinamo es auto-generada, como es el caso del Sol. La dirección del campo magnético solar resultante se invierte aproximadamente cada 11 años, lo que causa los ciclos de manchas solares asociados a los tubos magnéticos que suben a la superficie del Sol desde el interior. La secuencia temporal de estas inversiones es sin embargo mucho más complicada que una simple variación periódica, y exhibe correlaciones temporales de largo alcance (es decir, memoria).

  Las grandes manchas solares que podemos observar cuando el Sol está en plena actividad. Nuestro Sol es una compleja bola de plasma, la Dinámica de las llamaradas solares, de las que más arriba y abajo podemos observar una muestra, son tan potentes que inciden en nuestro planeta situado a ciento cincuenta millones de kilómetros. De hecho, esa actividad solar, el comportamiento del plasma nos lleva hasta las transiciones de fase de la materia que en lugares como el corazón de las estrellas, se pueden transmutar de sencillos en complejos. La vida no sería posible sin las estrellas.

Las llamaradas solares son uno de los fenómenos solares más impresionantes y también de los más estudiados tanto teóricamente como experimentalmente. Existen abundantes series temporales obtenidas de la observación de las mismas, y la comprensión de su estadística es un campo de estudio tan intenso como el del estudio de los mecanismos físicos que gobiernan su aparición.

Se trata de eventos catastróficos que tienen lugar en la corona solar, probablemente disparados por la inestabilidad asociada a la reconexión de líneas magnéticas, y que producen una emisión sobre practicamente todo el espectro electromagnético. La reconexión que tiene lugar en la corona es alimentada desde el interior del Sol por la combinación de complejos flujos turbulentos y la rotación diferencial del Sol. la acumulación de tubos magnéticos en la corona provenientes del interior del Sol continua hasta que supera un umbral crítico.

No podemos negar, en contra de nuestro deseo, que la estructura interior del Sol sigue siendo misteriosa, y, aún tenemos que llegar a comprender algunos mecanismos interiores que inciden en el devenir del astro, es causa de sus comportamientos y, sobre todo, cuando podamos conocerlos, nos permitirá, quizás, tener fuentes de energías de las que ahora carecemos.

Podríamos seguir con las tormentas magnéticas y el transporte radial inducido por turbulencia marginal en plasmas de fusión, o bien, centrarnos en Modelos efectivos de transporte para sistemas complejos. También se podría hablar aquí de que la materia, seguramente  adopta otros estados que aín no hemos llegado a conocer como esa hipotética “sopa de Quarks-Gluones” que, seguramente, está presente en el ámbito estelar.

Se cree que si elevamos las temperaturas más de cien mil veces la que hay en el interior del Sol, la materia adoptaría ese estado de plasma de quarks-gluones. He leido por ahí que:  “El plasma de quarks-gluones es un estado de la materia en el que los quarks, que normalmente aparecen en parejas o tríos, flotan libremente en una sopa caliente cósmica. Los teóricos creen que el universo estaba en este estado unos microsegundos tras el Big Bang, justo antes de enfriarse y pasar al estado normal de materia que vemos actualmente”.

“El acelerador del CERN ha pulverizado el récord de temperatura causado por el ser humano. En su búsqueda de la materia primigenia del universo ha creado un plasma de más de cinco billones de grados Celsiuss; cuatrocientas mil veces más caliente que el nucleo del Sol y un 38% más que la anterior marca.

En el Libro Guinness aún figura la temperatura que estableció el Laboratorio Nacional de Brookhaven (Nueva York) en 2010 durante un experimento parecido —de colisión de iones pesados—. Alcanzaron los cuatro billones de grados Celsiuss. En cuanto los científicos del CERN puedan dar una cifra exacta de la que han conseguido ellos —que rondará los 5,5 billones ºC—, se apoderarán del récord.

Los resultados se han medido en el experimento ALICE del LHC. Este detector está especializado en registrar y estudiar lo que ocurre al colisionar nucleos atómicos pesados. Su objetivo es conocer la naturaleza íntima de la materia, además de las condiciones de los primeros instantes del universo. Aunque su trabajo no es romper récords de temperatura, era casi inevitable que el acelerador del CERN se llevase la gloria. Nadie puede colisionar partículas con tanta energía.

El material que ha alcanzado una temperatura tan elevada es un plasma de quarks y gluones. Estos son, respectivamente, los ladrillos y el cemento de la materia. En estado plasmático fluyen sin unirse entre sí en lo que se cree que fue la primera materia del universo tras el Big Bang. Éste se comporta como un gas perfecto —sin fricción alguna— hasta que se transforma en materia ordinaria.”

Bueno, creo que el objetivo de lo que pretendía al comentar está cumplido.

emilio silvera

¡La Vida! Ese misterio ¿Cómo surgiría en el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Astrobiologia

Una característica sorprendente de nuestro retrato reconstruido del antepasado primitivo es su carácter moderno. Si este organismo lo encontráramos hoy, seguramente no delataría su inmensa antigüedad, excepto por sus secuencias de DNA. Tuvo que estar precedido, necesariamente, por formas más rudimentarias, estadios intermedios en la génesis de sistemas estructurales, metabólicos, energéticos y genéticos complejos que son compartidos por todos los seres vivos de hoy en día. Por desgracia, tales formas no han dejado descendientes igualmente primitivos que permitan su caracterización. Esta carencia complica mucho el problema del origen de la vida.

 

Lo cierto es que algunas reconstrucciones que hemos podido hacer del hombre primitivo del pasado, nos lleva a pensar que,  si le damos un buen baño, lo llevamos a una peluqueria y le ponemos un buen traje…, no sería fácil distinguirlo de los viandantes de cualquier ciudad del mundo y podría, sin duda alguna, pasar inadvertido.

 

 

500 millones de años después, cuando se enfrió la Tierra, surgió en ella los primeros signos de vida

 

La Tierra nació hace unos 4.550 millones de años. Se condensó, junto con los otros planetas del sistema solar, en un disco de gas y polvo que giraba alrededor de una joven estrella que iba a convertirse en nuestro Sol. Fenómenos de violencia extrema,  incompatible con el mantenimiento de ningún tipo de vida, rodearon este nacimiento. Durante al menos quinientos millones de años, cometas y asteroides sacudieron la Tierra en formación, con lo que la hicieron capaz de albergar vida durante todo este tiempo. Algunos impactos pudieron haber sido incluso suficientemente violentos como para producir la pérdida de toda agua terrestre por vaporización, después de lo cual los océanos se habrían vuelto a llenar con agua aportada por cometas. Según esta versión de  los acontecimientos, los océanos actuales de remontarían a la última oleada de bombardeo cometario intenso, que los expertos creen que tuvo lugar hace unos cuatro mil millones de años. Existen señales de que había vida en la Tierra poco después de que dichos cataclismos llegaran a su fin.

Algunos investigadores creen que el tiempo que pasó entre el momento en el que la Tierra se hizo habitable y aquel en el que apareció la vida, fue demasiado corto para que surgiera algo tan complejo como una célula viva. De ahí la hipótesis de que la vida llegó desde otro lugar. ¿Qué debemos pensar de ello?

 ¿ Que la vida llegó al espacio exterior?

Sección cortada que muestra la apariencia del interior y la textura de la zona de fractura del meteorito.

La teoría de que la vida es de origen extraterrestre ha tenido ilustres defensores. Entre ellos, el químico sueco Svante Arrhenius, ganador del premio Nobel de química de 1903 y recordado hoy por su concepción profética del efecto invernadero, acuñó el término <<panspermia>> para su teoría de que hay gérmenes de vida que existen en todo el cosmos y caen continuamente sobre la Tierra. Más recientemente, un célebre astrónomo inglés, sir Fred Hoyle, quien murió  en 2001, afirmó, junto con un colega de Sri Lanka, Chandra Wickramasinghe, haber detectado pruebas espectroscópicas de la presencia de organismos vivos en cometas. Más adelante veremos cuáles son estas pruebas. Francis Crick, codescubridor con James Watson de la estructura en doble hélice del DNA, ha propuesto incluso, con otro científico de origen inglés, Leslie Orgel, que los primeros organismos vivos pudieron haber alcanzado la Tierra a bordo de una nave espacial enviada por alguna <<civilización distante>>. Ha dado el nombre de <<panspermia directa>> a esta hipótesis.

Ayer mismo dejamos aquí éstas imágenes de abajo que los de la NASA publicaron dejando en el aire una respuesta categórica sobre lo que en el meteorito de Marte podría estar presente y, simplemente, dejaban la hipótesis de que podrían ser “microbios fosilizados”. La respuesta quredará pendiente para cuando podamos nosotros mismos pisar aquel planeta.

El meteorito destaca la presencia de lo que parecen ser microbios fosilizados.

                                   ¿ Microbios fosilizados?

Dejando a un lado la nave espacial, de la que hasta ahora no se ha encontrado señal alguna, un origen extraterrestre de la vida es perfectamente verosímil. La objeción que tantas veces se ha manifestado de que organismos vivos no podrían soportar las condiciones físicas que hay en el espacio, especialmente la intensa radiación ultravioleta, no se sostiene, porque rápidamente se advierte que cometas o meteoritos pueden ofrecer protección a los organismos. La destrucción por el calor durante su entrada en la atmósfera terrestre podría evitarse de forma similar. Además, la posibilidad de que la vida pueda ser un fenómeno extendido, que exista en muchos lugares del universo, es algo que tiene cada vez más adeptos. Así, la eventualidad de que organismos vivos viajen a través del espacio en varios <<objetos voladores>> está lejos de ser inverosímil. Pero, ¿qué hay de las pruebas? Más cerca de la credibilidad está el hecho mismo de que, en el espacio interestelar y en las nebulosas, se crean moléculas primordiales para la vida que, cuando se forman los mundos, les llega la oportunidad de florecer cuando el ambiente en ellos es propicio.

Bombardeo de asteroides en la Tierra temprana. d. a. aguilar/harvard-smithsonian

Bombardeo de cometas y asteroides en la Tierra primigenia

La argumentación de que no hubo tiempo suficiente para que la vida surgiera localmente en la Tierra se basa en una valoración puramente subjetiva y arbitraria, que no está corroborada por ningún elemento objetivo. No existe prueba alguna de que la aparición de la vida requiera cientos de millones de años, como se ha afirmado. Por el contrario, la visión esencialmente química y determinista que hay que tener de este fenómeno lleva a creer más bien, que la vida surgió de manera relativamente rápida, en un período de tiempo que con probabilidad hay que contar milenios y no en millones de años.  Según esta concepción, el margen de unos cien millones de años que permiten los datos actuales deja tiempo suficiente para que la vida naciera en la Tierra. Es incluso posible que la vida surgiera y desapareciera varias veces antes de establecerse de manera “definitiva”.

Buscar moléculas de azucar en el espacio exterior, sería una manera de acercarnos a posibles formas de vida en las que, estas moléculas están presentes.

Quedan todas esas observaciones, claramente innegables, que demuestran que los constituyentes elementales de la vida existen en cometas y otros objetos celestes. Pero, ¿estas sustancias son producto de la vida, como creen los defensores de la panspermia? ¿O bien son, por el contrario, el fruto de reacciones químicas espontáneas? la segunda explicación se considera la más probable de las dos.

Es probable que los procesos que tienen lugar en el espacio exterior hayan llevado a que las moléculas biológicas se encuentren exclusivamente en forma destrógira o levógira. Esta es la conclusión que arroja unos experimentos llevados a cabo en la instalación de sincrotrón SOLEIL cerca de París, en la cual se encontró que un número de moléculas simples en regiones de formación estelar expuestas a radiación polarizada creaban aminoácidos con un desequilibrio de moléculas dextrógiras y levógiras.

Las conocidas como m0léculas quirales pueden existir en dos formas, siendo una la imagen especular no superponible de una sobre la otra, incluso aunque ambas tienen la misma composición química. Si bien los experimentos de laboratorio tienden a producir cantidades iguales de las versiones dextrógiras y levógiras, muchas de las moléculas quirales encontradas en organismos vivos proceden de una de las variedades. Por ejemplo, los aminoácidos que forman las proteínas solo aparecen en la forma levógira, mientras que los azúcares del ADN sólo en la dextrógira.


Ahora se cree que es posible que moléculas como las encontradas en esta gigantesca nube, hayan sido de gran ayuda para crear la vida en la Tierra. Estamos en la inmensa Orión, ahí, el mayor Laboratorio químico que podamos imaginar harían las delicias de todos los químicoas de la Tierra y, no digamos de los astrónomos que darían parte de su vida por ver, in situ, como se forman las estrellas nuevas. Tambien ahí están presentes transformaciones maravillosas que van dejando a punto esos “ladrillos· constituyentes que darán lugar a que, en algín mundo cercano, pueda surgir la vida.

Tenemos un amplio campo  de complejas respuestas que tenemos que desvelar, descorriendo para ello el velo de ignorancia que cubre nuestras mentes. En este difícil tema de la Vida, aunque mucho es lo que hemos llegado a comprender, es mucho más lo que de ella ignoramos y, nadie, hasta el momento ha podido decir con palabras plenas qué es la Vida. Sin embargo, ahí está, en mil formas y estados que hacen despertar nuestra curiosidad y nos empuja a querer llegar a comprender, lo que la vida es.

Desde una charca fangoza y caliente, hasta la copia de los árboles pera, seguir hasta los pensamientos y, ahora, tratar de llegar a las estrellas. No, no ha sido fácil ni corto el camino que hemos tenido que realizar y, aunque sólo sea una fracción del tiempo del Universo, para nosotros, nuestra especie humana, es muchísimo tiempo en el que, hemos podido, al menos, llegar a comprender que aún nos queda mucho por hacer.

La química de la vida es la química del carbono -hasta donde podemos saber-, actuando el agua como disolvente capaz de transportar moléculas de un lugar a otro. Los elementos químicos más utilizados por los organismos biológicos son Carbono, Oxígeno, Nitrógeno e Hidrógeno que se combinan entre sí junto con algunos pocos elementos más para formar moléculas orgánicas básicas (como aminoácidos y azúcares que pueden encontrarse en algunos cometas y nebulosas donde pueden formarse libremente en el frío espacio) y luego estructuras mucho más complejas como proteínas y enzimas capaces de desarrollar una química compleja capaz incluso de permitir que algunas moléculas se repliquen. Aunque la ciencia ficción ha tratado otras posibles formas de vida basadas en elementos químicos distintos, los biólogos y los químicos no parecen estar de acuerdo argumentando a favor de las propiedades únicas de los átomos de carbono y las moléculas de agua.

El Universo es muy, muy grande y en toda su vasta extensión existen múltiples formas de objetos en los que se podrían dar las precisas condiciones para que la vida, pudiera surgir. Aquí mismo, en nuestro Sistema solar existen “pequeños mundos” en los que nos podríamos encontrar con sorpresas que, no por intuidas dejarán de asombrarnos.

Los científicos están casi seguros de que Europa tiene un océano bajo su superficie helada. Esta recreación artística ilustra una posible vista seccional a través de la corteza de hielo de Europa. El calor asciende desde el manto rocoso de Europa, posiblemente por medio de una sustancial actividad volcánica, y de ese modo mantiene el océano lo bastante caliente como para que conserve su estado líquido, hasta que muy arriba prevalecen el frío y el hielo. (Imagen: NASA JPL)

“Una investigación revela que el peróxido de hidrógeno abunda por gran parte de la superficie de Europa, satélite de Júpiter. Los autores del estudio argumentan que si ese peróxido de la superficie se mezcla del modo adecuado en el océano del subsuelo, podría ser una importante fuente de energía para formas simples de vida, si es que hay vida en dicho océano subterráneo”.

La nucleosíntesis estelar está cerca de contestar nuestras preguntas sobre la vida. Es cierto, como decía aquel hombre sabio que: “La incompensión del Universo radica en que nosotros, formamos parte, del misterio que tratamos de desvelar”.

El estudio de la vida en el Universo se ha extendido en las últimas décadas en un campo científico interdisciplinar entre la astrofísica y la biología que ha acuñado el término de astrobiologíay se ocupa de cuestiones muy diversas que van desde la definición de qué es la vida a el origen de la vida en la Tierra o las posibilidades de su desarrollo en otros mundos.

emilio silvera

Siempre hemos mirado al cielo…Para asombrarnos y saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (16)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

UN POCO DE HISTORIA

El contacto de Grecia con las civilizaciones vecinas de Egipto y Mesopotamia, resultó determinante para la evolución de la ciencia en campos como, las Matemáticas y la Astronomía, también la medicina y otros. Sería tedioso enumerar todos los hallazgos científicos logrados por los griegos, incluidos los de esplendoroso periodo helenístico de Alejandría. Si las manifestaciones artísticas revelan no sólo un gusto exquisito, una atención especial es requerida por el apartado de las ciencias y la filosofía. Centrémonos en la Astronomía.

Los pueblos antiguos registraran muy bien los movimientos de objetos celestes como Júpiter o la Luna, pero que no desarrollaran la idea de que existían planetas rotando alrededor del Sol. Sólo observaban y usaban su sentido común, el cual les hablaba de una Tierra quieta, por cuyo cielo desfilaban estrellas de origen desconocido.

Leer más

¡El Tiempo pasa! Los ingenios espaciales cumplen años

Autor por Emilio Silvera    ~    Archivo Clasificado en Exploración de los mundos    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                                                                    La Mars Express visita Marte y de eso hace ya 10 años

 

“El 3 de Junio de 2003 Europa daba finalmente el salto hacia otro mundo, y su primera sonda interplanetaria desde los tiempos de la Giotto, que visitó el corazón del cometa Halley en 1986, iniciaba a bordo de un cohete ruso Soyuz-FG/Fregat su viaje hacia Marte. Algo más de 6 meses después entraba con éxito en órbita marciana…”

Ahora la NASA no estaba sola en su exploración del planeta hermano y también Europa se hizo con su parcela en esa investigación. De hecho pudo contribuir a conocer mejor el planeta rojo gracias a la Mars Express se pudo acercar a la Ciencia americana del espacio en un nivel de  “igualdad”.

Tambien la sonda espacial Opotunity ha cumplido los 10 años en la superficie de aquel planeta y sigue dándo buenas noticias aunque, esté ya, algo renqueante. Todos están sorprendidos del comportamiento de éste ingenio humano que partío de la Tierra en el año 2003, viajando hacia Marte en el que estaría 9o días pero, ¡lleva ya en él 3.200 durante los que ha podido recorrer más de 35 kilómetros.

Rebotó 26 veces contra el terreno rocoso antes de descender completamente. Casi lo dan por perdido, pero sobrevivió. No cayó donde se esperaba, sino en un cráter de 22 metros de diámetro y aunque sus circuitos se activaron exitosamente, al segundo día tenía problemas mecánicos en sus brazos y articulaciones. Hoy, se moviliza hacia atrás, porque tiene una rueda atorada y dos de sus instrumentos no funcionan. Pese a lo anterior, el Opportunity se ha convertido en un ícono tecnológico para la Nasa.

No sólo porque fue (junto al Spirit) la primera nave que recorrió Marte y que comprobó que en ese planeta alguna vez el agua fluyó por su superficie. Sino también, porque es el vehículo más longevo de la exploración espacial: acaba de cumplir nueve años en suelo marciano, pese a que la misión inicial  sólo le daba 90 días de vida útil. Y ha recorrido más de 35 km del planeta: 50 veces más de lo planeado. “Nadie hubiese imaginado que este vehículo iba a realizar una exploración tan exhaustiva y menos tener tantos descubrimientos científicos”, dice a La Tercera  John Callas, jefe del programa de exploradores en Marte de la Nasa. Por eso, lejos de su jubilación, la agencia espacial prepara una nueva misión para el rover. Ahora, en busca de posibles rastros de vida microbiana.

El gran aporte de Opportunity ha sido entregar evidencia in situ de que Marte tuvo un pasado acuoso, es decir, que hace miles de millones de años fue un lugar cálido y húmedo por cuya superficie fluyó agua. Estos hallazgos los ha hecho siguiendo y examinando los minerales y arcillas de los rastros dejados en el suelo por lo que se creen fueron antiguos ríos o cursos de agua. Una labor que ha sido posible  gracias a su inesperada longevidad.

Uno de los técnicos de la NASA comentó:

“Los datos que encontramos a través del Opportunity confirman que antiguamente en Marte existió un ambiente con agua, lo que significa que el planeta tuvo un entorno favorable para la vida.”

Los análisis del rover también han mostrado que el planeta rojo pasó por al menos tres etapas geológicas: la primera hace 4.000 años, que fue relativamente húmeda; otra hace 3.500 años, que se caracterizó por su actividad volcánica, y la actual, que no presenta señal de vida. Y al igual que en la Tierra, en Marte también se forman  nubes de cristales de hielo.

Su último descubrimiento fue en agosto pasado, cuando en pleno viaje hacia el sur del cráter Endeavour, halló un campo lleno de esferas, blandas en su interior y ricas en hierro, que llamó la atención de los científicos y que nunca antes se habían visto en ese planeta.

Callas, uno de los científicos seguidores de la misión, nos dice:

“El Opportunity ha sido una excelente experiencia para la Nasa. Ayudó a confirmar el valor de los exploradores básicos y marcó una línea para las futuras versiones, como el Curiosity”. No es lo único, dice. Este rover ya  marcó a toda una generación. “Inspiró a jóvenes a involucrarse en carreras de tecnología y ciencia, algo que tendrá beneficios incontables en las próximas décadas”.

Basado en aquellos dos legendarios Rovers, Oportunity y Spirit, se envió uno más moderno y sofisticado al planeta, Curiosity que, se ha quedado con la atención del público y está realizando nuevos descubrimientos que vendrán a enriqurecer lo que ya sabemos de aquel planeta, entre otras muchas cuestiones y datos enviados, aparece una gran clolección de imágenes que hay que examinar con atención para poder obtener de ellas, los mensajes que nos envían desde millones de años de distancia en el pasado.

Muchas son las puertas que hemos podido abrir en quel planeta y, desde el descubrimiento de la presencia de agua en el presente que, congelada en la superficie podría estar líquida en el subsuelo, hasta los muchos lugares que tienen impresas las huellas de grandes correntías de ríos y arroyos, y, los mareales marcados en el suelo de algunas zonas que nos hablan de pasados océnaos y mares en aquel planeta.
Hace bastante tiempo que perseguimos la presencia de vida pasada, presente, o, incluso futuro en el planeta Marte y, todos los indicios nos hablan de que pudo haberla en algún tiempo pasado, que puede existir también en el presente en ciertos lugáres reconditos. Acordáos de aquel meteorito de Marte llegado a la Tierra: AL H-48001,1 se llama y, en él, muchos quisieron ver muchas cosas, como:

Granos de carbonato, en color naranja (100 a 200 micras de diámetro), indican que el meteorito estuvo una vez inmerso en el agua.

 

El meteorito destaca la presencia de lo que parecen ser microbios fosilizados.

 

 

 

                               Microbios fosilizados.

 

Bueno, el presente trabajo que es un pequeño homenaje a los primeros Rovers que salieron desde la Tierra hacia Marte en una aventura indecisa, resultó que nos ha dado beneficios impensables y, ahora, sin lugar a ninguna duda podemos decir que tanto Oportunity como Spirit (y las que vinieron detrás), nos han dado conocimientos que no teníamos y, han ayudado grandemente a que conoczcamos aquel planeta que algún día, lejano aún en el futuro próximo (no creo que antes de 50 años podamos estar allí), será una colonia de la Tierra.

¡Felicidades!!  Para todos los que de una u otra manera pudieron contribuir a que la misión fuese un éxito que redundará en nuestro futuro.

emilio silvera