Archivo de agosto de 2013
Ago
4
Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una vez potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?
La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron del “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.
Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.
La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

Ago
4

No siempre podemos dar una explicación cierta de lo que podemos captar con nuestros modernos aparatos tecnológicos que nos traen los más dispares y exóticos objetos y sucesos del espacio “infinito”. Lo cierto es que hemos avanzado y podemos dar alguna que otra explicación (muchas veces aproximada) de lo que ocurre ahí fuera. Sin embargo, hay muchas cosas que se nos escapan y de las que no podemos dar explicación alguna. Las preguntas son más abundantes que las respuestas.
Tratándo de saber, nos sumergimos en los complejos laberintos de las matemáticas, esas estructuras numéricas que el hombre ha sabido inventar para buscar respuestas de lo que no sabe y, partiendo de lineas finitas de puntos relacionados por reglas, pasando por las geometrías, sistemas de recuento como la aritmética de los números enteros, más tarde fracciones, luego decimales y otras estructuras más complejas y grupos y así, sucesivamente y avanzando y subiendo indefinidamente, en una escala asecendente de complejidad que nos ha llevado a matemáticas topológicas cuya inmensa complejidad ponen de punta los pelos de las cejas de los físicos y, todo ello, para buscar una respuesta que no logramos alcanzar.

Y, miesntras tanto, el tiempo transcurre inexorable sin nunca nuestrá búsqueda llegue a su fin
Hemos llegado a poder conocer el significado de inmensas y diminutas estructuras que son creadas en el Universo sin cesar. Unas llegan y otras se van, siempre, acompañadas por un tiempo sin fin. Nosotros que tratamos de comprender todo eso, buscamos el significado más profundo de todas esas estrcutras y, a veces, nos preguntamos cuál de esas estructuras puede describir de una forma completa cómo pudieron surgir los seres conscientes que ahora, tratan de buscar esas respuestas que, tan lejos están para ellos que, en realidad, parecen inalcanzables y, sin embargo…
Hemos podido llegar a tomar axiomas de algunos sistemas lógicos, y luego desarrollamos poco a poco todas las “verdades” que pueden ser deducidas a partir de ellos, utilizando las reglas de deducción prescritas, podemos llegar a vislumbrar una gran madeja de verdades lógicas extendidas ante nosotros. Si esa madeja de verdad nos lleva finalmente a estructuras que puedan describir completamente eso que nosotros llamamos “consciencia”, entonces podríamos decir que “está viva”, en cierto sentido. Claro que, no sabemos en qué sentido lo estaría.

Al no poder llegar a comprender esas estrcuturas de las que hablamos, nuestra imaginación inagotable en la búsqueda de nuevos caminos que nos conduzcan hasta las respuestas, ha ideado algunas formas y maneras de profundizar y, una de ellas, es la de crear modelos y simulaciones por ordenador, por ejemplo, del proceso mediante el que se forman las estrellas y planetas. Esto es algo que los astrónomos se afanan en hacer. La formación de estrellas es demasiado complicada de entender con todo detalle si utilizamos sólo lápiz y papel y el cálculo humano directo. Se necesita una rápida solución por ordenador de las ecuaciones que la gobiernan.
Algunas de esas simulaciones son extraordinariamente precisas. describen cómo se forman las estrellas y generan descripciones de planetas que encajan muy estrechamente con las observaciones que hacemos a través de nuestros sofísticados telescopios. Algunos científicos emtusiastas, sugieren que vayamos más lejos e introduzcamos en el ordenador montones de información sobre bioquímica y geología de modo que podamos seguir las predicciones del ordenador sobre la temprana evolución química de un planeta y su atmósfera. Cuando se hace esto los resultados son muy interesantes.

El ordenador describe la formación de moléculas autoreplicantes que empiezan a competir entre sí y a hacer cosas complicadas sobre la superficie joven del planeta. Aparecen hélices de ADN y empiezan a formar las bases de replicantes genéticos. La selección empiezxa a tener un impacto y los replicantes mejor adaptados se multiplican y mejoran rápidamente, extendiendo sus proyectos por toda la superficie habitable. El programa del ordenador sigue ejecutándose más y más tiempo. Finalmente, parece que algunas estructuras del programa están enviando señales a otras y almacenando información. Han desarrollado un sencillo código y lo que podríamos llamar una aritmética, que se basa en la simetría (octolateral) que poseen los replicantes más grandes. Los programadores están fascinados por este comportamiento, sin haber sospechado nunca que todo eso pudiera surgir de su programa original que ahora, parece haberse transformado, de tal manera que produce la sensación de que “tiene vida propia”.

Esta pequeña fantasía muestra de qué forma es concebible que el comportamiento que podríamos estimar consciente pudiera emerger de una simulación por ordenador. Pero si preguntamos dónde “está” este comportamiento consciente parece que nos vemos empujados a decir que vive en el programa. Es parte del software que se está ejecutando en la máquina. Consiste en una colección de deducciones muy complejas (“teoremas”) que se siguen de las reglas de partida que definen la lógica de la programación. Esta vida “existe” en el formalismo matemático.
En alguna parte he leído que:
“La ilusión de la creación libre de las propiedades de la situación y, por ello, de los fines de la acción, encuentra probablemente una aparente justificación en el círculo, característico de toda simulación condicional que pretende que el habitus sólo puede producir la respuesta objetivamente inscrita en su «fórmula» porque concede a la situación su eficacia de resorte, constituyendola según sus principios, es decir, haciéndola existir como cuestión pertinente por referencia a una manera particular de interrogar la realidad.”
Y, si eso es así (que lo es), nos podríamos preguntar: ¿Cómo estaremos seguros de las respuestas que obtenemos de programas que realizan las funciones determinadas por las instrucciones que nosotros mismos le hemos dado? Como nosotros no somos infalibles, es lógico pensar que, todo esto nos lleva a obtener respuestas incompletas pero que, cada vez, se acercan más a la realidad.

Pensando en todo esto, caigo en la cuenta de que hay cosas que no podemos explicar. Por ejemplo: Debido a su falta de voluntad para esforzarse con la misma intensidad en el estudio de los clásicos que en el de la ciencia y las matemáticas, Turing suspendió sus exámenes finales varias veces y tuvo que ingresar en la escuela universitaria que eligió en segundo lugar, King’s College, Universidad de Cambridge, en vez de en la que era su primera elección, Trinity. Recibió las enseñanzas de Godfrey Harold Hardy (¿os acordais, aquel que ayudo a Ramanujan?), un respetado matemático que ocupó la cátedra Sadleirian en Cambridge y que posteriormente fue responsable de un centro de estudios e investigaciones matemáticas de 1931 a 1934.

En 1935 Turing fue nombrado profesor del King’s College. En su memorable estudio “Los números computables, con una aplicación al Entscheidungsproblem” (publicado en 1936), Turing reformuló los resultados obtenidos por Kurt Gödel en 1931 sobre los límites de la demostrabilidad y la computación, sustituyendo al lenguaje formal universal descrito por Gödel por lo que hoy se conoce como Máquina de Turing, unos dispositivos formales y simples. Demostró que dicha máquina era capaz de implementar cualquier problema matemático que pudiera representarse mediante un algoritmo.
Las máquinas de Turing siguen siendo el objeto central de estudio en la teoría de la computación. Turing trabajó desde 1952 hasta que falleció en 1954 en la biología matemática, concretamente en la morfogénesis. Publicó un trabajo sobre esta materia titulado “Fundamentos Químicos de la Morfogénesis” en 1952. Su principal interés era comprender la filotaxis de Fibonacci, es decir, la existencia de los números de Fibonacci en las estructuras vegetales. Utilizó ecuaciones de reacción-difusión que actualmente son cruciales en el campo de la formación de patrones.

Controlar los pensamientos y sensaciones…
Parece increíble como a veces, no podemos controlar los pensamientos y, comienzas a realizar un trabajo que toma sus propios derroteros a medida que avanzas y te llegan nuevas ideas que son producto de los temas que tratas de estructurar. Así, nuestras mentes, como la máquina simuladora de la creación de estrellas, o, del comportamiento de las moléculas en esos mundos imaginados, toman unos derroteros que no siempre podemos explicar. ¿Cómo llegue a Turing?
¡Sabemos tan poco de nosotros mismos! Y, sin embargo, nada nos arredra y buscamos esas respuestas a preguntas que nadie ha sabido contestar como, por ejemplo: ¿Qué es la consciencia? ¿Qué es el Tiempo? ¿Quiénes somos nosotros? ¿Cómo llegamos aquí? ¿Estamos solos en el inmenso Universo?
emilio silvera
Ago
4
¡La Mecánica Cuántica! ¡Qué dolor de cabeza! No, no es fácil sumergirse en ese “universo” de los microscópico y llegar a entender del todo. ¡Son tantos los enigmas que están presente! Más de una vez he llegado a pensar sobre el hecho de que, aunque todo esté en el mismo Universo (lo micro y lo macroscópico), algunas veces nos puede dar la sensación de que son, “dos mundos diferentes” tal es la complejidad que encontramos cuando nos queremos acercar a esas distancias subatómicas donde viven e interaccionan las partículas elementales. Ese mundo, es totalmente ajeno a lo que podemos ver en nuestras vidas cotididianas, y, sin embargo, forma parte de este mundo nuestro. De hecho, todo lo grande está hecho de cosas pequeñas.

Imágenes fractales y la belleza matemática que las describen
Algunos buenos físicos, desde siempre, han hablado de la belleza implícita en las matemáticas y, generalmente, se refieren a que con una gran economía de números nos pueden hablar de muchas cosas y además profundas. Como ejemplo de lo que digo, podríamos recordar la fórmula de Einstein de la Relatividad especial que a todos nos es familiar E = mc² y, la que nos describe la más compleja Relatividad general que no llena ni una línea de este comentario y que, sin embargo, nos habla de uno de los pensamientos más profundos que el ser humano haya podido tener. De hecho, a partir de esa ecuación de campo de la R.G., comenzó realmente la historia de lo que hoy conocemos como cosmología, tantos son sus mensajes sobre el Universo.
En la teoría de la Supersimetría, las matemáticas son realmente bellas y lo mismo podríamos decir de la teoría de Yang-Mills. La primera nos habla de una simetría que puede ser aplicada a las partículas elementales con el fin de transformar un Bosón en un fermión y viceversa. En las teorías supersimétricas más simples, cada Bosón tiene un compañero fermiónico y cada fermión tiene un compañero bosónico. Los compañeros bosónicos de los fermiones tienen nombres formados añadiendo “s” al principio del nombre del fermión, por ejemplo, selectrón, squark y sleptón.

¿Supersimetría?
Los compañeros fermiónicos de los Bosones tienen nombres formados reemplazando el “on” del final del nombre del Bosón por “ino” o añadiendo “-ino”, por ejemplo gluino, fotino, wino, y zino.
Los infinitos que causan problemas en las teorías cuánticas de campo relativistas (obligando a la renormalización) son menos severos en las teorías supersimétricas, porque las contribuciones a los infinitos de los Bosones y los fermiones se pueden cancelar unos a otros.

La Supersimetría (SUSY) es una propiedad propuesta del universo, siendo una de las mejor motivadas extensiones del Modelo Estándar. El estudio de esta propiedad es un de los objetivos de los detectores de propósito general ATLAS y CMS del LHC.
La Supersimetría implica que para cada tipo de partículas haya otra asociada -supercompañera- de gran masa. Se trata de una réplica en forma de
bosón si la partícula “normal” es un
fermión y vicerversa… Por ejemplo, la supercompañera del
electrón (
fermión) es el llamado selectron (
bosón). Las supercompañeras de los
quarks (
fermiones) son los squarks (
bosones), mientras que la de un
fotón (
bosón) es el fotino (
fermión). Estas partículas supersimétricas, o spartículas, tienen la misma carga pero spin opuesto al de su compañera.
La Supersimetría describe una nueva imagen de nuestro universo formado por pares de partículas, de las que habitualmente solo podemos ver una de ellas. Quizás las otras sean las responsables de la misteriosa “
materia oscura”. Aúnque non han sido observadas, puede que aparezcan como resultado de las colisiones en el LHC. Las partículas supersimétrias podrían proporcionar un camino para la unificación de tres de las fuerzas fundamentales: la electromagnética, la débil y la fuerte.
La Supersimetría, en particular una versión llamada modelo supersimétrico minimal, alcanza esa unifación de una forma más natural. Predice 5 tipos diferentes de
bosones de
Higgs lo que implica un proceso más complicado para comprender como las partículas adquieren masa, si lo comparamos con el Modelo Estándar que solamente necesita de un Bosón de
Higgs.
Muchos dirán que para buscar una cosita tan pequeña se han desplegado demasiados recursos
La ausencia de señales en el CERN está poniéndo una bella teoría en duda – lo que hace que surgan interpretaciones rivales-. Y, aunque ultimamente se salió para dar algunas explicaciones que…, eran muy necesarias, toda vez que, el gasto hecho hasta el momento era grande y había que justificar… Pero, a pesar de todo lo que han dicho no estoy muy convencido de que la partícula que dicen haber encontrado sea el hipotético el Bosón de
Higgs.
Si la supersimetría es realmente una simetría de la Naturaleza, debe ser una simetría rota, aunque por el momento no hay evidencias concluyentes que muestren a qué energía debe romperse. No hay, de hecho, ninguna evidencia experimental para la teoría, aunque se piensa que puede ser un ingrediente especial en una teoría unificada de las interacciones. Esta no debe ser necesariamente una teoría de campo unificado; la idea de cuerdas con supersimetría es hasta el momento la mejor teoría para unificar a las cuatro fuerzas fundamentales de la Naturaleza y, en ella, los objetos básicos son unidimensionales (supercuerdas) que tienen una escala de longitud de unos 10 exp. 35 metros y, como distancias muy cortas están asociadas a energías muy altas, tiene una escala de energía del orden de 10 exp. 19 GeV, que está muy por encima de cualquier acelerador que, por ahora, pudiera construirse.

Experimentos insuficientes para llegar a las cuerdas
Las cuerdas asociadas con los Bosones sólo son consistentes como teorías cuánticas en un espacio-tiempo de 26 dimensiones; aquellas asociadas a los fermiones sólo lo son en un espacio tiempo de 10 dimensiones. Se piensa que las dimensiones microscópicas surgen por el mecanismo de Kaluza-Klein, estando las restantes dimensiones “enrolladas” para ser muy pequeñas. Una de las características más atractivas de la teoría de supercuerdas es que dan lugar a partículas de espín 2, que son identificadas con los gravitones. Por tanto, una teoría de supercuerdas automáticamente contiene una teoría cuántica de la gravedad.
Una propiedad general de modelos con dimensiones extra que los hace especialmente atractivos es la localidad en la dimensión extra. Campos cuatridimensionales (los modos de KK) pueden estar localizados en puntos diferentes de la dimensión extra, lo que automáticamente suprime, en ocasiones exponencialmente, los acoplamientos entre ellos. Esto nos permite por ejemplo explicar de forma sencilla la gran diferencia de masas entre unos fermiones y otros o sus patrones de mezcla. La localidd en la dimensión extra, combinada con la fuerte curvatura en el modelo de RS produce un patrón de nueva física extremadamente interesante. En estos modelos, los primeros modos de KK -los más accesibles experimentalmente- están localizados cerca de la brana infrarroja, en la que también se produce la rotura de simetría electro débil y por tanto la masa de los fermiones. Los fermiones ligeros, cuyas propiedades han sido estudiadas experimentalmente con gran detalle sin observar ninguna anomalía, son ligeros porque están localizados lejos de la brana infrarroja y acomplan por tanto débilmente a los primeros modos de KK. Esto explica que sus propiedades no se vean modificadas apreciablemente por las dimensiones extra. El quark top, por contra, es mucho más pesado porque está localizado cerca de la brana infrarroja y por tanto su acomplamiento a los modos de KK es mucho myor. Como resultado, una predicción de estos modelos es que las propiedades del quark top -que aún no han sido medidas con precisión pero que serán objeto de profundo estudio en el LHC- serán modificadas por las dimensiones extra y que los modos de KK asociados a dichas dimensiones se mostrarán fundamentalmente en forma de producción anómala de quarks top.

Todas estas propiedades hacen los modelos con dimensiones extra alabeadas muy atractivos, pero cobran una relevancia aún mayor cuando nos damos cuenta de que la famosa conjetura de Maldacena, aplicada a modelos con dimensiones extra alabeadas implica que estos modelos son duales a teorías cuatri-dimensionales fuertemente acopladas. Esto quiere decir que, incluso si las dimensiones extra no existiesen realmente, modelos tipo RS o sus generalizaciones aún pueden serútiles. En efecto, debido a la dualidad nos permiten hacer cálculos cuantitativos que aplican a toerías cuatri-dimensionales en las que, debido al acoplamiento fuerte, no resulta sencillo calcular de otra forma. Usando esta dualidad se han hecho estudios relevantes tanto para cromodinámica cuántica como para teorías de rotura de la simetría electrodébil mediante acoplamiento fuerte, como para modelos de tecnicolor o de Higgs compuesto, por ejemplo.
Es fácil intuir que, si estos modelos están relacionados con modelos fuertemente acoplados, sus restricciones experimentales serán bastante estrictas. Efectivamente, un estudio cuidadoso muestra que, aun usando ciertas simetrías que protegen los observables más sensibles, los modos de KK de los bosones de gauge (las partículas que median las interacciones) tienen que tener una masa del orden de 3500 GeV o mayor, haciéndolos más dificilmente observables en el LHC de lo que originalmente se pensó. Los modos de KK de los fermiones, por otro lado, pueden ser mucho más ligeros y fácilmente observables en el LHC.

Se piensa que las supercuerdas están libres de infinitos que no pueden ser eliminados por renormalización, que plagan todos los intentos de construir una teoría cuántica de campos que incorpore la gravedad. Hay algunas evidencias de que la teoría de supercuerdas está libre de infinitos, pero no hay una prueba definitiva. Aunque no existan evidencias directas de las supercuerdas, algunas de sus características son compatibles con los hechos experimentales observados en las partículas elementales, como la probabilidad de que las partículas no respeten paridad, lo que en efecto ocurre en las interacciones débiles.
Cuando hablamos de supergravedad lo hacemos de otra teoría aspirante a unificar todas las interacciones fundamentales conocidas que incorpora la supersimetría. La supergravedad se formula de forma más natural como una teoría de Kaluza-Klein en once dimensiones.
La teoría contiene partículas de espín 2, espín 3/2, espín 1, espín ½ y espín 0. Esta teoría, parece que contiene infinitos que no pueden ser renormalizados, es decir, no pueden ser eliminados. Muchos físicos piensan que para obtener una teoría cuántica de la gravitación consistente uno tiene que abandonar las teorías cuánticas de campos, pues se ocupan de objetos puntuales, y pasar a teorías cuyos objetos fundamentales sean extensos, como las supercuerdas y las supermembranas y, en consecuencia, la supergravedad no sería una teoría completa de las interacciones fundamentales.

Todas estas versiones de las teorías que tratan de unificar a las cuatro fuerzas de la Naturaleza han sido unificadas de forma magistral por W. Witten en su Teoría M que, sin embargo, y a pesar de su belleza descriptiva, aún no consigue el objetivo buscado, ya que, las matemáticas necesarias para su desarrollo final aún no son conocidas y las energías que exigen la experimentación no está en este mundo nuestro, estamos hablando de energías que sólo existieron en el momento de la creación.
Muchos han imaginado un agujero negro microscópico que contiene tanto las leyes de la gravedad como las de la mecánica cuántica y, la pregunta sería ¿cómo se debe describir su comportamiento? La pregunta tiene su lógica en que ese hipotético agujero negro se debería comportar como un átomo o molécula que obedecería a las leyes de la mecánica cuántica.
Cuando se hicieron cálculos en esa dirección, la sorpresa fue mayúscula, ya que las matemáticas que surgían eran las de la teoría de cuerdas. La fórmula para la captura y emisión de partículas por un agujero negro es exactamente igual a la fórmula de Veneziano. Lo cual resultaba extraño ya que no era un tema de cuerdas. Todo esto nos dice que la teoría de cuerdas está inacabada y, de manera formal, no podemos decir (aún) que algún día pueda ser compatible con la Gravedad.

Pero en la mecánica cuántica existen otros escenarios muy atractivos para nuestra imaginación. Sabemos que los átomos están formados por pequeños constituyentes, los protones, neutrones y electrones. Luego descubrimos que esos constituyentes, a su vez, tienen una subestructura: están formados de quarks y gluones. ¿Por qué, como probablemente todos hayamos pensado, el proceso no puede continuar así? ¿Quizá esos quarks y gluones, e igualmente los electrones y todas las demás partículas aún llamadas “elementales” en el modelo estándar, están a su vez construidas de unos gránulos de materia aún menores que no hemos sido capaces de observar en nuestros aceleradores de partículas?
Miremos a los quarks de un protón. La mecánica cuántica, la teoría maravillosa que controla todo el micromundo con increíble precisión, exige que el producto de la masa por la velocidad, el llamado “momento”, debe ser inversamente proporcional al tamaño de la “caja” en la cual ponemos nuestro sistema. El protón puede ser considerado como una de tales cajas y es tan pequeño que los quarks en su interior tendrían que moverse con una velocidad cercana a la de la luz. Debido a esto, la masa efectiva de los dos quarks más pequeños, up y dowm, es aproximadamente de 300 MeV, lo que explica porque la masa del protón es de 900 MeV, mucho mayor que la suma de la masa en reposo de los quarks y gluones.
En contraste con el protón, los propios quarks y también los leptones y todas las demás partículas en el modelo estándar parecen ser “puntuales”. Con esto quiero decir que sus propiedades no cambiarían ni siquiera cuando se colocaran en una caja mil veces más pequeñas que un protón. Aquí está nuestra dificultad: supongamos que estas partículas estuvieran compuestas de constituyentes aún más pequeños, estos tendrían que estar empaquetados más estrechamente y, por lo tanto, tendrían mucha más energía cinética (energía debida a sus rápidos movimientos) que habría que añadir a su propia masa. Pero entonces, ¿por qué son los quarks y los electrones tan ligeros?

Esto lo puedo explicar de forma más complicada. Los quarks dentro de los protones tienen tres clases de “masas”. Primero la que llamamos “masa libre”, o la masa que tendría si el objeto estuviera aislado. Pero para aislar un quarks fuera de un protón se necesita una cantidad infinita de energía y, por tanto, la masa libre de un quark es infinita. Esto es un concepto sin sentido y consecuentemente inútil. En segundo lugar, tenemos la masa efectiva de un quark dentro de un protón, que debido a las leyes de la mecánica cuántica está obligado a moverse de un lado para otro con gran velocidad. Ésta se llama “masa constituyente” tiene un valor de 300 MeV que es 1/3 de la masa del protón. La tercera clase de masa es la “masa algebraica”. Ésta es un parámetro que determina las propiedades del objeto llamado “término de masa” en sus ecuaciones. Para otras partículas, este término de masa corresponde a su masa real; para los quarks u y d esta cantidad es sólo de unos 10 MeV. El problema que tenemos es que los hipotéticos nuevos ladrillos constitutivos tendrían una masa constituyente muy grande, que es muchas veces mayor que la masa del objeto que forman. Es como si te pidieran construir una casa ligera como las briznas de algodón pero con sus pilares y estructura hechos de un material tan compacto como el acero macizo.
Claro que (como se suele decir), la esperanza es lo último que podemos perder, la Naturaleza misma nos ha dado un ejemplo de cómo se pueden conseguir cosas como esta. El pión también está formado por quarks y, como no es mucho más grande que el protón sería de esperar que ahí los quarks también tengan masas constituyentes de unos 300 MeV. Sin embargo, el pión, en vez de 600 MeV, solamente pesa 135 MeV. Esto se debe a que la masa del pión está protegida por una simetría: el pión es (aproximadamente) un Bosón de Goldstone.

Esto significa que quizá halla una forma de ver partículas tan ligeras como el electrón y que estén formadas por ladrillos constitutivos “más pesados”. Para ello se deben introducir simetrías, quizá tantas como partículas haya en el modelo estándar y, así, se podría explicar que todas las partículas conocidas son tan ligeras porque sus masas están protegidas por una simetría. Sin embargo, resulta que convertir esta idea en una receta matemática precisa es una tarea difícil.
Pocos son los casos en los que una partícula compuesta, de una manera espontánea, ha roto la simetría: uno sería el viejo modelo sigma de Gell-Mann y Lévy (la partícula Sigma compuesta realmente por quarks) y el otro es la teoría BCS de la superconductividad, donde aparece un fenómeno similar al mecanismo de Higgs debido a un estado ligado de dos electrones (el par de Cooper). Pero en el Modelo estándar se conocen con precisión muchas de las propiedades de las partículas de Higgs porque son responsables de las masas de las partículas conocidas.
Quizá el nuevo acelerador Large Hadrón Collider (LHC), que ya está en marcha, nos pueda desvelar algunos de los fenómenos asociados a tales esquemas, algunos incluso tienen la esperanza de que aparezcan, además del Bosón de Higgs, algunas otras partículas predichas en la teoría supersimétrica que ellos denominan WIMP y que, según dicen, pueblan los huecos de las galaxias y son, así responsables de la masa perdida que los astrofísicos no dejan de buscar.
Eso sería otra historia y, como el comentario tiene que finalizar, la dejaremos para contarla en otro próximo en el cual hablemos de esa “hipotética” materia y energía oscura que, en realidad, no sabemos con certeza ni que pueda existir y, de momento, parece más un artilugio de los cosmólogos para que las cuentas del Universo cuadren.
emilio silvera
Ago
3

Sí, es la única manera que tenemos de abarcar todo el Universo. En nuestras mentes están los resortes para ello y, aunque no físicamente, alcanzamos a vislumbrar toda la grandeza cósmica con nuestras mentes que son, esa parte de la metafísica del ser, lo que trasciende y puede ir más allá de lo que nuestros cuerpos pueden ir.
Los procesos científicos de los que aquí venimos hablando, aunque sea de manera inadvertida, lo cierto es que contribuyen a que nosotros, los humanos, nos veámos involucrados en la vastedad del Universo del que formamos parte y con el que, de alguna manera, estamos estrechamente conectados.
La Astronomía ha venido a diluir el aislamiento en el que se encontraban los moradores la Tierra que, con el ojo desnudo solo podían atisbar el Sol y la Luna, algunos planetas que se confundían con el lucero de la mañana, y, lejanas estrellas que, con su titilar, parecían estar enviándonos un mensaje en clave que no llegábamos a comprender.

La mecánica cuántica nos permitió asomarnos a esa ventana que nos dio la posibilidad de destruir esa metafórica e invisible linea que supuestamente nos separaba del distante del mundo de lo infinitesimal, allí donde se encuentran los secretos de la materia y fuerzas fundamentales que, al ser descubiertas, dejaron tambien a la intemperie el hecho cierto de que nosotros, estamos inevitable y estrechamente involucrados en todo aquello que estudiamos. Finalmente llegamos a ser conscientesde que formamos parte de ello, de ese todo que es la Naturaleza y que nos trajo aquí para que, con nuestra curiosidad, tratáramos de entenderla.

La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, nos pudo al tanto y nos reveló la unidad cósmica que se extiende desde la fusión nuclear en las estrellas hasta la química de la vida. La evolución darwiniana, al destacar que todas las especies de la vida terrestre están estrechamente relacionadas y que todas surgieron a partir de la materia ordinaria, nos puso de manifiesto que no existía ninguna muralla que nos separase de las otras criaturas de la Tierra, o del planeta donde surgimos a la vida. De la misma manera, entiendo, se producirán en otros mundos lejanos las mismas transiciones de fase que aquí sucedieron y, al final, todo desembocará en el surgir de la Vida que, como la nuestro (eso creo), estará basada en el Carbono.
Esa sensación de que, en cierto sentido, formamos un todo con el Universo, no es gratuíta, sino que, por el contrario, está fundada en datos y experimentos que nos costaron mucho, mucho tiempo, conseguir. Hace mucho tiempo que esa idea rondaba en la mente de nuestros antepasados que hicieron que el dios nos hicieran del polvo. El griego Heráclitos escribió que “todas las cosas son una sola”; Lao-Tse, en China, describió al hombre y la naturaleza como gobernados por un solo principio (“lo llamó el Tao”); y la creencia en la unidad de la Humanidad con el cosmos estaba difundida entre los pueblos anteriores a la escritura. Como lo puso de manifiesto el Jefe indio suquamish Seatle, quien declaró en su lecho de muerte que “todas las cosas están conectadas, como la sanfre que une a una familia. Todo es como una sola familia, os digo”.

Lo cierto es que, estamos ahí, formando parte del inmenso Universo y, hay algo sorprendente en el hecho de que la misma concepción general que tenían aquellas mentes del pasado, ha podido surgir de las ciencias que se enorgullecen de su lúcida búsqueda de hechos objetivos, empíricos. Desde los mapas de cromosomas y los registros fósiles que representan las interconexiones de todos los seres vivos de la Tierra, hasta la semjanza de las proporciones químicas cósmicas con las de las especies vivas de nuestro planeta, nos muestran que realmente formamos parte del universo en su conjunto y que, nuestro origen está en las estrellas, donde se formaron los materiales que hicieron posible nuestra existencia.
Claro que, a todo esto, posamos los pies en el suelo, miramos a todo la Humanidad y su condición intrínseca y, podemos ver, cuan lejos estamos de poder decir: ¡Somos un todo, fundidos con el Universo! Nuestra condición terrenal nos aprisiona y nos confina, prevalecen sentimientos animales, el instinto de conservación que nos hace ser como somos y, mientras que no evolucionemos lo suficiente…

La verdad, el Tiempo y la Historia
“Todo parece confluir en la representación de la Historia y de la Verdad histórica. El Tiempo, alado y con un reloj de arena que simboliza el paso de los instantes y la llegada de la muerte, trae del brazo a la Verdad, que se representaba desnuda para simbolizar la ausencia de disfraz o enmascaramiento. La Verdad reina sobre todo, es la figura central, y porta un cetro y un libro, que encierra la verdad histórica.”
Siempre hemos querido representar de mil maneras simbólicas lo que tendría que ser y, en realidad, siempre hacemos lo contrario de ello. Sabemos como son las cosas y, tratamos de ocultarlas a los demás, incluso, por conveniencias sociales o políticas, hemos tratado de cambiar esa historia para procurar que “diga” aquello que nos beneficia, aunque la realidad, sea todo lo contrario.
Aunque parezca algo exagerado, creo que, la verdad, solo la dicen los físicos y los poetas, esas personas privilegiadas que, algunas veces, viven fuera de este mundo sin salir de él. Todos los demás, por una u otra razón, tienden a falsear los hechos.


Unos ven Unicornios en fantásticos mundos que crean en sus mentes, y, los otros, viven en un Universo que, siendo real, les aleja de este.
Ya véis, por una razón los unos y por otras razones los otros, ambos -poetas y físicos- están fuera de este mundo y se encierran en sus “mundos privados” para transmitirles al mundo “real” lo que ven, lo que sienten. Por una parte se nos habla de la Naturaleza, de cómo creen ellos que funciona el Universo y tratan de decirnos por qué lo hace de esta o aquella manera y, se esfuerzan por comprender, dedicando horas, días y años a desvelar los secretos que están con nosotros y que, el común de los mortales no puede ni sabe ver. Ellos, los físicos, hacen ese inmenso trabajo para que el mundo siga adelante con los pies bien asentados en el suelo y, nuestras mentes, estén, lo más cerca posible a la realidad del mundo.
Los otros, los poetas, ven otro mundo. Ellos son más etéreos e inmateriales, están inmersos en un universo de percepciones que a los demás se les escapan, cuando consiguen “ver” con claridad en esas belles perfecciones que les muestran “sus realidades”, entonces y sólo entonces, la cuentan para que los demás sepan de ellas y puedan “oir” sus pensamientos. Alguien dijo que los poetas hablan en voz baja consigo mismo y, el mundo, les oye por casualidad.
Lo cierto es que, nos queda un buen camino por recorrer. En la naturaleza y en los demás sistemas que la integran, buena parte de los procesos que ocurren son intrínsecamente discretos, es decir, involucran (o podrían modelarse con) conjuntos discretos de partículas o individuos que interaccionan entre sí de una determinada manera. Átomos, moléculas, proteínas, bacterias, células, animales, personas, o incluso los factores del clima, son ejemplos de agentes activos en estos procesos, que cuando se juntan en un número lo bastante grande, dan lugar a la formación de cosas o cuestiones complejas de grandes dimensiones (galaxias o sociedades humanas, por ejemplo), que dan lugar a comportamientos colectivos que en nada nos recuerdan las interacciones microscópicas individuales que fueron el comienzo de todo.
![[clip_image002%255B5%255D.jpg]](http://lh6.ggpht.com/-QPapqzICeLk/Tycr693z54I/AAAAAAAABBg/Ah0vGFI7Bxk/s1600/clip_image002%25255B5%25255D.jpg)
Si pensamos en las fuerzas y energías en las que nos encontramos inmersos, pocas dudas pueden caber a estas alturas, el simple hecho de poder estar hablando de estas cuestiones… ¡es un milagro en sí mismo! Desmenuzar los componente del átomo, saber lo que ocurre en el interior profundo de las estrellas, conocer cómo la materia más simple se pueden transmutar, bajo ciertas condiciones, en otros más complejos que dispuestos en la debida proporción darán lugar a la bioquímica de la vida. El camino recorrido ha sido largo y hasta dramático, sin embargo, hemos llegado más lejos de lo que podría haber pensado un observador inteligente que, desde la segura lejanía, hubiera podido seguir todo el proceso evolutivo desde que nacieron las primeras estrellas hasta que, diez mil millones de años más tarde, surgieron los mundos y la vida.
¡Qué complejo es todo!
emilio silvera
Ago
3
Confirmado por el MIT. Una supernova a 575 millones de años-luz del Sistema Solar, ha sido descubierta por el Observatorio de Mallarca.
Investigadores del Observatorio Astronómico de Mallorca han descubierto una una supernova en una galaxia que se encuentra a 575 millones de años luz. El potente fenómeno ha sido confirmado por la Universidad de Harvard y el Instituto de Tecnología de Massachusetts (MIT).
Supernova sn1006c | Foto: NASA
El Observatorio Astronómico de Mallorca (OAM) ha descubierto una potente supernova en una galaxia a 575 millones de años luz, lo que ha sido confirmado por investigadores de la Universidad de Harvard y del Instituto de Tecnología de Massachusetts (MIT).
El descubrimiento ha sido anunciado por la Unión Astronómica Internacional (IAU) en una comunicación del Central Bureau for Astronomical Telegrams (CBAT), firmada por su director, Daniel W.E. Green, del Departamento de Ciencias Planetarias y de la Tierra de la Universidad de Harvard, según informa en un comunicado el observatorio.
La supernova SN 2013dv fue detectada por el programa robótico de búsqueda de supernovas del Observatorio de Mallorca, en una lejana galaxia en dirección a la constelación de Hércules, situada a 575 millones de años luz alejándose a 11.500 kilómetros por segundo.
Son esenciales para determinar con exactitud la velocidad de expansión del universo
Tras el hallazgo, investigadores de Harvard y del MIT confirmaron el descubrimiento y naturaleza de la supernova, con un gran telescopio norteamericano combinado con un espectrógrafo de alta resolución.Las estrellas de gran masa -a partir de seis veces la del Sol- acaban su fase final como supernovas, eyectando sus capas exteriores a velocidades de hasta 1.500 kilómetros por segundo.
La mayoría de las supernovas descubiertas por el Observatorio de Mallorca son del tipo Ia y II, y como en el caso de la supernova SN 2013dv, de tipo Ia, son esenciales para determinar con exactitud la velocidad de expansión del universo.
El equipo del Supernova Search Program del observatorio ha reutilizado la gran base de datos con miles de imágenes del programa de búsqueda de asteroides robotizado, comparándolas de forma automática con docenas de miles de galaxias registradas en otras imágenes de observatorios de Estados Unidos (Digital Sky Survey o NASA).
Los algoritmos desarrollados por el OAM para la autodetección de supernovas extragalácticas son similares a los utilizados para la vigilancia del medioambiente espacial de asteroides y satélites artificiales.
Con este descubrimiento, añade la nota, el Observatorio de Mallorca consolida su liderazgo en descubrimientos astronómicos españoles, con miles de asteroides, cometas, estrellas variables, novas y supernovas extragalácticas.
Fuente; Ante3.com