martes, 05 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Detector de materia oscura?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando se leen algunas noticias, podemos caer en el más profundo asombro al constatar contradicciones que van inmersas en la propia noticia. No se sabe lo que pueda ser la materia oscura ni de qué estará compuesta y, sin embargo, ¿sí han podido construir un aparato para buscarla? Si no sabemos lo que estamos buscando difícilmente podemos saber con qué lo podremos encontrar. Sin embargo, siendo posible su existencia, no hay que criticar que quieran comprobarlo de una vez por todas para seguir adelante sabiéndo de qué está hecho el Universo, o, por el contrario, buscar otras razones para dar una explicación científica al movimiento de las galaxias.

 

Hemos leído esta noricia “El detector de materia oscura más sensible del mundo”

 

“El detector de materia oscura más sensible del mundo comenzará muy pronto su rastreo oficial para captar el hipotético paso de partículas de materia oscura por la Tierra.

En el proyecto trabajan físicos de diversas instituciones en Estados Unidos y Europa, incluyendo la Universidad Brown, en Providence, Rhode Island, Estados Unidos, la Universidad de California, y el University College de Londres.

El detector LUX (de las palabras en inglés Large Underground Xenon) está ubicado a más de un kilómetro (casi una milla) de profundidad bajo las Colinas Negras (o las Black Hills en inglés), en una antigua mina de oro de Dakota del Sur, Estados Unidos, y es el dispositivo más sensible diseñado hasta ahora para buscar la materia oscura.

Aunque conforma más del 80 por ciento de la masa del universo conocido, la materia oscura no ha sido todavía detectada directamente.

Las partículas de materia oscuras no emiten luz. Por eso los científicos del LUX buscarán evidencias de las colisiones de partículas de materia oscura (que se asume serán lo que los teóricos llaman Partículas Masivas de Interacción Débil, o WIMPs por sus siglas en inglés) contra átomos de xenón dentro de la cámara del detector LUX. Si entre todas las partículas que interaccionen con átomos de xenón, hay algunas WIMPs, entonces los científicos deberían ser capaces de detectarlas a partir de dichas colisiones.

[Img #11827]
El físico Jeremy Mock, de la Universidad de California en Davis, inspecciona el detector LUX. (Foto: Matt Kapust / Sanford Lab)

El LUX requiere un ambiente con las menores perturbaciones posibles. En julio, el detector se instaló en un recinto del Laboratorio Sanford (Sanford Lab), emplazado a unos 1.480 metros (unos 4.850 pies) de profundidad. Allá abajo está protegido de la radiación cósmica que bombardea constantemente la superficie de la Tierra. El LUX también debe ser protegido de las pequeñas cantidades de radiación natural que proviene de la masa rocosa circundante. Por eso, el detector, que tiene más o menos el tamaño de una cabina de teléfono, fue encerrado dentro de un tanque de acero inoxidable de unos 6 metros (20 pies) de alto y 7 metros y medio (25 pies) de diámetro, que luego fue llenado con más de 250.000 litros (más de 70.000 galones) de agua desionizada ultrapura que escudará al dispositivo frente a la radiación gamma y los neutrones errantes.

El tanque de agua cuenta con 20 dispositivos fotomultiplicadores, cada uno lo bastante sensible como para detectar un fotón individual. Muy de vez en cuando, una partícula de alta energía causada por la radiación cósmica atravesará la tierra hasta llegar al LUX. Cuando eso suceda, el diminuto destello de luz resultante en el agua alertará a los investigadores de que la señal correspondiente indicada por el detector no ha sido causada por materia oscura, ayudándolos así a descartar falsas detecciones de esa escurridiza forma de materia.

El detector es un cilindro de titanio de pared doble de aproximadamente dos metros de altura y uno de diámetro. En lo básico es como un termo para bebidas, sólo que no alberga café sino un tercio de tonelada de xenón, en estado líquido, enfriado a una temperatura de 107 grados centígrados bajo cero. Dentro del termo, o criostato, hay otros 122 fotomultiplicadores de menor tamaño que informarán cuando una WIMP choque contra un átomo de xenón.

La colisión entre una WIMP y un átomo de xenón debiera producir dos destellos luminosos, uno en el punto de impacto y el segundo en una capa delgada de gas xenón que hay en la parte superior del detector. El segundo destello, más fuerte que el primero, estará causado por los electrones que se desprendan durante la colisión, los cuales serán arrastrados hacia arriba por el fuerte campo eléctrico dentro del dispositivo.

Valiéndose de diversos criterios, los investigadores compararán los datos de los dos destellos para determinar si lo detectado es realmente materia oscura.”

La Fuente: NCYT Amazings

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting