Sep
20
Comentario sobre Lovejoy y sobre la idea del Alma
por Emilio Silvera ~ Clasificado en Rumores del Saber ~ Comments (15)
Recordemos aquí algunos pasajes que pude encontrar en fuentes diversas, sobre todo, en el Libro Ideas de cuyo autor PETER WATSON, podríamos decir que aquí, nos dejó un enorme estudio del saber del mundo y de aquellos acontecimientos del pasado que, desde luego, no deberíamos olvidar. Aquí os dejo algunos pasajes que, de vez en cuando, apostillo con alguna que otra frase mía.
Arthur Oncken Lovejoy, historian and philosopher of science
Lovejoy era en todos los sentidos una figura impresionante. Leía libros en inglés, alemán, fránces, griego, latín, italiano y español, y sus estudiantes contaban como anécdota que, había pasado su año sabático de la Johns Hopkins dedicado a leer “los pocos libros de la biblioteca del Museo Británico que aún no había leído. Sin embargo, se le reprochó por tratar las ideas como “unidades” entidades subyacentes e inalterables, como los elementos químicos.
¡Qué cosas!
Beltrand Russell
Lovejoy fue ciertamente quien dio el impulso inicial a la historia de las ideas al convertirse en elprimer director del Journal of the History of ideas, fundado en 1.940 (entre los primeros colaboradores estaban Bertrand Russell y Paul O. Kristeller). En el primer ejemplar, Lovejoy expuso el objetivo primordial del Journal: explorar la influencia de las ideas clásicas en el pensamiento moderno.
Lo curioso del caso es que, en los años transcurridos desde su fundación (hace 67 años), el Journal of the History of ideas ha continuado explorando la sutil forma en que una idea lleva a otra a lo largo de la historia. He aquí algunos de los temas tratados en números recientes: El efecto de Platón en Calvino; la admiración que Nietzsche profesaba por Sócrates; el budismo en el pensamiento alemán del siglo XIX; la relación de Newton y Adam Smith; el vínculo de Emerson con el hinduismo; Bayle como precursor de Kart Popper; el paralelismo entre la antigüedad tardía y la Florencia del Renacimiento; etc.
En su ensayo aparecido en el Journal para celebrar el cincuentenario de su publicación, el colaborador que lo escribía identificaba tres fallos dignos de ser señalados.
Sep
20
¡Qué misterio esconde la materia? ¿Qué es la luz?
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (3)
Decaimiento β– de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón (β–) y un antineutrino electrónico. La desintegración beta se debe a la interacción nuclear débil, que convierte un neutrón en un protón (desintegración β–), o viceversa (β+), y crea un par leptón–antileptón. Así se conservan los números bariónico (inicialmente 1) y leptónico (inicialmente 0). Debido a la aparente violación al principio de conservación de la energía, estas reacciones propiciaron precisamente que se propusiera la existencia del neutrino. Precisamente de eso hablamos aquí.
Una vez escenificados los conceptos, diremos que, los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo. En realidad, los electrones no eran igualmente deficitarios. Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado. Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas. En ese caso, ¿qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?
En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1.930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas. En 1.931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.
La radiación alfa está compuesta por un núcleo de helio y puede ser detenida por una hoja de papel. La radiación beta, compuesta por electrones, es detenida por una hoja de papel de aluminio. La radiación gamma es absorbida cuando penetra en un material denso
Digamos que la solución de Pauli para explicar la masa perdida, era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida. Esa misteriosa segunda partícula tenía propiedades bastante extrañas. No poseía carga ni masa. Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía. A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.
Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y se liberaba un electrón, que, como en la decadencia beta, portaba insuficientes cantidades de energía. Enrico Fermi dio a esta partícula putativa el nombre de “neutrino”, palabra italiana que significa “pequeño neutro”.
Primera observación de un neutrino en una cámara de burbujas, en 1970 en el Argonne National Laboratory de EE. UU., la observación se realizo gracias a las líneas observadas en la Cámara de burbujas basada en hidrógeno líquido. Siempre hemos tenido imaginación para idear aparatos que nos ayudaran a desvelar los secretos de la Naturaleza. Más tarde, la cámara de burbujas, fue sustituida por la cámara de chispas.
El neutrón dio a los físicos otra prueba palpable de la existencia del neutrino. Como ya he comentado otras veces, casi todas las partículas describen un movimiento rotatorio. Esta rotación se expresa, más o menos, en múltiplos de una mitad según la dirección del giro. Ahora bien, el protón, el neutrón y el electrón tienen rotación de una mitad. Por tanto, si el neutrón con rotación de una mitad origina un protón y un electrón, cada uno con rotación de una mitad, ¿qué sucede con la ley sobre conservación del momento angular? Aquí hay algún error. El protón y el electrón totalizan una mitad con sus rotaciones (si ambas rotaciones siguen la misma dirección) o cero (si sus rotaciones son opuestas); pero sus rotaciones no pueden sumar jamás una mitad. Sin embargo, por otra parte, el neutrino viene a solventar la cuestión.
Supongamos que la rotación del neutrón sea +½. Y admitamos también que la rotación del protón sea +½ y la del electrón -½, para dar un resultado neto de cero. Demos ahora al neutrino una rotación de +½, y la balanza quedará equilibrada.
+½(n) = +½(p) – ½(e) + ½(neutrino)
Pero aun queda algo por equilibrar. Una sola partícula (el neutrón) ha formado dos partículas (el protón y el electrón), y, si incluimos el neutrino, tres partículas. Parece más razonable suponer que el neutrón se convierte en dos partículas y una antipartícula. En otras palabras: lo que realmente necesitamos equilibrar no es un neutrino, sino un antineutrino.
El propio neutrino surgiría de la conversación de un protón en un neutrón. Así, pues, los productos serían un neutrón (partícula), un positrón (antipartícula) y un neutrino (partícula). Esto también equilibra la balanza. En otras palabras, la existencia de neutrinos y antineutrinos debería salvar no una, sino tres, importantes leyes de conservación: la conservación de la energía, la de conservación del espín y la de conservación de partícula/antipartícula.
Para un electrón, protón o neutron la cantidad de espín es siempre 1/2 del valor mínimo de momento permitido (ħ).
Es importante conservar esas leyes puesto que parece estar presentes en toda clase de reacciones nucleares que no impliquen electrones o positrones, y sería muy útil si también se hallasen presentes en reacciones que incluyesen esas partículas.
Las más importantes conversiones protón-neutrón son las relaciones con las reacciones nucleares que se desarrollan en el Sol y en los astros. Por consiguiente, las estrellas emiten radiaciones rápidas de neutrinos, y se calcula que tal vez pierdan a causa de esto el 6 u 8 % de su energía. Pero eso, sería meternos en otra historia y, por mi parte, con la anterior explicación solo trataba de dar una muestra del ingenio del hombre que, como habréis visto, no es poco.
Aunque sólo una cinco mil millonésima de la luz solar llega a la Tierra, ha sido suficiente para dar a esta calor y vida, así como bípedos bastante listos para calcular al detalle su deuda con el Sol que, si pusiera intereses, nunca podríamos pagar.
Desde que puedo recordar, he sido un amante de la Física. Me asombran cuestiones como la luz, su naturaleza de un conglomerado de colores, ondas y partículas, su velocidad que nos marca el límite máximo que se puede desplazar cualquier cosa en nuestro Universo, y en fin, muchos otros misterios que encierra esa maravilla cotidiana que nos rodea y lo inunda todo haciendo posible que podamos ver por donde vamos, que las plantas vivan y emitan oxígeno o que nos calentemos. Realmente, sin luz, nuestra vida no sería posible.
Me gustaría que alguien contestara: ¿Qué es realmente la luz?
Muchos (casi todos) opinan que es algo inmaterial. Los objetos materiales, grandes o muy pequeños como las galaxias o los electrones, son materia. La luz, sin embargo, se cree que es inmaterial, dos rayos de luz se cruzan sin afectarse el uno al otro. Sin embargo, yo que deberíamos profundizar un poco más y, sabiendo que la luz está formada por fiotones, que los fotones son energía, que la energía es un aspecto de la masa… ¿Qué es realmente la luz? Nosotros mismos, el última instancia ¿No serémos luz?
Está claro que los estudiosos de la época antigua y medieval estaban por completo a oscuras acerca de la naturaleza de la luz. Especulaban sobre que consistía en partículas emitidas por objetos relucientes o tal vez por el mismo ojo. Establecieron el hecho de que la luz viajaba en línea recta, que se reflejaba en un espejo con un ángulo igual a aquel con el que el rayo choca con el espejo, y que un rayo de luz se inclina (se refracta) cuando pasa del aire al cristal, al agua o a cualquier otra sustancia transparente.
Cuando la luz entra en un cristal, o en alguna sustancia transparente, de una forma oblicua (es decir, en un ángulo respecto de la vertical), siempre se refracta en una dirección que forma un ángulo menor respecto de la vertical. La exacta relación entre el ángulo original y el ángulo reflejado fue elaborada por primera vez en 1.621 por el físico neerlandés Willerbrord Snell. No publicó sus hallazgos y el filósofo francés René Descartes descubrió la ley, independientemente, en 1.637.
Los primeros experimentos importantes acerca de la naturaleza de la luz fueron llevados a cabo por Isaac Newton en 1.666, al permitir que un rayo de luz entrase en una habitación oscura a través de una grieta e las persianas, cayendo oblicuamente sobre una cara de un prisma de cristal triangular. El rayo se refracta cuando entra en el cristal y se refracta aún más en la misma dirección cuando sale por una segunda cara del prisma. (Las dos refracciones en la misma dirección se originan por que los dos lados del prisma de se encuentran en ángulo en vez de en forma paralela, como sería el caso en una lámina ordinaria de cristal.)
Newton atrapó el rayo emergente sobre una pantalla blanca para ver el efecto de la refracción reforzada. Descubrió que, en vez de formar una mancha de luz blanca, el rayo se extendía en una gama de colores: rojo, anaranjado, amarillo, verde, azul, y violeta, en este orden. Newton dedujo de ello que la luz blanca corriente era una mezcla de varias luces que excitaban por separado nuestros ojos para producir las diversas sensaciones de colores. La amplia banda de sus componentes se denominó spectrum (palabra latina que significa “espectro” fantasma).
Newton llegó a la conclusión de que la luz se componía de diminutas partículas (“corpúsculos”), que viajaban a enormes velocidades.
Le surgieron y se planteó algunas inquietantes cuestiones. ¿Por qué se refractaban las partículas de luz verde más que los de luz amarilla? ¿Cómo se explicaba que dos rayos de luz se cruzaran sin perturbase mutuamente, es decir, sin que se produjeran colisiones entre partículas?
En 1.678, el físico neerlandés christian Huyghens (un científico polifacético que había construido el primer reloj de péndulo y realizado importantes trabajos astronómicos) propuso una teoría opuesta: la de que la luz se componía de minúsculas ondas. Y si sus componentes fueran ondas, no sería difícil explicar los diversos difracciones de los diferentes tipos de luz a través de un medio refractante, siempre y cuando se aceptara que la luz se movía más despacio en ese medio refractante que en el aire. La cantidad de refracción variaría con la longitud de las ondas: cuanto más corta fuese tal longitud, tanto mayor sería la refracción. Ello significaba que la luz violeta (la más sensible a este fenómeno) debía de tener una longitud de onda mas corta que la luz azul, ésta, más corta que la verde, y así sucesivamente.
Se encuentra la galaxias más lejana nacida después del big bang
Gracias a las radiaciones electromagnéticas podemos ver el Universo como fue hace ahora miles de millones de años. Cuando la luz, nos trae la imágen de galaxias situadas a distancias inconmensurables. ¿Quién podría haber pensado, en el pasado, que tal cosa fuese posible? hace
Lo que permitía al ojo distinguir los colores eran esas diferencias entre longitudes de onda. Y, como es natural, si la luz estaba integrada por ondas, dos rayos podrían cruzarse sin dificultad alguna. (Las ondas sonoras y las del agua se cruzan continuamente sin perder sus respectivas identidades.)
Pero la teoría de Huyqhens sobre las ondas tampoco fue muy satisfactoria. No explicaba por qué se movían en línea recta los rayos luminosos; ni por qué proyectaban sobras recortadas; ni aclaraba por qué las ondas luminosas no podían rodear los obstáculos, del mismo modo que pueden hacerlo las ondas sonoras y las ondas marinas. Por añadidura, se objetaba que si la luz consistía en ondas, ¿cómo podía viajar por el vacío, ya que cruzaba el espacio desde el Sol y las Estrellas? ¿Cuál era esa mecánica ondulatoria?
Así que, la vieja idea de Newton de que la luz estaba formada por partículas, en contra de la teoría ondulatoria de su contemporáneo Huygens corroborada por posteriores experimentos en el siglo XIX y por la teoría electromagnética de Maxwell, volvía a ser vigente en parte. La radiación electromagnética estaba formada por paquetes de energía llamados fotones, tenía una doble naturaleza: ondulatoria y corpuscular. La doble naturaleza ondulatoria y corpuscular de la luz, hizo pensar al físico francés Louis de Broglie que el resto de partículas podían disfrutar de esa cualidad y estableció que cualquier partícula lleva asociada una onda de longitud igual al cuanto de acción (h) dividido por su masa y por su velocidad (cualquier objeto macroscópico también tiene su onda asociada, pero debido al valor tan pequeño del cuanto de acción su efecto es despreciable). De hecho, cuando se diseña un experimento, dependiendo de las restricciones que se impongan a la partícula se pone de manifiesto su naturaleza ondulatoria o corpuscular pero, esa es, otra historia.
emilio silvera
Sep
20
El Universo y sus normas: Hace irreversible la presencia de la Vida
por Emilio Silvera ~ Clasificado en Alquimia estelar ~ Comments (0)
Sin movernos del planeta Tierra, hemos llegado a saber dónde estamos y cómo es, el Universo
Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que las moléculas de la vida pudieran ser fabricadas en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.
Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos llegado a saber, la densidad del universo es hoy de poco más que 1 átomo por m3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con seres de otros mundos. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres visitantes y podrán (como nosotros), alcanzar una fase tecnológica avanzada.
La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo: es decir, de lo muy grande y, de lo muy pequeño.
Otras veces hemos hablado aquí de las Constantes Fundamentales y de las que más conocemos y oímos mencionar: La carga del electrón (e), la velocidad de la luz (c), la Constante de Planck (h), la Constante Gravitacional (G), otras, como la constante magnética (μo), la masa en reposo del electrón (me), o, la Constante de estructura Fina (1/137) denotada como α = 2π e2 / hc y cuyo resultado es 137…El número puro y adimensional.
La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, α, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?
Sistemas flexibles donde no hay rompimineto de enlaces. Si cambiáramos las cosas, el mundo molecular se vendría abajo y todo sería diferente. Nada puede conformarse en sólidas estructuras sin la solidez de los átomos para formar moleculas y estas poder formar cuerpos
Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.
Si en lugar de a versión β, jugamos a cambiar la intensidad de la fuerza nuclear fuerte αF, junto con la de α, entonces, a menos que αF > 0,3 a½, los elementos como el carbono no existirían. No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón → helio-2.
Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.
Gráfico: Zona habitable donde la complejidad que sustenta la vida puede existir si se permite que los valores que sustentan b y a varíen independientemente. En la zona inferior derecha no puede haber estrellas. En la superior derecha están ausentes los átomos no relativistas. En la superior izquierda los electrones están insuficientemente localizados para que existan moléculas auto reproductoras altamente ordenadas. Las estrechas “vías de tranvías” distingue la región necesaria para que la materia sea estable para evolucionar.
Múltiples formas de vida, tanto macro como microscópicas, están presentes en nuestro planeta, y, de la misma manera, lo estarán en otros que, estando en la zona habitable de su estrella, tengan condiciones similares o parecidas a las nuestras. La vida en el Universo, con las constantes que en él están presentes…¡es imparable!
Hemos comentado aquí otras veces que, los biólogos, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.
Las estrellas más viejas se nuestra Galaxia se encuentran en agrupaciones (cúmulos globulares) que están más o menos simétricamente distribuidas en torno al centro galáctico. La teoría de la evolución estelar, quedó aceptablemente establecida allá por los años 30, y nos proporciona las edades de estas estrellas que, según todos los indicios, parecen indicar que existen estrellas tan viejas como 13 Ga (trece mil millones de años). Así, la edad del Universo debe ser algo mayor como ha quedado establecida.
Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.
Particularmente interesantes son las moléculas orgánicas que se encuentran de manera generalizada en las nubes interestelares densas de nuestra Vía Láctea. Alcoholes, éteres, e incluso algún azúcar simple (como el glicoaldehído) poseen abundancias significativas en tales nubes. La detección de la glicina, un aminoácido simple, en el espacio interestelar se viene intentando desde hace varios años. Pero aunque se tienen indicios muy positivos sobre su presencia en el espacio -algunos meteoritos la tienen presente-, su detección todavía ha de ser confirmada de manera inequívoca. La posibilidad de que existan aminoácidos en el espacio puede tener consecuencias de gran importancia para nuestra comprensión del origen de la vida. Aminoácidos simples, como la glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.
Hasta ahora se viene considerando que las condiciones necesarias para el desarrollo de la vida son extremadamente exigentes y que en la Tierra se da una larga y complicada serie de circunstancias que ha permitido el desarrollo de la vida. Sin embargo, si se confirmase la detección de aminoácidos interestelares, tendríamos que concluir que los procesos físicos más fundamentales para originar vida son extremadamente comunes, lo que sugeriría que podría crearse vida de manera generalizada en el Universo.
Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos pocos cientos de miles de años, mucho menos que la edad del universo, trece mil setecientos millones de años, o sea, menos de dos centésimos de la Historia del Universo. Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años.
-
C: Carbono
-
H: Hidrógeno
-
O: Oxígeno
-
N: Nitrógeno
-
P: Fósforo
-
Fe: Hierro
-
S: Azufre
-
Ca: Calcio
-
I: Yodo
-
Na: Sodio
-
K: Potasio
-
Cl: Cloro
-
Mg: Magnesio
-
F: Flúor
-
Cu: Cobre
-
Zn: Zinc
-
Glúcidos o Hidratos de Carbono
-
Lípidos
-
Proteínas
-
Ácidos Nucleicos
El el gráfico de arriba están resumidas sus funciones.
A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero, en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.
Siguiendo con el hilo de los pensamientos con los que comenzamos este trabajjo, podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y la vida no sería posible en ellos. Aumentemos la constante de estructura fina y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente. El Universo es como es porque, sus leyes y constantes son las que son. Al menos eso, sí hemos podido llegar a saber sobre la presencia de la vida posibilitada por estos factores fundamentales.
Sabemos que moléculas complejas y biomoléculas están presentes en el espacio interestelar. Los científicos han descubierto alrededor de las nebulosas planetarias Tc-1 y M1-20 (situadas entre 600 y 2.500 años luz de la Tierra), por primera vez evidencias de fullerenos complejos, denominados «cebollas de carbono», las moléculas más complejas observadas hasta el momento en el espacio exterior. Un hallazgo que tiene importantes implicaciones a la hora de entender la física y química del Universo y del origen y composición de las bandas difusas interestelares (DIBs), uno de los fenómenos más enigmáticos de la astrofísica.
Ahora conocemos muchas cosas antes ignoradas y, parece, que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, nos lleva a pensar que, al menos en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre tiempo(bio-lógico) y tiempo(estrella) que son aproximadamente iguales; el t(bio) –tiempo biológico para la aparición de la vida, resultó ser algo más extenso, es decir, el neceario para que las estrellas pusieran fabricar, en sus hornos nucleares, los elemetos que darían lugar, mucho más tarde, a la formación de las moléculas de la vida.
Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:
Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.
Co,mo podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?
A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más nartural en el universo y estará presente en miles de millone de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.
emilio silvera
Sep
20
Tenemos que buscar el origen de la Vida
por Emilio Silvera ~ Clasificado en Biologia, El Universo asombroso, El Universo misterioso ~ Comments (0)
Está bien asentado hoy el conocimiento de que, la Tierra y la Luna, al igual que el resto del Sistema solar, se formó hace ahora unos cuatro mil quinientos millones de años. En algún momento de los primeros mil millones de años de la existencia de la Tierra, la vida hizo su aparición sobre la superficie de nuestro planeta. La Ciencia no ha podido saber nunca cómo sucedió porque hemos perdido el registro de aquellos primeros años. Muchas de las rocas más viejas de la Tierra han sido eliminadas por los vientos y las aguas y empujadas por las corrienteías de las intensas lluvias hacia los océanos. Por otra parte, la lava de las frecuentes erupciones volcánicas cubrieron la mayor parte de las evidencias de vida en el pasado. Sobre la Tierra no quedan vestigios de esos mil primeros millones de años de su historia. Aquel período mágico en el que pudo surgir la vida que, no fue, precisamente de manera expontánea, sino que, se debió a complejos procesos bioquímicos que dieron lugar a una especie de protoplasma de la vida, a partir del cual, surgieron las primeras células vivas replicantes.
La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.
¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información1. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo – nos preguntamos-la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.
La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Sin embargo, la vida es distinta porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un pepel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida. A grandes rasgos entendemos cómo pueden haber evolucionado las moléculas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de forma tan compleja.
Según todos los indicios, en los primeros años del planeta, los continentes que hoy conocemos estaban todos unidos formando la denominada Pangea. El movimiento de las placas tectónicas terrestres logró que estos se separaran y, con el transcurso de millones de años, llegaron a adquirir la moderna forma que hoy conocemos. En todo ese transcurrir y, mientras tanto, una serie de condiciones nuevas aparecieron para hacer posible el surgir de la vida.
Microfósiles de sedimentos marinos. “Microfósil” es un término descriptivo que se aplica al hablar de plantas o animales fosilizados cuyo tamaño es menor de aquel que puede llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos para diferenciar microfósiles de eucariotas y procariotas.
A partir de todos los fragmentos que la ciencia ha podido ir acumulando, ¿qué tipo de planeta podemos recomponer y qué porcesos tuvieron que darse para que, la vida, tal como la conocemos pudiera surgir? Sin temor a equivocarnos podemos afirmar que, cuando se formó el mar de Warrawoona la Tierra ya era un planeta biológico. Además, las mediciones de isótopos de carbono indican que ya podía haber comenzado la gran liberación ecológica de la fotosíntesis. No podemos tener la certeza si entre los microorganismos de aquel entonces había cianobacterias reproductoras de oxígeno, pero la presencia de cualquier tipo de organismo fotosintético en el océano de Warrawoona es de por sí muy informativa, pues nos permite colocar un punto de calibración en el árbol de la vida.
los estromatolitos forman parte del registro fósil y son los responsables del oxígeno de la Tierra
Son la evidencia de vida más antigua que se conoce en la Tierra. Las rocas ígneas más antiguas de la Tierra están en Groenlandia y tienen 3800 millones de años. Los estromatolitos más antiguos son de Warrawoona, Australia y tienen unos 3500 millones de años (Precámbricos – Arqueanos). La edad de la Tierra como planeta acrecionado se calcula en 4500 millones de años. La teoría dice que, dadas las condiciones en esa época, los primeros habitantes de la Tierra debieron ser organismos unicelulares, procariontes, y anaerobios. Por tanto, los estromatolitos forman parte del registro fósil más importante de la vida microbiológica temprana. Pero además, vida microscópica fototrófica.
En la nueva concepción de la evolución microbiana que simboliza el árbol, los organismos fotosintéticos aparecen relativamente tarde y se diversifican mucho después del origen de la vida y de la divergencia de los principales dominios de la biología. Si la materia orgánica de Warrawoona es producto de la fotosíntesis, hay que concluir que para entonces la evolución de la vida ya debía llevar en marcha un buen tiempo.
Las observaciones geológicas indican que hace tres mil quinientos millones de años la atmósfera de la Tierra contenía nitrógeno, dióxido de carbono y vapor de agua, pero muy poco oxígeno libre. La mayoría de las inferencias acerca de ambientes antiguos se realizan a partir de pistas sutiles que nos proporcionan la geoquímica; la signatura sedimentaria del oxígeno, sin embargo, es muy llamativa: bandas de color rojo vivo en rocas con silex ricos en hermatita (Fe2 O3), un mineral de óxido de hierro.
En esta imagen que nos enseña un paisaje que me es muy familiar, podemos ver una excavación al aire libre, en las Minas de Rio Tinto (Huelva) nos deja al descubierto los estratos en distintas capas a lo largo de miles de millones de años. El mineral de óxido de hierro está presente formando el llamado hierro en bandas (FHB) no se forman en los acéanos actuales. De hecho, salvo una importante excepción, no se acumulan desde hace 1.850 millones de años. Durante la primera mitad de la historia de la Tierra, en cambio, las FHB fueron un componente común en los sedimentos marinos..
La razón por la cual las FHB no se forman en la actualidad es que el hierro que llega a los océanos se encuentra de inmediato con el oxígeno y precipita en forma de óxido de hierro; en consecuencia, la concentración de hierro en el agua de mar de los océanos actuales es extraordinariamente baja. En los mares del eón Arcaico, las FHB de las sucesiones sedimentarias debieron formarse por reacción del hierro con el oxígeno, ayudadas quizá por bacterias. Alternativamente, es posible que el hierro fuese oxidado por la radiación ultravioleta ya que ésta, al no existir un escudo de ozono eficaz, penetraba hasta la superficie del océano. Todo esto nos lleva a saber que, en el pasado, la atmósfera y los océanos contenían mucho menos oxígeno que en la actualidad.
Todavía los expertos de la NASA, se preguntan como pudieron hallar múltiples formas de vida en estas aguas de Rio Tinto, cargadas de elementos pesados con un PH imposible para la vida, y, sin embargo, ahí están. Ricamente instaladas en un entorno imposible que nada le tiene que envidiar a cualquier paraje marciano.
En la actualidad, nuestros conocimientos de la vida y ambientes arcaicos son a un tiempo frustrantes y emocionantes: frustrantes por las pocas certezas que tenemos y, sólo muchas hipótesis a partir de los datos dispersos que se van obteniendo, emocionante porque sabemos algo, por poco que esto pueda ser, es estimulante contar con un punto de partida que nos permita continuar en el estudio y la observación, seguir experimentando para que, algún día, sepamos a ciencia cierta, de donde pudo venir la vida.
Es verdad que las rocas más antiguas que podemos identificar nos indican la presencia de organismos complejos ¿qué clase de células vivían en aquellos tiempos aún más lejanos? En última instancia, ¡cuál será el verdadero origen de la vida?
La Tierra es el tercer planeta del Sistema Solar. Esta situación orbital y sus características de masa la convierten en un planeta privilegiado, con una temperatura media de unos 15º C, agua en forma líquida y una atmósfera densa que pudo evolucionar, con oxígeno y otros ingredientes, condiciones imprescindibles para el desarrollo de la vida.
La creencia general es que hace unos 4.600 millones de años la corteza de la Tierra comenzó a consolidarse y las erupciones de los volcanes empezaron a formar la atmósfera, el vapor de agua y los océanos. El progresivo enfriamiento del agua y de la atmósfera permitió el nacimiento de la vida, iniciada en el mar en forma de bacterias y algas, de las que derivamos todos los seres vivos que habitamos hoy nuestro planeta tras un largo proceso de evolución biólogica.
Aun los organismos más simples son máquinas moleculares extraordinariamente sofisticadas. Las primeras formas de vida tenían que ser muchísimo más sencillas. Nedcesitamos encontrar una familia de moléculas lo bastante simples como para formarse por procesos químicos y lo bastante complejas como para servir de cimiento a la evolución de las células vivas. Una molécula capaz de contener información y estructura suficientes como para replicarse a sí mismas y, al cabo, para dirigir la síntesis de otros componentes que puedan canalizar la replicación con una eficiencia cada vez mayor.
ESTRUCTURA DE LA CELULA BACTERIANA
Unas moléculas, en fin, que pudieran iniciar una trayectoria evolutiva que permitiera a la vida emanciparse de los procesos físicos que le dieron nacimiento, sintetizando las moléculas necesarias para el crecimiento en lugar de incorporarlas de su entorno y captando energía química o solar para alimentar el funcionamiento de la célula.
El descubrimiento de las enzimas de ARN, o ribosomas, realizado de forma independiente y aproximadamente al mismo tiempo por el bioquímico de Yale Sidney Altman, tuvo un efecto catalítico sobre el pensamiento acerca del origen de la vida.
Los enzimas de ARN (llamadas “ribozimas” o “aptazimas”) son moléculas de ARN capaces de autorreplicarse a temperatura constante en ausencia de proteínas. Utilizan la llamada replicación cruzada, en la que dos enzimas se catalizan el uno al otro de forma mutua. Este proceso permite entender cómo surgió la vida, pero los biotecnólogos las usan para algo mucho más prosaico. Estos enzimas de ARN pueden ser utilizados para detectar una gran variedad de compuestos, incluyendo muchos relevantes en diagnóstico médico. El compuesto orgánico se liga al aptazima, que se replica exponencialmente, amplificando exponencialmente la concentración del compuesto hasta permitir que sea fácilmente detectado.
En palabras del filósofo de la biología Iris Fry, esta extraordinaria molécula se alzó como “el huevo y la gallina al mismo tiempo” en el rompecabezas del orgien de la vida. La vida, esa misteriosa complejidad que surgió a partir de la “materia inerte” que, bajo ciertas y complejas condiciones, dio lugar a que lo sencillo se conviertiera en complejo, a que lo inerte pudiera despertar hasta los pensamientos.
Sabemos que, en ciertas condiciones prebióticas, los aminoácidos se forman fácilmente, así quedó demostrado por Stanley Miller en su gamoso experimento. Como los ácidos nucléicos, pueden unirse para formar péptidos, las cadenas de aminoácidos que se pliegan para formar proteínas funcionales.
Hay teorías para todos los gustos, y, el afamado Freeman Dyson, un renombrado físico que ha pensado profundamente sobre el origen de la vida, sugiere que en realidad la vida comenzó en dos ocasiones, una por la vía del ARN y otra vez por vía de las proteínas. Las células con proteínas y ácidos nucleicos interactivos habrían surgido más tarde en función protobiológica. Y, está claro que, la innovación por alianzas es uno de los principales temas de la evolución.
En el árbol de la vida, nosotros (tan importantes), sólo somos una pequeña ramita.
Hay muchos procesos que son de una importancia extrema en la vida de nuestro planeta y, dado que los organismos fotosintéticos (o quimiosinteéticos) no pueden fraccionar isótopos de carbono en más de unas treinta parte por 1.000, necesitamos invocar la participación de otros metabolismos para poder explicar los resultados de las mediciones que se han realizado. Los candidatos más probables son bacterias que se alimentan de metano en los sedimentos. Estas bacterias obtienen tanto el carbono como la energía del gas natural (CH4) y, al igual que los organismos fotosintéticos, son selectivos con los isótopos. A causa de su preferencia química por el 12CH4 frente al 13CH4, los microbios que se alimentan de metano fraccionan los isótopos de carbono en unas veinte o veijnticinco partes por 1.000 en los ambientes donde el metano es abundante. ¿Habeis pensado en la posibilidad de que esos organismos fotosintéticos estén presentes en Titán? ¡El fetín está servido!
La fotosíntesis anoxigénica se da en los organismos que utiliza la energía de la luz del sol, dióxido de carbono (sustrato a reducir) y sulfuro de hidrógeno (en lugar del agua) como dador de electrones que se oxida, se fabrican glúcidos y se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria.
Otra característica es que los organismos fotosinteticos anoxigénicos contienen bacterioclorofila, un tipo de clorofila exclusiva de los foto-organotrofos, usan longitudes de onda de luz que no son absorbidas por las plantas. Estas bacterias contienen también carotenoides, pigmentos encargados de la absorción de la energía de la luz y posterior transmisión a la bacterioclorofila. El color de estos pigmentos dan el nombre a estas bacterias: bacterias púrpuras del azufre y bacterias verdes del azufre. En las cianobacterias los pigmentos captadores de luz son las ficobilinas, por lo tanto se les nombra, bacterias azules.
Cualquiera de estas imágenes de arriba nos cuenta una larga y compleja historia de cómo, se pudieron formar cada uno de los ahí representados, y, en cualquiera de sus fases, formas y colores, es toda una gran obra de la Ingenieria de la naturaleza que, al fin y al cabo, es la única fuente de la que debemos beber para saciar nuestra ser de ignorancia.
No pocas veces he dejado aquí constancia de que, el Universo, en todas sus regiones, por muy alejadas que estén, se rige por unas leyes que están presentes en todas parte por igual, y, así lo confirman mil observaciones y mil proyectos que a tal efecto se han llevado a buen término. Por ejemplo, mediaciones precisas de isótopos de azufre en muestras de Marte traídas a la Tierra por meteoritos demuestran que muy pronto en la historia del planeta vecino el ciclo del azufre estaba dominado por procesos atmosféricos que producían un fraccionamiento independiente de la masa.
Valles en Marte. (ESA) La región de Valles Marineris, que tiene una longitud de 4.000 kilómetros y una anchura de 600 kilómetros, es el sistema de cañones más grande conocido en el sistema solar, con profundidades que llegan a los diez kilómetros.
Basándose es ente descubrimiento del fraccionamiento independiente de la masa, se dirigió la atención sobre las rocas terrestres más antiguas. Para sorpresas de muchos geoquímicos, lo que se hayó fue que el yeso y la pirita de las sucesiones sedimentarias más antiguas de la Tierra también como en Marte, han dejado constancias del fraccionamiento independiente de la masa de los isótopos de azufre. Al igual que en Marte, en la Tierra primitiva la química del azufre se encontraba al parecer influenciada por procesos fotoquímicos que sólo pueden producirse en una atmósfera pobre en oxígeno. La etapa del oxígeno comenzó en nuestra atmósfera a comienzos del eón Ptoterozoico. En suma, todos los caminos de la biogeoquímica llevan al mismo sitio, es decir, lo que pasa aquí pudo pasar allí y, al decir allí, quiero decir en cualquier planeta de cualquier galaxia. Las leyes fundamentales de la Naturaleza son, las mismas en todas partes. No existen sitios privilegiados.
Es difícil imaginarse hoy una Tierra sin oxígeno
Dos equipos independientes de investigadores descubrieron que el oxígeno gaseoso apareció en la atmósfera terrestre unos 100 millones de años antes del evento de la gran oxidación de hace 2400 millones de años. Es decir, cuando cambió la antigua atmósfera y el planeta se equipo con la que hoy conocemos.
El oxígeno es un gas muy reactivo, no existe de manera libre durante un largo período de tiempo, pues forma óxidos o reacciona con otras sustancias de manera rápida. Si está presente en la atmósfera es porque las plantas lo reponen continuamente. Antes de la invención de la fotosíntesis y durante muchos cientos de millones de años no había oxígeno libre en la Tierra.
En los estratos geológicos se pueden encontrar pruebas de la existencia de un momento en el que se produjo una gran oxidación mineral, prueba de que el oxígeno se encontraba ya libre en la atmósfera terrestre por primera vez y en gran cantidad. A este hecho se le ha denominado evento de gran oxidación, o GOE en sus siglas en inglés, y fue un hecho dramático en la historia de la Tierra. Este oxígeno permitió más tarde la aparición de vida animal compleja. Los geólogos creían que durante el GOE los niveles de oxígeno subieron rápidamente desde niveles prácticamente despreciables.
El mundo bacteriano es fascinante
Con estas bacterias es posible obtener dos tipos de celdas microbianas o baterías. Unas llamadas celdas de sedimento emplean el lodo donde habitan estos microorganismos; ahí, se produce energía simplemente conectando un electrodo en la parte donde, a cierta profundidad, no hay oxígeno, con otro electrodo que se encuentre en presencia de oxígeno.
¿Cómo respondió la vida a la revolución del oxígeno? Podemos imaginar, un “holocausto de oxígeno” que habría llevado a la muerte y la extinción a innumerables linajes de microorganismos anaeróbicos. Pero hace dos mil doscientos millones de años los ambientes anóxicos no desaparecieron; simplemente, quedaron relegados bajo una capa oxigenada de agua y sedimentos superficiales.
Aquello permitió a la Tierra dar cobijo a una diversidad biológica sin precedentes. Los microorganismos anaeróbicos mantuvieron un papel esencial en el funcionamiento de los ecosistemas, igual que en la actualidad.
En la primera fase de cualquier ejercicio aeróbico, el oxígeno se combina con la glucosa procedente del glucógeno. Al cabo de unos minutos, cuando el cuerpo nota que escasea el azúcar, empieza a descomponer las grasas. Entonces disminuye un poco el rendimiento, mientras el cuerpo se adapta al cambio de origen de su energía. Superado este punto, se vuelve a los niveles y sensaciones normales, pero se queman grasas en lugar de glucosa.
De otro lado, los organismos que utilizan, o al menos toleran el oxígeno se expandieron enormemente. La respiración aeróbica se convirtió en una de las formas principales de metabolismo en las bacterias, y las bacteria quimiosintéticas que obtienen energía de la reacción entre oxígeno e hidrógeno o iones metálicos se diversificaron a lo largo de la frontera entre ambientes ricos en oxígeno y ambientes pobres en oxígeno. Desde ese momento, la Tierra comenzó a convertirse en nuestro mundo.
Nuestro mundo, rico en agua líquida que cubre el 71% de la superficie del planeta, y, su atmósfera con un 78% (en volumen) de Nitrógeno, un 21 de Oxígeno y un 0,9 de Argón, además de dióxido de carbono, hidrógeno y otros gases en cantidades mucho menores que, permiten que nuestros organismos encuentren el medio indóneo para poder vivir. Otros muchos factores presentes en la Tierra contribuyen a que nuestra presencia aquí sea posible.
Las algas verdeazuladas también son llamadas bacterias verdeazuladas porque carecen de membrana nuclear como las bacterias. Sólo existe un equivalente del núcleo, el centroplasma, que está rodeado sin límite preciso por el cromatoplasma periférico coloreado. El hecho de que éstas se clasifiquen como algas en vez de bacterias es porque liberan oxígeno realizando una fotosíntesis similar a la de las plantas superiores. Ciertas formas tienen vida independiente, pero la mayoría se agrega en colonias o forma filamentos. Su color varía desde verdeazulado hasta rojo o púrpura dependiendo de la proporción de dos pigmentos fotosintéticos especiales: la ficocianina (azul) y la ficoeritrina (rojo), que ocultan el color verde de la clorofila.
Mientras que las plantas superiores presentan dos clases de clorofila llamadas A y B, las algas verdeazuladas contienen sólo la de tipo A, pero ésta no se encuentra en los cloroplastos, sino que se distribuye por toda la célula. Se reproducen por esporas o por fragmentación de los filamentos pluricelulares. Las algas verdeazuladas se encuentran en hábitats diversos de todo el mundo. Abundan en la corteza de los árboles, rocas y suelos húmedos donde realizan la fijación de nitrógeno. Algunas coexisten en simbiosis con hongos para formar líquenes. Cuando hace calor, algunas especies forman extensas y, a veces, tóxicas floraciones en la superficie de charcas y en las costas. En aguas tropicales poco profundas, las matas de algas llegan a constituir unas formaciones curvadas llamadas estromatolitos, cuyos fósiles se han encontrado en rocas formadas durante el precámbrico, hace más de 3.000 millones de años. Esto sugiere el papel tan importante que desempeñaron estos organismos cambiando la atmósfera primitiva, rica en dióxido de carbono, por la mezcla oxigenada que existe actualmente. Ciertas especies viven en la superficie de los estanques formando las “flores de agua”.
Sin descanso se habla de quer nosotros, con nuestro comportamiento estamos cambiando la atmósfera de la Tierra, que contaminamos y que, de seguir así, podemos acabar con la vida placentera en el planeta. Tal exageración queda anulada por la realidad de los hechos.
Gigantescas ciudades son una buena muestra de nuestra presencia aquí, y, ¿qué duda nos puede caber? Nuestro morfología nos ha convertido en el ser vivo dominante en el planeta. Sin embargo, no somos los que más hemos incidido en sus condiciones. Si se estudia la larga historia de la vida en la Tierra, podremos ver que una inmensa cantidad de especies han interactuado con la biosfera para modificar, en mayor o menor medida los ecosistemas del mundo. En realidad, la especie que cambió el planeta de manera radical, la que en verdad modificó la Tierra hasta traerla a lo que hoy es, creando una biosfera nueva a la que todas las especies se tuvieron que adaptar (también nosotros), esa especie que, aunque diminuta en su individualidad forma un gigantesco grupo, no son otras que las cianobacterias.
De esa manera, si el oxígeno trajo consigo un cambio revolucionario, las heroínas de la revolución fueron las cianobacterias. Fósiles extraordinarimente bien conservados en síles de Siberia de mil quinientos millones de años de edad demuestran que las bacterias verdeazuladas se diversificaron tempranamente y se han mantenido hasta la actualidad sin alterar de manera sustancial su forma. La capacidad de cambiar con rapidez, pero persistir indefinidamente, compendia la evolución bacteriana.
Las cianobacterias comparten con algunas otras bacterias la habilidad de tomar el N2 del aire, donde es el gas más abundante, y reducirlo a amonio (NH4), una forma que todas las células pueden aprovechar. Los autótrofos que no pueden fijar el N2, tienen que tomar nitrato (NO3-), que es una sustancia escasa. Esto les ocurre por ejemplo a las plantas. Algunas cianobacteria son simbiontes de plantas acuáticas, como los helechos del género Azolla, a las que suministran nitrógeno. Dada su abundancia en distintos ambientes las cianobacterias son importantes para la circulación de nutrientes, incorporando nitrógeno a la cadena alimentaria, en la que participan como productores primarios o como descomponedores.
La resistencia general de las bacterias a la extinción es bien conocida. Las bacterias poseen tamaños poblacionales inmensos y pueden reproducirse rápidamente: no importa que por la mañana nos lavemos los dientes meticulosamente; a media tarde, las bacterias que hayan sobrevivido al cepillo se habrán multiplicado hasta el extremo de recubrir nuevamente el interior de la boca. Además, las bacterias saben habérselas muy bien con medios cambiantes. El aire, por ejemplo, está lleno de bacterias; un plato de leche colocado en el alfeizar de la ventana no tarda en fermentar. Lo que es más, las bacterias son muy buenas a la hora de resistir perturbaciojnes ambientales. Aunque la mayoría crece especialmente bien dentro de unos márgenes ambientales estrechos, son capaces de tolerar condiciones extremas, al menos durante un tiempo.
Si miramos el tiempo que llevan aquí, como se pueden adaptar a condiciones que, ni en sueños podríamos hacerlo nosotros, y, sobre todo, si pensamos en la diversidad y en la inmensa cantidad y en que están ocupando (prácticamente) todas las reguiones del planeta, tendremos que convenir que, es necesario saber cuanto más mejor de ellas y, es necesario que nos sumerjamos en los reinos de las pequeñas criaturas que, de una u otra forma, serán nuestra salvación o, podrían provocar nuestra extinción.
Algunos creen que, también, en lugares como este, pueden estar presentes esos pequeños seres. En lugares donde abundan los mundos… ¿Qué seres habrá? Ahí, en la imagen de arriba, están presentes todos y cada uno de los elementos necesarios para la vida, y, simplemente con que uno sólo de entre una infinidad de planetas se encuentre dentro de la zona habitable de su estrella, podría contener un sin fin de formas de vida que, como aquí en la Tierra, hayan evolucionado y, ¿quién sabe? hasta es posible que esa clase de vida, pueda haber logrado alcanzar los pensamientos, la imaginación, la facultad de ser conscientes.
De todas las maneras…, seguimos sin saber, a ciencia cierta, como pudo surgir las vida. Sólo tenemos vestigios que nos acercan a esa posible fuente, y, son muchas, las zonas oscuras que no dejan ver lo que allí ocurrió, lo que hizo la evolución o dejó de hacer y, las condiciones primigenias que posibilitaron que en este pequeño planeta rocoso, emergieran formas de vida que evolucionadas han podido salir al exterior para ver lo que hay fuera.
Esporas del espacio que pueden llevar la vida a diversos mundos
Acodémonos de la panspermia o llegada de vida desde fuera de la Tierra. La idea está muy extendida a pesar de que no existe la menor evidencia científica a su favor. Ni se ha encontrado vida fuera de nuestro planeta ni hay indicios de que alguno de los organismos de la Tierra procedan de otros mundos. Sin embargo…¡Ahí queda eso!
emilio silvera
Sep
20
Pasado, Presente y Futuro: Una Ilusión llamada Tiempo
por Emilio Silvera ~ Clasificado en ¡El Tiempo! ¿Qués es el Tiempo? ~ Comments (1)
Un nuevo modelo físico propone que el tiempo es sólo una ilusión
Es posible que el espacio y el tiempo no tengan otra naturaleza que la que les asignemos por convención
Son conceptos tan básicos que se resisten a ser definidos, y, sin embargo, sobre ellos se basa toda nuestra ciencia. ¿Qué son el espacio y el tiempo? Su interpretación ha variado a lo largo de la Historia y aún hoy es posible que una nueva manera de comprenderlos provoque la próxima revolución científica. Ya tenemos ejemplos como Julian Barbour, que propone un modelo serio de física alternativa en la que el tiempo no existe más que como una ilusión en nuestras mentes. Es posible que el espacio y el tiempo no tengan otra naturaleza que la que les asignemos por convención. Por Sara Lumbreras Sancho.
Precisamente la Relatividad General, junto con la Teoría Cuántica de Campos (QFT) plantea un espinoso enigma a la ciencia actual, al no haberse encontrado ninguna teoría que las unifique. Pese a décadas de esfuerzo en varias líneas de investigación prometedoras (como las Supercuerdas), el proceso de unificación iniciado con las leyes de Maxwell no ha podido aún incluir con éxito a la Gravedad junto con las otras fuerzas. Es posible que la próxima revolución científica llegue con un cambio de paradigma que reconcilie las dos teorías enfrentadas con una nueva manera de comprender el espacio y el tiempo.
Como lo expresó Majid en su libro Espacio-tiempo cuántico y realidad física: “Está iniciándose un nuevo Renacimiento centrado en nuestra comprensión del espacio y el tiempo’’. Parece claro que la Ciencia necesita ayuda de la Filosofía, y que es indispensable en este punto identificar y analizar los supuestos que subyacen a las teorías dominantes actuales. Las viejas preguntas deben ser revisitadas con ojos nuevos: ¿Cuál es la naturaleza del espacio y el tiempo? ¿Son continuos o discretos? (y esta pregunta no tiene por qué tener la misma respuesta para ambos). ¿Son independientes de la consciencia? ¿Tienen sentido el espacio vacío o el tiempo sin cambio? ¿Cómo interactúan con la materia? La Filosofía ha reflexionado sobre estos problemas durante siglos. Revisar sus conclusiones nos puede proporcionar un buen punto de partida.
Breve historia de la filosofía del espacio y el tiempo
No es sorprendente que encontremos en Grecia los dos primeros ejemplos bien conocidos de filósofos del tiempo. Heráclito defendía que todo a nuestro alrededor se encontraba en un estado de constante fluir, que el cambio era lo único que permanecía. En la posición contraria, para Parménides, el cambio era una ilusión, ya que para él era lógicamente imposible.
Zenón, discípulo de Parménides, formuló las paradojas que le hicieron célebre. En ellas trataba de demostrar que el movimiento era imposible porque se componía de la suma de infinitas partes (por ejemplo, Aquiles no podrá nunca alcanzar a la tortuga a la que dio ventaja en una carrera, porque cuando llega al punto en el que se encontraba el reptil un instante atrás éste siempre ha avanzado algo más).
Aunque hoy en día estas paradojas nos resultan muy ingenuas, podemos sacar en claro que Parménides y Zenón asumían que el espacio y el tiempo eran continuos. Es más, éste es el caso de todos los filósofos naturales griegos bien conocidos, incluido Demócrito (para él sólo la materia estaba cuantizada, no el espacio infinito que la contenía).
Tres existencias
Platón propuso tres tipos diferentes de existencia: lo que es (material), en lo que se es (espacio), y por lo que se es (el modelo, la forma). Así que para él el espacio existía pero no de la misma manera que la materia.
Aristóteles afirmó que la existencia del espacio “la hace obvia el hecho de que las cosas puedan remplazarse”. Incluso propuso una definición: “El espacio ocupado por un objeto es la frontera estática más pequeña que lo contiene”. Sin embargo, el tiempo no tiene existencia real, ya que el pasado ya no existe y el futuro no existe todavía. Pese a ello, le dio una definición: “El tiempo es el número del cambio con respecto al antes y al después”. Esto implica que sólo existe en la mente, ya que “el tiempo es un tipo de número, y sólo el alma puede contar”.
Los teólogos medievales sostenían que Dios no existe en el tiempo sino en la eternidad, entendida como la existencia sin tiempo más que como tiempo sin principio ni final. Como lo expresó Boecio: “La eternidad es la posesión completa y perfecta de vida ilimitada en un único instante”. Es interesante notar que para los maestros medievales como San Agustín o Boecio, este ojo divino que lo ve todo en un mismo instante no suponía ninguna amenaza para la libertad. El conocimiento que Dios tiene del futuro no es equivalente al conocimiento humano de lo que está por venir, puesto que para Él, todos los momentos de la historia son equivalentes. Es útil mantener estas consideraciones en mente cuando reflexionemos sobre cosmologías sin tiempo como la de Barbour.
Kant interpretaba el espacio y el tiempo como nociones a priori que no son abstraídas por la experiencia, sino que son el marco que hace que ésta sea posible.
Newton creó definiciones precisas de los conceptos de movimiento, espacio y tiempo. De acuerdo con ellas, el tiempo fluye perfectamente uniforme, imperturbable. El espacio es absoluto, casi como un contenedor transparente que se extiende hasta el infinito. Concedió que sólo podían observarse movimientos relativos, pero afirmó que los movimientos absolutos podían deducirse a partir de ellos.
Vuelta al absoluto
Leibniz se oponía a este punto de vista, defendiendo una visión relativa del espacio donde sólo las distancias y velocidades relativas tenían significado físico real. Su correspondencia con el portavoz de Newton, Clarke, se siguió con interés. El argumento final de las discusiones fue un experimento donde un cubo de agua se hace girar. La curvatura que aparece en la superficie del líquido no responde al movimiento relativo entre el agua y las paredes del cubo sino claramente a la rotación absoluta. La discusión se considero cerrada a favor de la interpretación de Newton.
Hasta el siglo XIX no se volvió a sospechar de la noción invisible de espacio absoluto. Mach, científico brillante y empirista convencido, argumentó que el momento linear o angular de un objeto existe como consecuencia de su movimiento relativo con respecto al resto de objetos en el universo. Esto es lo que Einstein llamó el Principio de Mach. La inercia es entonces un concepto que se refiere no a cuerpos aislados, sino al universo en su totalidad.
Einstein se sintió inspirado por las leyes de Maxwell -que determinan la velocidad de la luz sin especificar con respecto a qué referencia- a postular que era la misma para todas. De hecho, todos los experimentos que habían intentado medir diferencias en la velocidad de la luz debidas a movimientos relativos con respecto al éter (como el experimento de Michelson-Morley) habían fracasado. Desde este punto de partida derivó un nuevo paradigma en el que todas las leyes de la Física son idénticas e independientes del observador.
El espacio y el tiempo están completamente entrelazados en el espacio-tiempo, y ya no son inmutables, sino que se ven deformados por la materia que contienen. Es su geometría, la que define la inercia ahora, ya que los marcos de referencia inerciales son los que siguen las geodésicas (caminos de mínima distancia) de este nuevo paisaje.
La Teoría de la Relatividad ha sido probablemente la transformación más profunda en nuestra comprensión del espacio y el tiempo, haciendo avanzar nuestro conocimiento de la Física. Ahora, la pregunta es si otro cambio en nuestra interpretación de estos conceptos puede traernos la próxima revolución. Quizá sus inicios están ya presentes en alguno de los modelos evocadores que presentamos en la siguiente sección.
El universo sin tiempo y otras perspectivas sugerentes
En esta sección presentamos algunas perspectivas interesantes que difieren de la interpretación convencional y que podrían desencadenar la próxima revolución científica. Exponemos la idea de universo eterno de Julian Barbour, junto con otras especulaciones provocativas de un grupo de respetados físicos contemporáneos.
Julian Barbour admitió que le fascinó leer en una de las obras de Mach: “Está totalmente fuera de nuestras capacidades medir cómo cambian las cosas en el tiempo. Más bien al contrario, el tiempo es una abstracción a la que llegamos a través de los cambios en las cosas”. Continúa sus reflexiones con la idea de que cuando medimos tiempo estamos en realidad midiendo distancia.
Utilizamos el ángulo cubierto por la manecilla del reloj para inferir el tiempo transcurrido. El tiempo solar es la distancia recorrida por el sol en el cielo. El tiempo sideral, lo que se han desplazado las estrellas. El tiempo atómico, las oscilaciones de un átomo de cesio. De hecho, es posible construir el reloj más sencillo analizando las trayectorias de tres cuerpos moviéndose inercialmente. Este reloj inercial fue presentado por primera vez por Neumann, y después lo desarrolló Tait. Con tres partículas, asumimos que una de ellas se encuentra en reposo.
Podemos utilizar la segunda como la manecilla del reloj, dividiendo en intervalos la distancia que cubre. Si suponemos que se mueve con velocidad unidad, es inmediato deducir la velocidad de la tercera partícula. De hecho, basta con tres instantáneas de un sistema inercial para definirlo completamente en estos términos y ser capaz de calcular todas las posiciones relativas de sus componentes, pasadas y futuras. Es importante caer en la cuenta de que estas instantáneas llegan sin ninguna información adicional que proporcione el momento en el que fueron tomadas.
Sistema sin tiempo
La posibilidad de describir un sistema (aunque fuera muy simple) sin tiempo es lo que inspiró a Barbour en su búsqueda de un modelo de universo eterno. Propone que el verdadero escenario del universo es el espacio de todas sus configuraciones posibles. Como estas configuraciones son eternas, da a este espacio el nombre de Platonia.
Todas las Platonias tienen un estado de mínimo tamaño y complejidad al que llama Alpha. Sin embargo, no hay Omega, ya que no existe ningún límite para el tamaño o la complejidad de lo que puede existir. Si trazamos una curva en Platonia, tendremos una posible historia del universo. De nuevo, no necesitamos del tiempo: como en la construcción de Tait, tener las posiciones relativas de los elementos es suficiente para definir una historia (y nada nos impide echar un vistazo a la posición relativa de las manecillas de nuestro reloj en cada punto de la curva).
Podemos definir distancias en Platonia como nos plazca, y, utilizándolas, trazar curvas de longitud mínima o geodésicas a través de su paisaje. Algunas definiciones de distancia son especialmente interesantes, ya que Barbour consigue derivar de ellas historias que son coherentes con las leyes de Newton o, con una definición más sofisticada, incluso con la Relatividad. Así, parece posible reformular la Mecánica por completo sin necesidad del tiempo.
Sin embargo, nuestra experiencia nos indica que el tiempo sí existe. Barbour intenta explicar el origen de esta persistente ilusión. En Platonia todas las posibles configuraciones del universo existen eternamente. Sin embargo, estas configuraciones aparecen con distinta intensidad.
Describe una bruma que se concentra en las mejores soluciones de la ecuación del universo, de una manera que recuerda a las probabilidades de la Mecánica Cuántica. Las soluciones que resuenan mejor son las que tienen más coherencia interna. Esta coherencia interna se manifiesta en la creación de lo que él define como cápsulas del tiempo.
Una cápsula del tiempo es un patrón estático que crea o codifica la apariencia de movimiento, cambio o historia. Por lo tanto, nuestra impresión de tiempo y movimiento sólo se debe a las huellas que deja, que son en realidad eternas, y a los recuerdos en nuestra consciencia que son también patrones eternos.
Bradbury imagina que el universo tiene probablemente una tendencia a encontrar más apropiadas las soluciones con más estructura. Esto hace que los universos que contienen consciencias sean los preferidos (ya que nada hay más complejo que la consciencia). Esto podría explicar el hecho de que la realidad que observamos es altamente compleja y estructurada, que es un estado altamente improbable estadísticamente.
Geometría no conmutativa, espacio-tiempo espuma, fractales y hologramas
La de Barbour no es la única cosmología de la eternidad. En las Redes Causales, como en los trabajos de Penrose y Sorkin, el espacio-tiempo se describe mediante una serie de eventos discretos en la que únicamente se especifica qué elementos preceden causalmente a otros.
Penrose reflexiona también sobre los valores que se le dan al momento angular en la Mecánica Cuántica. “¿Por qué decimos que un electrón tiene espín arriba o abajo, en vez de derecha o izquierda?”. Sólo sabemos que el espín de un electrón puede tomar dos valores distintos: ½ o -½. Asimilarlos a una dirección en el espacio carece de sentido. Cuando construimos una estructura a partir de partículas elementales, podemos calcular su momento angular total. Si trasladamos un electrón de una estructura a otra, podemos calcular la probabilidad de que la segunda estructura incremente o disminuya su momento angular en el ½ aportado por el nuevo electrón. Penrose interpreta esta probabilidad como el coseno del ángulo que forman las dos estructuras.
Si un electrón que está contribuyendo con momento angular positivo en su estructura origen tiene 100% de probabilidad de aportar momento positivo una vez transferido, entonces las dos estructuras son exactamente paralelas. Si siempre contribuye en sentido opuesto entonces son antiparalelas. Valores intermedios de probabilidad nos darían ángulos intermedios. Estas probabilidades son discretas, pero cuando las estructuras aumentan en complejidad el número de valores que puede tomar, la probabilidad aumenta. En el límite, da origen a un continuo de direcciones.
Las Redes de Espín no consideran el tiempo, pero Penrose las generalizó a un espacio-tiempo de cuatro dimensiones en su Teoría de Twistores. En esta teoría, las unidades básicas son los rayos de luz, ya que un fotón existe simultáneamente en todos los puntos atravesados en su trayectoria debido a la deformación relativista del tiempo.
En todos los modelos presentados hasta ahora se asume que la distancia de A a B es necesariamente la misma que de B a A. La geometría no conmutativa prueba a relajar esta condición y a aplicar la geometría no conmutativa al espacio. Alain Connes, un matemático francés, trabaja en explorar las posibilidades de esta concepción del espacio. Recordando a Demócrito y sus átomos (en la que los distintos elementos se distinguían por sus formas diferentes) propone que quizá la materia sea una manifestación de la estructura profunda del espacio-tiempo.
El tiempo como espuma
Ya hemos mencionado que la suposición de continuidad para el espacio-tiempo puede ser la causa de que no hayamos encontrado aún la Gravedad Cuántica. Sabemos de la Mecánica Cuántica que las distancias menores que la longitud de Plank carecen de sentido físico. El espacio-tiempo podría estar basado en una especie de espuma (como lo expresó John Wheeler), y su escala fundamental podría ser borrosa. Shahn Majid estudia las consecuencias que tendría esta descripción de la realidad. En particular, la teoría de Majid predice que la velocidad de la luz debería variar ligeramente con la frecuencia. Ya se están realizando experimentos para detectar estas desviaciones mínimas en la luz emitida por supernovas distantes utilizando el telescopio LISA.
Tim Palmer propuso una nueva interpretación de la Mecánica Cuántica en la que las probabilidades aparecen como consecuencia de la complejidad intrínseca de la estructura del espacio. Para él la realidad profunda debería ser descrita como un fractal. Su idea principal puede explicarse con la analogía de recibir las coordenadas de un punto en una costa de perfil intrincado. No seríamos capaces de saber con seguridad si el punto pertenece a la tierra o al mar, sino una probabilidad. Palmer sostiene que las probabilidades que encontramos en la Mecánica Cuántica se derivan de un fenómeno similar.
También se ha propuesto que toda la información contenida en el universo está codificada en su frontera. Este holograma cósmico encerraría en una superficie bidimensional la realidad tridimensional completa. Si el espacio es discreto, significaría que para que la superficie pudiera contener toda la información, el interior debería ser mucho más borroso. Craig Hogan cree que esta falta de definición puede estar detrás del ruido, por ahora inexplicado, que está perturbando el experimento GEO600 en Hannover, diseñado para detectar ondas gravitacionales.
Una intrigante posibilidad
De acuerdo con Barbour, podemos describir nuestra realidad sin referirnos al tiempo. Él toma este hecho como evidencia de que la naturaleza del tiempo es ilusoria. Sin embargo, incluso si su descripción es completamente consistente con las observaciones, esto no prueba que el tiempo no existe. Sólo prueba que es matemáticamente posible hacer Física sin tiempo, lo cual es una conclusión completamente diferente.
Como ya tenemos una Física basada en el tiempo, esto querría decir que tenemos dos modelos distintos que funcionan igualmente bien. En la Teoría de Campos Cuánticos nos encontramos también con dos modelos, formulados sobre espacio-tiempos diferentes, que dan resultados equivalentes. ¿Es posible que descripciones distintas del espacio y el tiempo nos proporcionen predicciones igualmente correctas?
Poincaré señaló el hecho de que nuestros sentidos no pueden percibir directamente la geometría del espacio. El espacio geométrico, el verdadero marco de nuestras experiencias, es distinto del espacio de representación que inferimos de nuestros sentidos.
Para empezar, la experiencia de la visión es un fenómeno puramente bidimensional. Sin embargo, tomamos la información de nuestras retinas y del resto de nuestras percepciones y cómo estas varían con el movimiento y los combinamos para formar el espacio de representación tridimensional.
Como resultado, ‘’Es también imposible representarnos los objetos externos en el espacio geométrico, así como imposible es para un pintor dibujar en una superficie plana los objetos con sus tres dimensiones. El espacio de representación es sólo una imagen del espacio geométrico, una imagen deformada por cierta perspectiva, y sólo podemos representarnos los objetos haciéndolos obedecer las leyes de esta perspectiva”.
El tiempo como convención
Poincaré propone un experimento mental en el que consideramos un mundo contenido en una esfera en el que todos los cuerpos tienen el mismo coeficiente de dilatación, así que la longitud de cualquier objeto es proporcional a su temperatura absoluta. La temperatura de este mundo disminuye con la distancia al centro según la fórmula R2 – r2, así que en su frontera la temperatura es el cero absoluto. Incluso aunque este universo es finito, para sus habitantes es de hecho infinito ya que se vuelven más y más pequeños al aproximarse a la frontera. Estos seres imaginarios estudiarían la física de su mundo, completamente inconscientes de las dilataciones térmicas. Cuando se mueven, experimentan una contracción en sus miembros en la dirección de la frontera. Sin embargo, esta deformación se consideraría una serie de perspectiva, con lo que sus sentidos se ajustarían para corregirla.
Poincaré señala que “sería un error concluir que la geometría es, ni tan siquiera en parte, una ciencia experimental. Si fuera experimental, sólo sería aproximada y provisional. ¡Y qué burda aproximación sería! La geometría consistiría únicamente en el estudio de los movimientos de los cuerpos sólidos, pero en realidad no le atañen los sólidos naturales: su objeto son los sólidos ideales’’. Finalmente argumenta que la experimentación puede guiarnos, pero no impone ninguna elección de geometría ni puede revelarnos cuál es la más apropiada, la verdadera.
Es imposible medir una distancia sin una regla, o sin la posibilidad de desplazar la regla, ya que sólo podemos comparar objetos yuxtapuestos. Asumimos que la regla se mantiene constante durante el proceso. Éstos son los supuestos que dan forma a la geometría que encontramos. Podríamos encontrar una solución distinta si tomásemos otras hipótesis. Por ejemplo, si en vez de asumir que las reglas no se distorsionan, asumimos que la velocidad de la luz es constante, encontramos la geometría relativista.
Es posible que el espacio y el tiempo no tengan otra naturaleza que la que les asignemos por convención. Parece que podemos encontrar teorías igualmente válidas basadas en supuestos muy diferentes. Esto puede indicar que su realidad fundamental no existe independientemente de la experiencia que los asume, en una interdependencia inevitable. También podría ser que su naturaleza más básica no pudiera expresarse matemáticamente y sólo pudiéramos encontrar aproximaciones. O, finalmente, podría significar que la naturaleza puede describirse de varias maneras distintas. Los diferentes modelos que funcionen con éxito deberían ser entendidos como descripciones de la misma realidad, pese a sus diferentes expresiones.
Sara Lumbreras Sancho, de JP Morgan en Londres, es ingeniero del ICAI y colaboradora de la Cátedra CTR
BIBLIOGRAFÍA
ARISTOTLE: “Physics“ , from Joe Sachs, Aristotle’s Physics: A Guided Study ( 1995).
BARBOUR 1999: “The End of Time”
BOHETIUS 524: “Consolation of Philosophy”
BOHM 1952: “A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables“
CONNES 2008: “On the fine structure of space-time“
KANT 1781: “Critique of Pure Reason”
HOGAN 2008: “Indeterminacy of holographic quantum geometry“
MAJID 2008: “Quantum space-time and physical reality”
NICKEL 2006: “The Mathematical Theory of Motion as a Paradigm for Interpolating Change and Continuity”
PALMER 2009: “The invariant set postulate: a new geometric framework for the foundations of Quantum Theory and the role played by Gravity“
PENROSE 1971: “Angular momentum: an approach to combinatorial space-time”
PENROSE 2009: “Causality, Quantum Theory and Cosmology“