viernes, 31 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Descubrir y aprender

Autor por Emilio Silvera    ~    Archivo Clasificado en Descubrir y aprender    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cada año, se publican los diez descubrimientos más importantes de la física. En 2.011 los seleccionados por el equipo editorial de la revista Physics World, los diez avances más importantes identificados en la lista de entre más de 350 artículos de noticias y avances en las ciencias físicas publicados en dicha revista, fueron los siguientes:

1: Cambio de la medición cuántica

El trabajo de Steinberg destacó porque desafía la noción generalizada de que la mecánica cuántica nos prohíbe tener conocimiento de los caminos tomados por los fotones individuales a medida que viajan a través de dos ranuras muy próximas entre sí para crear un patrón de interferencia.Esta interferencia es exactamente lo que cabría esperar si pensamos en la luz como una onda electromagnética. Pero la mecánica cuántica también nos permite pensar en la luz como fotones – aunque con la consecuencia extraña de que si se determina que los fotones viajan a través de hendiduras individuales, entonces el patrón de interferencia desaparece. Mediante el uso de mediciones débiles, Steinberg y su equipo, fueron capaces de ganar un poco de información acerca de los caminos tomados por los fotones sin destruir el modelo.En el experimento, la doble rendija se sustituye por un divisor de haz y un par de fibras ópticas. Un solo fotón golpea el divisor de haz y se desplaza por la derecha o la izquierda de la fibra. Después de salir de los extremos muy próximos de las fibras paralelas, se crea un patrón de interferencia en una pantalla del detector.

 

 

2: Medición de la función de onda

El segundo lugar va a otro grupo dirigido por Jeff Lundeen del Consejo de Investigación Nacional de Canadá en Ottawa – un ex colega de Steinberg – quien ha utilizado la medición débil para trazar la función de onda de un conjunto de fotones idénticos sin tener que destruir ninguna de ellas. La función de onda normalmente desaparece cuando se busca obtener su información. Para calcular una función de onda, los científicos normalmente recopilan grandes cantidades de medidas indirectas usando una técnica conocida como tomografía de estado cuántico.

3: Encubrimiento en el espacio-tiempo

Llegando al tercer lugar están los dos equipos – uno en la Universidad de Cornell en los EE.UU. con Alexander Gaeta a la cabeza, y el otro en el Imperial College de Londres, dirigida por Martin McCall. A principios de 2011 el equipo de McCall publicó un análisis teórico de cómo un acontecimiento en el espacio y el tiempo puede ser encubierto. Unos meses más tarde, Gaeta y sus colegas construyeron un dispositivo que utiliza dos “lentes de tiempo parcial” para hacer precisamente eso.

4: Medir el universo usando agujeros negros

El cuarto lugar en la lista va a Darach Watson y sus colegas de la Universidad de Copenhague, Dinamarca, y la Universidad de Queensland, Australia, que han encontrado una forma de utilizar un agujero negro supermasivo como “candelas estándar “para hacer mediciones precisas de distancias cósmicas. El trabajo es importante porque estos agujeros se pueden encontrar en casi todo el universo; a diferencia de las supernovas (que se utilizan actualmente como candelas estándar), la luz de un agujero negro permanece por largos períodos de tiempo.

5: Convertir la oscuridad en luz

Christopher Wilson y sus colegas de la Universidad Tecnológica de Chalmers en Suecia, junto con los físicos en Japón, Australia y los EE.UU. se embolsaron el quinto lugar, por ser los primeros en ver el efecto Casimir dinámico en el laboratorio. El efecto se produce cuando un espejo se mueve muy rápidamente a través de un vacío haciendo que los pares de fotones virtuales – que siempre aparecen y luego se aniquilan – se separen para crear fotones reales que pueden ser detectados. Así como también arroja nueva luz sobre el efecto Casimir, el uso de un dispositivo superconductor de interferencia cuántica (SQUID), como el espejo usado en el experimento, es un hecho extremadamente inteligente que merece ser tomado en cuenta.

6: Tomando la temperatura de los inicios del universo

Justo después del Big Bang, el universo era una sopa complicada de quarks y gluones libres que finalmente se condensaron para formar los protones y neutrones que vemos hoy en día. El sexto lugar en nuestro top 10 va a un equipo de físicos en los EE.UU., India y China, que ha hecho el mejor cálculo hasta ahora de esta temperatura de condensación: dos billones de grados Kelvin. Además de proporcionar importantes conocimientos sobre el universo en sus inicios, el trabajo también avanza nuestra comprensión de la cromodinámica cuántica, que describe las propiedades de los neutrones, protones y otros hadrones.

7: Capturan el sabor de una oscilación de neutrinos

El séptimo lugar es otorgado al equipo internacional de físicos que trabajan en el experimento Tokai a Kamioka (T2K) en Japón. Los investigadores dispararon un haz de neutrinos muón 300 kilometros bajo tierra a un detector, donde se encontró que seis neutrinos habían cambiado (oscilado) en neutrinos electrón. La medición no es suficiente para reclamar el descubrimiento de la oscilación neutrino muón a electrón, sin embargo es la mejor prueba de como un “sabor” de los neutrinos pueden oscilar en otro.

8: láser de vida trajo a la vida

En un hecho fascinante de la biofísica, Malte Reúna y Seok Hyun Yun de la Harvard Medical School en EE.UU. lograron hacer un láser a partir de una célula biológica de vida. Para ello utilizaron el resplandor de una luz azul intensa sobre las moléculas de proteína en el interior de una célula del riñón embrionario, provocando asi que las moléculas generaran una luz verde intensa, direccional y monocromática. Este asombroso fenómeno podría ser utilizado para en un futuro distinguir las células cancerosas de las sanas.

9: Ordenador cuántico hecho en un solo chip

El noveno lugar corresponde a Matteo Mariantoni y sus colegas en la Universidad de California en Santa Bárbara por ser el primero en implementar un procesador cuántico (con arquitectura von Neumann) cuya memoria podría ser utilizada para almacenar datos e instrucciones, y hacer posible la realización de cálculos complejos que están mucho más allá del poder de las computadoras convencionales. Este avance en la computación cuántica marca un hito similar al ocurrido en el diseño de la computación convencional en los años ’40. Su desarrollo nos acerca a la creación de ordenadores cuánticos prácticos que resolver problemas reales.

10: ver las reliquias puras del Big Bang

Michele Fumagalli y Xavier Prochaska, de la Universidad de California, Santa Cruz y John O’Meara de la Universidad de Saint Michael en Vermont se quedaron con el lugar 10 para ser los primeros en avistar nubes de gas que son reliquias puras del Big Bang. A diferencia de otras nubes en el universo distante (que parecen contener los elementos creados por las estrellas) estas nubes contienen sólo el hidrógeno, helio y litio creado por el Big Bang. Este hecho, además de confirmar las predicciones de la teoría las nubes del Big Bang, proporcionan una visión única de los materiales de los que fueron hechas las primeras estrellas y galaxias.

Fuente: Physics World
por Hamish Johnston, editor de physicsworld.com

Es lógico deducir que, los diez avances aquí elegidos son una selección de una serie de trabajos que dicha revista publicó y que, necesariamente, no tienen por que ser los mejores trabajos y descubrimientos realizados en la física durante el año 2.011, aquí faltan otros muchos que, o bien fueron publicados por otras revistas  y de los que Physics World no ha tenido noticias, o, habiéndolas tenido, al no ser de esa Revista lo obviaron y quedaron fuera de la elección que es muy parcial e incompleta.

emilio silvera

Nota: Ya traeremos aquí los avances de 2.012

Aquel Hallazgo Histórico

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sistema solar

WASHINGTON – La NASA anunció el descubrimiento histórico de un sistema de seis planetas, el primero con un número tan elevado que orbita en torno a una estrella, de una forma similar a como giran la Tierra y el resto de planetas del Sistema Solar.

Leer más

¿De qué está compuesto el cuerpo humano?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Cuerpo Humano    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

La abundancia, distribución y comportamiento de los elementos químicos en el Cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que, si mirais la imagen de arriba, podéis ver el lugar en el que se han encontrado  elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos han servido para establecer hipótesis del origen de los elementos.

– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

– Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.

Gran Nebulosa de Orión

Lugares como la Gran Nebulosa de Orión son los Laboratorios del Espacio, allí están presenten una ingente cantidad de elementos

FUENTES DE DATOS DE ABUNDANCIAS COSMICAS DE LOS ELEMENTOS. Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende: Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nébulas gaseosas o nubes de gas interestelar y polvo.

Las nébulas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nébulas de “Orión”. Las ventajas de estas nébulas difusas para el estudio de las abundancias son:

 

 

[Espada+de+Orion.jpg]

 

 

‑ Su uniformidad de composición,  el que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas. También tiene desventajas: Solo se observan las líneas de los elementos más abundantes y  cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos. La mayoría de las nébulas exhiben una estructura filamentosa o estratiforme. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.

En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos  simples en el big bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.

En la primera parte del trabajo hemos querido dejar claro de dónde salen los elementos químicos que podemos ver presentes en todos los cuerpos repartidos de una u otra manera, y, está claro que son las estrellas las responsables de tal maravilla. Sin embargo, no hemos dedicado ningún trabajo para saber de qué elementos está compuesto nuestro organismo. Así mque, aunque de manera breve, aquí dejaremos una reseña.

Según hemos podido llegar a saber son unos 60 elementos químicos los que conforman nuestro organismo y no de todos ellos se conocen sus funciones en nuestro cuerpo. Lo cierto es que son una docena los que están en nosotros con mayor presencia, es decir, los elementos químicos que prevalecen en nuestro organismo humano y que ejercen importantes funciones para que la vida sea posible.

Extrapolando y guardando las distancias… Lo cierto es que, nuestros cuerpos parecen, en contenidos, como si de Nebulosas se tratara, toda vez que la maraña de elementos químicos que llevamos con nosotros son como un muestrario de los objetos del cielo. Como hemos dicho aquí muchas veces, al fín y al cabo, también nosotros somos Naturaleza y, siendo así (que lo es), estamos hecho del mismo material del que están hechas las estrellas y, de ellas vinieron esos materiales al planeta en una nebulosa para que, durante miles de millones de años más tarde, pudiera aparecer aquella primera célula replicante precursora de la vida.

Los principales elementos que componen el cuerpo humano, en realidad son escasos, es decir, sólo 4 elementos químicos llevan el peso de todo el proceso fisiológico que está en nosotros: Oxígeno, Carbono, Hidrógeno y Nitrógeno. En realidad, el mayor porcentaje está en forma de agua, toda vez que, como el planeta que nos acoge, también nuestros cuerpos están compuestos en su mayor parte por ese preciado elemento: ¡El Agua!

 

Los 12 elementos más importantes que conforman nuestro organismos son:

– Oxígeno (65%)  Todos sabemos cuán importante es el agua para la vida y el 60% del peso del cuerpo se constituye por agua. El oxígeno (O,8) ocupa el primer lugar de la lista y compone el 65% del organismo..

– Carbono (18%)  El carbono (C,6) es uno de los elementos más importantes para la vida. Mediante los enlaces carbono, que pueden formarse y romperse con una mínima cantidad de energía, se posibilita la química orgánica dinámica que se produce a nivel celular..

– Hidrógeno (10%)  El hidrógeno (H,1) es el elemento químico que más abunda en todo el universo. En nuestro organismo sucede algo muy similar y junto al oxígeno en forma de agua ocupa el tercer lugar de esta lista..

– Nitrógeno (3%)  Presente en muchísimas moléculas orgánicas, el nitrógeno (N,7) constituye el 3% del cuerpo humano. Se encuentra, por ejemplo, en los aminoácidos que forman las proteínas y en los ácidos nucleicos de nuestro ADN..

 

 

 

– Calcio (1.5%)  De los minerales que componen el organismo, el calcio (Ca,20) es el más abundante y es vital para nuestro desarrollo. Se encuentra prácticamente a lo largo de todo el cuerpo, en los huesos y por ejemplo en los dientes. Además, son muy importantes en la regulación de proteínas.

– Fósforo (1%)  El fósforo (P,15) también es muy importante para las estructuras óseas del cuerpo en donde abunda. No obstante, igualmente predominan en las moléculas de ATP proporcionándole energía a las células.

– Potasio (0.25%)  Aunque ocupa apenas el 0.25% de nuestro organismo, el potasio (K,19) es vital para el funcionamiento del mismo. Ayuda en la regulación de los latidos del corazón y a la señalización eléctrica de los nervios..

– Azufre (0.25%)  El azufre (S,16) es igual de esencial en la química de numerosos organismos. Se encuentra en los aminoácidos y es fundamental para darle forma a las proteínas..
– Sodio (0.15%)  Se trata de otro electrolito vital en lo que refiere a la señalización eléctrica de los nervios. El sodio (Na,11) también regula la cantidad de agua en el cuerpo, siendo un elemento igual de esencial para la vida..

– Cloro (0.15%)  El cloro (CI,17) normalmente se encuentra en el cuerpo humano a modo de ion negativo, es decir como cloruro. Se trata de un electrolito importante para mantener el equilibrio normal de líquidos en el organismo..

– Magnesio (0.05%)  Nuevamente, se encuentra en la estructura ósea y de los músculos, siendo muy importante en ambas. El magnesio (Mg,12), a su vez, es necesario en numerosas reacciones metabólicas esenciales para la vida..

– Hierro (0.006%)  Aunque el hierro (Fe,26) ocupa el último lugar de la lista, no deja de ser primordial. Es fundamental en el metabolismo de casi todos los organismos vivos. Se encuentra en la hemoglobina, es el portador de oxígeno en las células rojas de la sangre..

 

 

Abundancia de los elementos químicos en la corteza terrestre y el cuerpo humano
Otros elementos químicos que constituyen el cuerpo humano son el cobre, zinc, selenio, molibdeno, flúor, yodo, manganeso, cobalto, litio, estroncio, aluminio, silicio, plomo, vanadio y arsénico, entre otros en proporciones ínfimas. En realidad, poco se sabe sobre las funciones que muchos de estos elementos cumplen en nuestro cuerpo..

Es muy interesante saber cómo se compone nuestro organismo a nivel químico y como todo está intrínsecamente relacionado para poner en marcha esta complejísima máquina que damos en llamar cuerpo humano. Lo cierto es que, como se ha dicho muchas veces aquí son las estrellas las que nos han proporcionado todos esos elementos y han hecho posible la vida que, como aquí en el planeta Tierra, también estará presente en miles o millones de ellos repartidos por ignotos mundos situados en las perdidas galaxias del remoto espacio tiempo de nuestro vasto Universo.

Bueno, de alguna manera, el Universo se transformó en nosotros para poder comtemplarse así mismo, al menos eso pensó el sabio y, a medida que vamos sabiendo más y más de nosotros y de nuestro cuerpo… ¡Tendremos que darle la razón! Toda vez que los materiales que nos conforman son los mismos que las estrellas “fabrican” en sus hornos nucleares a temperaturas de miles de millones de grados y, cuando se enfrían todos esos materiales llegados a un mundo adecuado para ello… ¡surge la vida!
emilio silvera

Formas de vida de ayer y de hoy

Autor por Emilio Silvera    ~    Archivo Clasificado en Comentario a la imagen del día    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“La paradoja de nuestro tiempo en la historia es que  tenemos edificios más altos pero temperamentos más cortos,  autopistas más anchas, pero puntos de vista más estrechos.  Gastamos más pero tenemos menos, compramos más, pero gozamos menos.  Tenemos casas más grandes y familias más pequeñas, más conveniencias, pero menos tiempo.  Tenemos más grados y títulos pero menos sentido,  más conocimiento, pero menos juicio,  más expertos, sin embargo más problemas,  más medicina, pero menos . “

 

Quizá el problema esté en que no sabemos donde reside lo que realmente tiene valor, tendemos a querer tener la casa más grande, el coche que más corra, la pantalla de plasma o el celular de la última generación, siempre vamos corriendo a todas partes y, salimos de noche de casa y regresamos cuando el día ha terminado pero, cuando nos acostamos sin haber visto a los niños dormidos, nos cueta coger el sueño… La hipoteca, aquel préstamo, el negocio que no marcha, la inestabilidad de la empresa…

Dedicar algún tiempo a la familia, sacrificando los beneficios puede compensarnos a la larga, ya que, no siempre es el dinero el que nos proporciona los mejores momentos, los más auténticos. Estos momentos felices, residen siempre en lo más sencillo, lo más cercano, nuestro entorno y nuestra familia que, al fin y al cabo… ¿Qué tenemos mejor que eso?

 

 

No puedo ni recordar la cantidad de veces que me perdí, ayudar a mis hijos pequeños en la tarea del colegio. Estaba de viaje, la Oficina me ocupaba demasiado tiempo, el trabajo no me dejaba mucho tiempo libre y, sin embargo, ahora miro hacia atrás, y, nada de aquello podía compensar, de hecho no compensó nunca aquellos momentos perdidos. Que no se trata de que los perdieras tú, si no que, además, se los hicistes perder a tus hijos que, lo echaron de menos y, seguramente, así lo recordaran.

El Tiempo sólo marcha en una dirección: La flecja del Tiempo que sigue siempre adelante y, el momento que pasó, nunca podrá volver atrás, si en cada m omento no hacemos aquello que procede hacer… ¡Lo perderemos para siempre!

           Así, contemplaremos el paisaje y disfrutaremos de la Naturaleza

  Este viaje, aunque no se le niegue emoción… es diferente, otra cosa

No, esto no es calidad de vida. Pasarse años en esta ciudad, seguramente, acortará el tiempo que podamos estar aquí. El estrés y la agobieante forma de vida en una de estas ciudadades… ¡acabaría conmigo. La escena que arriba contemplamos es desquiciante y sin duda alguna hará mella en los seres que ahí tengan que estar cada día, en esa vorágine de actividad inusitada, de ruidos…

Mejor poder dejar pasar tu tiempo en una casa tranquila con un poco de jardín, en la que, los fines de semana se escuche el bullicioso ruído de los más pequeños con sus juegos que te traen recuerdos de otros tiempos pasados que, de esta manera, puedes volver a revivir en tu memoria.

Y, mientras eso ocurre, tienes la oportunidad de mirar por la cristalera mientras tecleas tus ideas en ese espacio en blanco que te deja el ordenador para que, juntando las palbras, puedas expresar las cosas que por tu imaginación van pasando.

Claro que, no siempre podemos hacer realidad nuestros deseos y, todos, sin excepción, estamos supeditados a lo que la vida nos tiene deparado que, no pocas veces, nos forjamos nosotros mismos.

emilio silvera

 

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Se reproduce aquí, a modo de resumen, el primer párrafo de cada uno de los artículos que componen la segunda parte del libro Astronomía: De Galileo a la exploración espacial del astrónomo y divulgador Rafael Bachiller, donde se rememora los hitos más importantes de la astronomía ocurridos en lo siglos XX y principios del XXI (hasta 2009). El lector interesado puede acceder al contenido completo de los mismos a través de la obra mencionada o desde la dirección web (Lunwerg: Astronomia. De Galileo a la exploración espacial), donde fueron originalmente publicados con motivo del 400 aniversario del nacimiento de la astronomía moderna.

               Diagrama de Hertzsprung y Russell y los dos astrónomos autores del mismo

SIGLO XX-XXI

De la evolución estelar a los telescopios espaciales

 

1913 La clasificación de las estrellas

En 1913 los astrónomos Hertzsprung y Russell establecieron, de manera independiente, un esquema para la clasificación de todas las estrellas de acuerdo con dos parámetros: temperatura y luminosidad. Lo que se conoce en el argot astronómico como diagrama H-R (por las iniciales de sus descubridores) pronto se reveló como una herramienta potentísima en el estudio de la estructura y evolución de las estrellas. De manera análoga a como la catalogación de los seres vivos condujo a Darwin a la teoría de la evolución de las especies, la clasificación H-R de las estrellas condujo a los astrónomos a establecer, en la primera mitad del siglo XX, una teoría de la evolución estelar que es considerada como uno de los mayores logros de la Astrofísica de todos los tiempos.

1915 El universo relativista de Einstein

En 1915, Albert Einstein enunció su Teoría de la Relatividad General, una nueva teoría de la Gravitación que vino a sustituir a la de Newton aportando una visión completamente revolucionaria del Universo. En la visión de Einstein, la materia, el espacio y el tiempo son tres elementos interconectados entre sí: la gravedad puede ser interpretada como una curvatura del espacio. En el espacio-tiempo la luz se mueve a velocidad constante describiendo trayectorias curvas según es desviada por la presencia de cuerpos materiales. La Teoría de la Relatividad resolvió elegantemente los problemas de la física clásica y realizó otras sorprendentes predicciones (como la curvatura de la luz en un campo gravitatorio) que fueron comprobadas experimentalmente de manera espectacular. Gracias a esta nueva teoría, el Universo pasó a describirse como un todo mediante una serie de ecuaciones que describen la íntima imbricación del espacio, el tiempo y la materia.

1925 Hubble y el universo extragaláctico

En 1925, el astrónomo norteamericano Edwin Hubble midió la distancia a Andrómeda y a otras nebulosas espirales y demostró que tales nebulosas estaban fuera, y muy lejos, de la Vía Láctea. Tales nebulosas eran por tanto galaxias independientes de la nuestra, lo que indicaba que el Universo era mucho mayor de lo que se había creído hasta entonces. Poco después, midiendo las velocidades de tales galaxias y comparándolas con sus distancias concluyó que todas ellas se alejaban entre sí. Georges Lemaître interpretó estas medidas como el resultado de la expansión del universo y, resolviendo las ecuaciones de la relatividad general de Einstein, puso los cimientos de la teoría del Big Bang.

1931 El nacimiento de la Radioastronomía

A pesar de que Maxwell había descrito el espectro electromagnético a mediados del XIX, el estudio del universo estuvo limitado a la luz visible hasta bien entrado el siglo XX. La atmósfera terrestre actúa como una barrera bloqueando gran parte de la radiación que es emitida más allá del ultravioleta y del infrarrojo y, por otra parte, los astrónomos no disponían de la tecnología necesaria para construir detectores en rangos del espectro electromagnético diferentes del óptico. Pero esta situación cambió radicalmente cuando, en 1931, Karl Jansky descubrió ondas de radio que procedían de la Vía Láctea.

Aunque parezca difícil de creer, hacia la mitad del siglo XX aún quedaba mucho cielo por descubrir. Es cierto que por entonces se conocían las posiciones de cientos de miles de estrellas y galaxias sobre la bóveda celeste, pero aún no se sabía bien a qué distancia se encontraban.

Además, todos los catálogos estaban basados en observaciones realizadas con los telescopios “ópticos”, estos son, los que recogen la luz que nosotros vemos. Las técnicas de observación en otros “colores que no vemos”, como en rayos X, ultravioleta, infrarrojo o radio, estaban empezando a desarrollarse. Muchas tardarían aún décadas en llegar al ser imprescindible el uso de satélites artificiales. Por ejemplo, no hasta hace unos pocos años hemos empezado a “ver” de verdad los colores infrarrojos del Universo, gracias a satélites como Spitzer (NASA) y Herschel (ESA). Pero en la década de los cincuenta del siglo pasado la Radioastronomía ya había despegado. Ciertamente muchas sorpresas llegaron entonces gracias a la observación del cielo usando ondas de radio. Así, en…

1963 Se descubrimiento de los quásares

El rápido desarrollo de la radioastronomía tras la Segunda Guerra Mundial condujo a la identificación de unas misteriosas fuentes de ondas de radio que, en el óptico, parecían estrellas muy débiles. En 1963, el astrónomo holandés-estadounidense Marteen Schmidt estimó la distancia y luminosidad de algunas de estas radiofuentes y concluyó que se trataba de galaxias situadas en los confines del Universo conocido. Tales galaxias poseían luminosidades muy superiores a las de todas las conocidas previamente. Hoy sabemos que tales objetos, denominados quásares, obtienen su energía de agujeros negros supermasivos situados en sus regiones centrales. El agujero negro, rodeado de un disco de acreción, es el origen de chorros bipolares de altísima velocidad.

Penzias y Wilson ante su antena | Bell Labs.
Penzias y Wilson ante su antena | Bell Labs.

En los Laboratorios de la Bell Telephone en Holmdel (Nueva Jersey) otros dos jóvenes astrónomos, Arno Penzias (nacido en 1933) y Robert Wilson (nacido en 1936), habían construido una extraña antena (una especie de gran bocina receptora) de 6 metros de longitud para observar posibles microondas provenientes del halo de la Vía Láctea. En 1965, detectaron una radiación misteriosa que no parecía tener relación con nuestra Galaxia. La insistente radiación era observable en todas las direcciones del cielo y permanecía omnipresente día y noche a lo largo de todo el año. Era una señal sumamente uniforme y que correspondía a una temperatura de tan sólo unos 3 Kelvin (270 grados Celsius bajo cero). Desconcertados, Penzias y Wilson concluyeron que necesariamente tal radiación era de origen cósmico, pero no tenían idea de qué fenómeno físico podía causarla.

1965 El eco del Big Bang

Como decimos en 1965 Penzias y Wilson descubrieron una misteriosa radiación de microondas en el fondo del cielo. Tal radiación, cuya existencia había sido predicha por varios investigadores durante las dos décadas previas, pudo ser inmediatamente reconocida como una reliquia del ‘Big Bang’. Estas observaciones vinieron por tanto a confirmar la interpretación de la ley de Hubble en términos de una expansión generalizada del universo que tenía su origen una gran explosión. Gracias a la misión espacial COBE de la NASA, se detectaron en 1992 las irregularidades primigenias que debieron dar lugar a la formación de galaxias y de cúmulos de galaxias. Posteriormente, la misión WMAP contribuyó a medir parámetros importantes del universo, tales como su edad y su composición. Finalmente, el telescopio Planck lanzado por la ESA en mayo de 2009 deberá refinar todas estas medidas culminando así medio siglo de sorprendentes descubrimientos cosmológicos.

1968 El misterio de los púlsares

Los astrónomos Antony Hewish y Jocelyn Bell anunciaron, en 1968, el descubrimiento de unos objetos astronómicos nuevos. Los denominaron radiofuentes pulsantes, o simplemente púlsares, por tratarse de emisores de rapidísimas ráfagas de microondas que alcanzaban la Tierra con sorprendente regularidad. Por otro lado, desde varios años antes, astrónomos teóricos habían barajado la posibilidad de que algunas estrellas acabasen sus vidas en la forma de densísimos residuos estelares constituidos por neutrones. Cotejando las propiedades, pronto se concluyó que estas estrellas de neutrones predichas teóricamente eran los mismos objetos que los púlsares recién descubiertos.

1990 El lanzamiento del telescopio espacial Hubble

La atmósfera terrestre impone severas limitaciones a las observaciones astronómicas. Algunos rangos del espectro electromagnético, como la luz ultravioleta o la del lejano infrarrojo, quedan completamente bloqueados. Incluso la radiación que consigue llegar a la superficie terrestre es alterada, en mayor o menor medida dependiendo de su longitud de onda, por los movimientos turbulentos de las diferentes capas de nuestra atmósfera. La forma más directa de escapar a estos efectos, tan perjudiciales para la observación astronómica, consiste en instlar el telescopio por encima de la atmósfera, en una plataforma espacial. En 1990, tras numerosos estudios y experimentos con telescopios espaciales menores, la NASA puso en órbita el telescopio Hubble. Equipado con un espejo de 2,4 m de diámetro, el Hubble ha proporcionado resultados espectaculares y se ha convertido en un fenómeno que ha rebasado ampliamente los ámbitos de la astronomía.

1995 ¡Planetas extrasolares!

En 1995 los astrónomos Michel Mayor y Didier Queloz anunciaron la detección de 51 Pegasi b, un planeta que orbita en torno a una estrella de tipo solar a 50 años luz de la Tierra. Confirmado prontamente por los norteamericanos Geoffrey Marcy y Paul Butler, este descubrimiento inauguró una intensa carrera que ha conducido a la detección de un total de más 400 planetas extrasolares contenidos en unos 300 sistemas planetarios. Aunque todos estos planetas son significativamente más masivos que la Tierra, la instrumentación que está siendo específicamente diseñada para la búsqueda y detección de planetas de tipo terrestre debería conducir en pocos años a la detección de otras tierras.

Imagen óptica-infrarroja-X del Centro Galáctico. | NASA, ESA, SSC, CXC, STSci.

Imagen óptica-infrarroja-X del Centro Galáctico. | NASA, ESA, SSC, CXC, STSci.

            El centro galáctico señalado con los detalles y objetos allí presentes

2002 Un agujero negro en el centro de la Vía Láctea

En el año 2002, un equipo internacional de astrónomos liderado desde el Instituto Max Planck de Física Extraterrestre de Munich presentó los resultados de un patrullaje de diez años de duración de la estrella S2 que orbita en torno al Centro de la Vía Láctea. Sus medidas indicaban que nuestro centro galáctico está ocupado por un agujero negro supermasivo de unos 4 millones de masas solares. Observaciones posteriores en un amplio rango de longitudes de onda (visibles, infrarrojas, radio, X y gamma) han confirmado este resultado ofreciendo más y más detalles. Se piensa hoy que la presencia de agujeros negros supermasivos no sólo tiene lugar en galaxias extremas, sino que puede ser un fenómeno habitual en la mayor parte de las galaxias espirales y elípticas.

Proyecto para el telescopio Europeo Extremadamente Grande. | ESO

     Proyecto para el telescopio Europeo Extremadamente Grande. | ESO

2009 Diseño y construcción de telescopios extremadamente grandes

La aventura de la construcción de telescopios que comenzó en 1609 con aquella primera observación realizada por Galileo está lejos de llegar a su fin. En el año 2009, simultáneamente con el lanzamiento de tres potentes telescopios espaciales, Kepler, Herschel y Planck, se estaban definiendo las características esenciales de tres Telescopios Extremadamente Grandes (ELT), dos norteamericanos y uno europeo. Se espera que estos telescopios entren en operación en la segunda mitad de la década de los 2010. En Radioastronomía hay que destacar dos proyectos colosales: la construcción del Atacama Millimeter Array (ALMA) que deberá finalizar hacia 2013, y el diseño del Square Kilometer Array (SKA) que está previsto hacia 2022. La observación con estos instrumentos revolucionará completamente la Astronomía en tan sólo dos décadas.

Hasta aquí y resumido, algunos de los descubrimientos y avances que hemos podido ir realizando a lo largo del tiempo, todos esos descubrimientos astronómicos producidos desde las primeras décadas del siglo XX que vinieron a modificar de raíz la imagen que teníamos del Universo como algo estático. Claro que no siempre ha sido así, nada es tan simple y todo tiene su historia, como nos decía Shakespeare:

“Y esta nuestra vida, libre de frecuentación pública,

Halla lenguas en los árboles, libros en los arroyos que fluyen,

Sermones en las piedras y bien en todas partes.”

Antes de llegar nosotros que ahora nos creemos los amos, “los que lo saben todo”, estuvieron aquí otros pueblos, otras civilizaciones que, a su manera y con los medios que tenían, también hicieron sus contribuciones para que ahora nosotros estémos en el nivel alcanzado con el esfuerzo de muchos que se podría remontar a la noche de los tiempos, es decir, hasta las civilizaciones antiguas sumerias, babilonicas, egipcias, chinas, hindúes, griegas, árabes, mayas… Contemos alguna parte de todo aquello y de cómo entramos en la actualidad.

Por aquel entonces, predominaba en la antigua Grecia una concepción del Tiempo que era cíclica, y tan cerrada como las esferas cristalinas en las que Aristóteles aprisionaba el espacio cósmico. Platón, Aristóteles, Pitágoras que crearon escuela junto a una pléyade de seguidores, todos ellos, soteníam la idea, heredada de una antigua creencia caldea, de que la historia del universo consistía en una serie de “grandes años”, cada uno de los cuales era un ciclo de duración no especificada que finalizaba cuando todos los planetas estaban en conjunción, provocando una catástrofe de cuyas cenizas comenzaba el ciclo siguiente. Se pensaba que este proceso tenía lugar desde siempre. Según el razonamiento de Aristóteles, con una lógica tan circular como los movimientos de las estrellas, sería paradójico pensar que el tiempo ha tenido un comienzo en el tiempo, de modo que los cielos cósmicos deben producirse eternamente.

La concepción cíclica del Tiempo no carecía de encantos. Expresaba un hastío del mundo y un elegante fatalismo del género que a menudo atrae a las personas con inclinaciones filosóficas, un tinte conservado en forma indeleble por el historiador islámico Ahmad ibn ‘Abd al-Ghaffar, al-Kazwini al-Ghifari, quien relató la parábola del eterno retorno.

http://alexpantarei.files.wordpress.com/2008/03/tiempo3.jpg

              El mito del eterno retorno: la Regeneración del Tiempo

Tomado literalmente, el tiempo cíclico hasta sugiere una especie de inmortalidad. Como Eudemo de Rodas, discípulo de Aristóteles, decía a sus propios discípulos: “Si creéis a los pitagóricos, todo retornorá con el tiempo en el mismo orden numérico, y yo conversaré con vosotros con el bastón en la mano y vosotros os sentaréis como estáis sentados ahora, y lo mismo sucederá con toda otra cosa”. Por estas o por otras razones, el tiempo cíclico aún es popular hoy, y muchos cosmólogos defienden modelos del “universo oscilante” en los que se supone que la expansión del universo en algún momento se detendrá y será seguida por un colapso cósmico en los fuegos purificadores del siguiente bis bang.

Según Penrose (físico teórico de la Universidad de Oxford), el Big Bang no fue el inicio del tiempo y el espacio, sino uno de tantos inicios, pero de fases o etapas dentro de un universo mucho más viejo, y en el que cada Big Bang marca el inicio de un nuevo eón en su historia. Es tanto como decir que los 13.700 millones de años de nuestro tiempo, en los que han surgido estrellas, planetas y la vida; son una pequeña fracción de la vasta historia del universo.

Por supuesto, semejante afirmación viniendo de un físico tan prestigioso, ha de estar respaldada por algún tipo de observación empírica, y en este caso, se basa en los resultados obtenidos de la sonda WMAP de la NASA por el físico Vahe Gurzadyan del Instituto de Física Yerevan en Armenia, quien analizó datos de microondas de siete años procedentes de la sonda, así como datos del experimento de globO BoomeranG de la Antártida.

Claro que, todas estas ideas de un Tiempo repetitivo y eterno en su “morir” y “renacer”, a mí me produce la sensación de una excusa que se produce por la inmensa ignorancia que, del universo tenemos. Fijémonos en que, los pueblos antiguos desde los hindúes, sumerios, babilonios, griegos y mayas, todos ellos, tenían esa idea cosmológica del tiempo cíclico. Pero, pese a todos sus aspectos de aventura cósmica, esa vieja doctrina de la historia infinita y cíclica tenía el pernicioso efecto de tender a desalentar los intentos de sondear la genuina extensión del pasado. Si la historia cósmica consistía en una serie interminable de repeticiones interrumpidas por destrucciones universales, entonces era imposible determinar cual era realmente la edad total del universo.

Un pasado cíclico infinito es por definición inconmensurable, es un “tiempo fuera de la mente”, como solía decir Alejandro Magno. El Tiempo Cíclico tampoco dejaba mucho espacio para el concepto de evolución. La fructífera idea de que pueda haber innovaciones genuínas en el mundo.

  Todo, con el paso del Tiempo, se distorsiona y deteriora

Los griegos sabían que el mundo cambia y que algunos de sus cambios son graduales. Al vivir como vivían, con el mar a sus pies y las montañas a sus espaldas, se daban cuenta de que las olas erosionan la tierra y estaban familiarizados con el extraño hecho de que conchas y fósiles de animales marinos pueden encontrarse en cimas montañosas muy por encima del nivel del mar. Al menos dos de los hallazgos esenciales de la ciencia moderna de la geología -que pueden formarse montañas a partir de lo que fue antaño un lecho marino, y que pueden sufrir la erosión del viento y del agua- ya eran mencionados en épocas tan tempranas como el siglo VI a. C. por Tales de Mileto y Jenófanes de Colofón. Pero tendían a considerar estas transformaciones como meros detalles, limitados al ciclo corriente de un cosmos que era, a la larga, eterno e inmutable. “Hay necesariamente algún cambio en el mundo como un todo -escribió Aristóteles-, pero no en el sentido de que nazca o perezca, pues el universo es permanente.”

Para que la Ciencia enpezace a estimar la antigüedad de la Tierra y del universo -situar el lugar de la Humanidad en las profundidades del pasado, lo mismo que establecer nuestra situación en el espacio cósmico-, primero era necesario romper con el círculo cerrado del tiempo cíclico y reemplazarlo por un tiempo lineal que, aunque largo, tuviese un comienzo definible y una duración finita. Curiosamente, este paso fue iniciado por un suceso que, en la mayoría de los otros aspectos, fue una calamidad para el progreso de la investigación empírica: el ascenso del modelo cristiano del universo.

Inicialmente, la cosmología cristiana disminuyó el alcance de la historia cósmica, asó como contrajo las dimensiones espaciales del universo empíricamente accesible. La grandiosa e impersonal extensión de los ciclos temporales griegos e islámicos fue reemplazada por una concepción abreviada y anecdótica del pasado, en la que los asuntos de los hombres y de Dios tenían más importancia que las acciones no humanas del agua sobre la piedra. Si para Aristóteles la historia era como el girar de una gigantesca rueda, para los cristianos era como una obra de teatro, con un comienzo y un final definidos, con sucesos únicos y singulares, como el nacimiento de Jesús o la entrega de la Ley a Moisés.

Los cristianos calculaban la edad del mundo consultando las cronologías bíblicas de los nacimientos y muertes de los seres humanos, agregando los “engendrados”, como decían ellos. este fue el método de Eusebio, que presidió el Concilio de Nicea convocado por el Emperador Constantino en 325 d. C. para definir la doctrina cristiana, y quien estableció que habían pasado 3.184 años entre Adán y Abrahan; de san Agustín de Hipona, que calculó la fecha de la creación en alrededor del 5500 a. C.; de Kepler, que la fechó en 3993 a.C.; y de Newton, que llegó a una fecha sólo cinco años anterior a la de Kepler. Su apoteosis llegó en el siglo XVII, cuando James Ussher, obispo de Armagh, Irlanda, llegó a la conclusión de que el “comienzo del tiempo… se produjo al comienzo de la noche que precedió al día 23 de octubre del año… 4004 a. C.”

La espuria exactitud de Ussher le ha convertido en el blanco de las burlas de muchos eruditos modernos, pero, a pesar de todos sus absurdos, su enfoque -y, más en general, el enfoque cristiano de la historiografía-hizo más para estimular la investigación científica del pasado que el altanero pesimismo de los griegos. Al fifundir la idea de que el universo tuvo un comienzo en el tiempo y que, por lo tanto, la edad de la Tierra era finita y medible, los cronólogos cristianos montaron sin saberlo el escenario para la época de estudio científico de la cronología que siguió.

La diferencia, desde luego, era que los científicos no estudiaban las Escrituras, sino las piedras. Así fue como el naturalista George Louis Leclere expresó el credo de los geólogos en 1778:

http://www.ojocientifico.com/wp-content/052.jpg

Así como en la historia civil consultamos documentos, estudiamos medallones y desciframos antiguas inscripciones, a fin de establecer las épocas de las revoluciones humanas y fijar las fechas de los sucesos morales, así también en la historia natural debemos excavar los archivos del mundo, extraer antiguas reliquias de las entrañas de la tierra [y] reunir sus fragmentos…Este es el único modo de fijar ciertos puntos en la inmensidad del espacio, y de colocar una serie de señales en el camino eterno del tiempo.

Bueno, hemos dado una vuelta por las ideas del pasado y de épocas antiguas en las que, los humanos, confunduidos (como siempre), trataban de fijar el modelo del mundo, del Universo. Ahora, mirando hacia atrás en el tiempo, con la perspectiva que nos otorga algunos miles de años de estudio e investigación, nos damos cuenta de que, la mayor parte de nuestra historia, está escrita basada en la imaginación y, los hechos reales, van llegando a nuestra comprensión muy poco a poco para conocer, esa realidad, que incansables perseguimos.

Para terminar, os recomendaré que nunca dejéis de lado la lectura:

¿Qué duda nos puede caber?

¿Acaso no es un libro el mejor compañero de viaje?

No molesta, te distrae y te enseña.

Si alguna vez viajas,

Recuerda esta reseña.

emilio silvera