Oct
7
Siempre queriendo saber ¡De tantas cosas!
por Emilio Silvera ~ Clasificado en ¡Tenemos que saber! ~ Comments (3)
Einstein nos dijo el límite con que podríamos recibir información en el universo, la velocidad de c. Que la velocidad de la luz era una constante sobrehumana fundamental de la naturaleza. También sabía el maestro que, en el proceso de nuevas teorías, la búsqueda de la teoría final que incluyera a otras fuerzas de la naturaleza distintas de la gravedad, daría lugar a teorías nuevas y cada vez mejores que irían sustituyendo a las antiguas teorías. De hecho, él mismo la buscó durante los 30 últimos años de su vida pero, desgraciadamente, sin éxito. Ahora se ha llegado a la teoría de supercuerdas que sólo funciona en 10 y 26 dimensiones y es la teoría más prometedora para ser la candidata a esa teoría final de la que hablan los físicos.
¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar. Esta teoría tan avanzada es que, ni podemos verificarla en nuestro tiempo, pertenece al futuro y la dejaremos por el momento para volver a los números puros de la Naturaleza.
El físico espera que las constantes de la naturaleza respondan en términos de números puros que pueda ser calculado con tanta precisión como uno quiera. En ese sentido se lo expresó Einstein a su amiga Ilse Rosenthal-Schneider, interesada en la ciencia y muy amiga de Planck y Einstein en la juventud.
Lo que Einstein explicó a su amiga por cartas es que existen algunas constantes aparentes que son debidas a nuestro hábito de medir las cosas en unidades particulares. La constante de Boltzmann es de este tipo. Es sólo un factor de conversión entre unidades de energía y temperatura, parecido a los factores de conversión entre las escalas de temperatura Fahrenheit y centígrada. Las verdaderas constantes tienen que ser números puros y no cantidades con “dimensiones”, como una velocidad, una masa o una longitud. Las cantidades con dimensiones siempre cambian sus valores numéricos si cambiamos las unidades en las que se expresan.
Mp = | (hc/G)½ = | 5’56 × 10-5 gramos |
Lp = | (Gh/c3) ½ = | 4’13 × 10-33 centímetros |
Tp = | (Gh/c5) ½ = | 1’38 × 10-43 segundos |
Temp.p = | K-1 (hc5/G) ½ = | 3’5 × 1032 ºKelvin |
Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin. Estos números infinitesimales definen el mundo cuántico y marcan el límite de nuestras actuales teorías. Nunca hemos logrado ir más allá. De hecho, cuando los científicos y los grandes matemáticos han querido ir más allá del Tiempo de Planck, para conocer qué pasó en esos primeros momentos del Big Bang… Nunca se logró, aparecen resultados sin sentido si pretendemos ir más allá de 10-43 segundos.
La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza al tener que pensar en tan reducidas unidades, y sólo a finales de la década de 1.960 el estudio renovado de la cosmología llevó a una plena comprensión de estos patrones extraños. Uno de los curiosos problemas de la Física es que tiene dos teorías hermosamente efectivas (la mecánica cuántica y la relatividad general) pero gobiernan diferentes dominios de la naturaleza.
La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua. Se parece más a una ola delictiva o una ola de histeria: es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.
Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros. Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.
Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.
¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son. En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:
“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”
¿Quién sabe cómo serán?
En sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros. Lo cierto es que, estas unidades, al tener su origen en la Naturaleza y no ser invenciones de los seres humanos, de la misma manera que nosotros y, posiblemente por distintos caminos, seres de otros mundos también las hallarán y serán idénticas a las nuestras. De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo. Planck nos decía:
“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”
Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño. La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33 de centímetros, más joven que el tiempo de Planck, 10-43 segundos y supere la temperatura de Planck de 1032 grados. Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.
Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros. Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2. Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.
No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.
α = 2πe2 / hc ≈ 1/137 |
αG = (Gmp2)2 / hc ≈ 10-38 |
La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala. La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.
Siempre estamos tratando de desvelar los secretos de la Naturaleza
El cuásar 3C191 fue localizado con un desplazamiento al rojo de 1,95 y por eso su luz salió cuando el universo tenía sólo una quinta parte de su edad actual, hace casi once mil millones de años, llevando información codificada sobre el valor de la constante de estructura fina en ese momento. Con la precisdión de las medidas alcanzables entonces, se encontró que la constante de estructura fina era la misma entonces que ahora dentro de un margen de unos pocos por ciento:
α (z = 1,95/α(z = 0) = 0,97 ± 0,05
Poco después , en 1967, Bahcall y Schmidt observaron un par de líneas de emisión de oxígeno que aparecen en el espectro de cinco galaxias que emiten radioondas, localizadas con un desplazamiento hacia el rojo promedio de 0,2 (emitiendo así su luz hace unos dos mil millones de años: Aproximadamente la época en que el reactor de Oklo estaba activo en la Tierra y obtuvieron un resultado consistente con ausencia de cambio en la constante de estructura fina que era aún diez veces más fuerte:
α (z = 0,2)/α(z = 0) = 1,001 ± 0,002
Estas observaciones excluían rápidamente la propuesto por Gamow de que la constante de estructura fina estaba aumentando linealmente con la edad del universo. Si hubiese sido así, la razón α(z = 0,2)/α(z = 0) debería haberse encontrado con un valor próximo a 0,8.
La Constante de la Estructura Fina
Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, por qué todos los números puros definidos por las razones de cualquier par de masas son invariables.
Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.
Sí, algunas cosas nos quedan muy lejos pero, sobre todo recordad:
“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.
α = 2πe2 /hc = 1/137
Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck. Todo esto no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e–), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h).
Nuestro destino es el de seguir preguntando. Nunca lo podremos saber todo sobre todo y, por cada respuesta que podamos lograr, aparecerán mil preguntas nuevas que plantear. El Universo es inmenso y en él se esconde todo lo que existe y, entre los muchos secretos que guarda, está el más grande de todos: ¡El surgir de las consciencias! Desde que la inteligencia y la consciencia de Ser aparecieron en el Universo, desde siempre estuvo acompañada por la curiosidad y la necesidad de saber. El conocimiento es nuestro destino y, seguramente también, nuestra salvación.
emilio silvera
el 15 de marzo del 2013 a las 5:35
Nuestros inconscientes nos abruma con una intuición profunda de que, en nosotros, está presente una profunda ignorancia del mundo, de la Naturaleza, del Universo que nos acoge y de las leyes que lo gobiernan y, algo dentro de nosotros nos dice, que tenemos que saber, de ello depende todo, de ello depende, nada más y nada menos que, posiblemente, la conservación de nuestra propia especie.
Si conseguimos por fín conocer los secretos que la Naturaleza esconde, entonces, y sólo entonces, podremos saber quiénes somos. Conocer la Naturaleza es conocernos a nosotros mismos que somos una parte de ella.
Y, como decía Hilbert: “¡Tenemos que saber”!
el 7 de octubre del 2013 a las 3:54
Si miramos hacia atrás en el Tiempo, podremos comprobar que Civilizaciones diversas nos precedieron y también ellos, como nosotros ahora, trataron de comprender sobre el mundo, sobre la Naturaleza, sobre las estrellas del cielo, sobre el Universo y, su curiosidad, hizo que pudieran dejarnos algunas guías que indicaban los caminos a seguir.
Lo hemos ido haciendo lo mejor posible en la vorágina de ese Caos que crean todo lo somos: Ambición., Curiosidad, Supervivencia, Instinto, Pensamientos filosóficos, Cuerpo, Mente… ¿Se podrá, en medio de tanta complejidad, alcanzar un poco de estabilidad?
La inquietud por el futuro de nuestros seres queridos nunca nos dejará y, em medio de un torbellino de pensamientos diversos, seguimos caminando creyéndonos fuertes y poderosos cuando en realidad, simplemente somos el resultado de la evoluciòn de la materia en medio de unas fuerzas que nunca podremos controlar.
Hoy estamos y mañana no estaremos. Lo que para nosotros es importante… ¡En el Universo ni existe! Sólo en nuestras mentes está presente todo aquello que nos alienta, las estrellas son ajenas a nuestros pensamientos y, sin embargo, como ellas, somos obra de la misma Naturaleza.
Sí, tenemos que saber pero… ¿Dónde estará el límite?
el 31 de octubre del 2013 a las 11:00
No comprendo como en un tema tan apasionante como este, nadie ha comentado nada. Es posible que muchos, por pudior, estimen no tener la capacidad de emitir su opinión. A mí, por lo menos, me parece un gran error no decir lo que se piensa sobre cualquier tema más o menos comprensible y, en último caso… ¡Se pregunta!