domingo, 17 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Naturaleza a veces resulta extraña e incomprensible

Autor por Emilio Silvera    ~    Archivo Clasificado en Curiosidades    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En matemáticas se pueden trazar líneas precisas y concretas que dividan en dos clases entes de naturaleza matemática. Una estructura geométrica se puede suporponer o no a su imagen especular. Una estructura asimétrica puede tener una lateralidad a la derecha o bien a la izquierda. Immanuel Kant, el gran filósofo germano del siglo XVIII, fue el primer pensador eminente que encontró un significado filosófico profundo a las reflexiones especulares. A Kant le parcía enigmático y misterioso que un objeto asimétrico pueda existir en cualquiera de sus dos imágenes frente a un espejo. Parece magia que, poniendo algunas cosas ante un espejo y mirando esa imagen especular, las cosas puedan parecer tan diferentes y, sin embargo, así resultan ser.

Cualquier número entero positivo es par o impar, y no hay ninguno de tales números para el cual su situación  a este respecto ofrezca la menor duda. Pero en el mundo, si exceptuamos el nivel subatómico de la teoría cuántica, las lineas divisortias son casi siempre difusas. El alquitrán, ¿es sólido o líquido?. Lo cierto es que, la mayoría de las propiedades físicas se “mueven” en un espectro continuo que hace que vayan cambiando de manera imperceptible de un extremo a otro del mismo.

La palabra quiral fue introducida por William Thomson (Lord Kelvin) en 1894 para designar objetos que no son superponibles con su imagen especular. Aplicado a la química orgánica, podemos decir que una molécula es quiral cuando ella y su imagen en un espejo no son superponibles.

La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromocloroyodometano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación entre una molécula y su imagen especular no superponible es de enantiómeros.


En estos dibujos podemos ver la molécula de Bromocloroyodometano y su enantiómero reflejado en el espejo. Una vez para hacer la prueba, puse en encima de una mesa unos modelos tridimensionales de los poliedros enantiamorfos y delante de ellos puse un espejo que reflejaba la figura especular que de dicha puesta en escena resultaba. Las dos escenas (la real y la especualr) eran exactamente iguales en lo que hace referencia a sus propiedades geométricas. A cada una de las aristas de cada una de las figuras le corresponde una de la misma longitud en la otra. Todo ángulo de una estaba emparejado al duplicado suyo de la otra. Ninguna medida o inspección de cualquiera de ellas reveló ni una sola característica geométrica que no tuviera la otra. En ese sentido, son figuras congruentes idénticas. ¡Pero, evidentemente, no eran idénticas!

Cuando nos ponemos delante del espejo podemos comprobar que en él, aparecen cosas sorprendentes en cuanto a que no se pueden superponer las figuras del modelo con la figura especular. Una simple mano abierta y puesta delante del espejo resulta totalmente diferente en un lado y en el otro de la superficie especular. Puedes ponerte delante del espejo y levantar ambos brazos a media altura con las dos manos abiertas y, de manera sorprendente verás que, la figura que aparece en el espejo muestra tu mano y brazo derecho como izquierdo y el izquierdo como derecho.

La propiedad de las manos, conocida por los químicos como quiralidad, es una característica que poseen muchas moléculas cuya disposición de los átomos no es completamente simétrica. Una molécula quiral se presenta en dos formas que son más bien como un par de guantes. Dos guantes, uno diestro y otro zurdo, son esencialmente idénticos, con los mismos componentes básicos, cuatro dedos y un pulgar, y la misma función de mantener las manos cómodas y protegidas. Pero, evidentemente, no son exactamente iguales: no se puede girar o voltear un guante de un tipo para que se superponga perfectamente en el otro. Pero si lo miras en un espejo, un guante de la mano izquierda se convierte en uno de la mano derecha.

¿Por qué la biología utiliza sólo una de las dos formas especulares de la imagen en la que las moléculas más complejas pueden existir? La última respuesta dada a esta pregunta afecta al campo de la astrofísica, la física de partículas y la bioquímica. La conclusión del último estudio dice que las explosiones estelares conocidas como supernovas son las culpables de que se produzca este fenómeno.

La Naturaleza, como siempre he dicho aquí, tiene muchos misterios que no hemos llegado a comprender. El paso del tiempo convierte en líquido, gas o sólido algunos materiales y, a otros, los deforma hasta perder su estructura original para convertirlos en lo que antes no eran. Nada permanece, todo cambia. Sea cual fuere la línea de división, habrá algunos casos en los que no podamos definirla y, en otros, habrá objetos tan próximos a ella que el lenguaje ordinario no será lo suficientemente preciso como para poder afirmar a qué lado pertenece. Y, la propiedad de la vida, está, precisamente, en uno de esos continuos.

Para porbar esto basta que consideremos los virus: son las estructuras biológicas más pequeñas que se conocen  con la propiedad de poder “comer” (absorber sustancias situadas en sus proximidades), crecer y fabricar copias exactas de sí mismas.

Son mucho más pequeños que una bacteria (en realidad, algunos virus infectan las bacterias) y pasan sin dificultad a través de un filtro de porcelana fina que, aunque a nosotros nos parezca que está completamente sellada y su superficie es totalmente hermética y lisa, para ellos, tan “infinitamente” pequeños, ofrece miles de huecos por los que poder colarse.

Nuevas grabaciones en vídeo de un virus que infecta a las células sugiere que los virus se expanden mucho más rápido de lo que pensábamos. El descubrimiento de este mecanismo permitirá crear nuevos fármacos para hacer frente a algunos virus. En la punta de un alfiler caben millones de ellos. De hecho, los virus tienen el tamaño de una décima de micrómetro (diezmillonésima parte del metro).

El mundo de lo muy pequeño es fascinante y, por ejemplo, si hablamos de átomos, se necesitarían aproximadamente una cantidad para nosotros inconmensurable de átomos (602.300.000.000.000.000.000.000) para lograr un solo gramo de materia. Fijáos que hablamos de lo pequeño que pueden llegar a ser los virus y, sin embargo, el Hidrógeno con un sólo protón es el átomo más ligero y su masa es 400.000 veces menor que la masa de un virus, como antes dije, el organismo vivo más pequelo que se conoce. El virus más diminuto conocido mide unos o,00000002 m; su tamaño es 2.000 veces mayor que el del átomo. Y, en la punta del algiler que antes mencionamos cabrían 60.000.000.000 (sesenta mil millones) de átomos.

Imágenes in vitro del virus diminuto del ratón, mostrando las tres simetrías icosahédricas.

Los virus son nanomáquinas enormemente dañinas pero que están formados por una sencillísima estructura. Tanto es así que se puede decir que son entidades biológicas a caballo entre la materia inerte y la materia viva. Básicamente constan de una envuelta externa llamada ‘cápsida’, formada por proteínas, que se encarga de preservar el ADN en el interior. Los virus no presentan ninguna función metabólica, y consiguen reproducirse parasitando la maquinaria molecular de una célula huésped. El interés por estudiar en profundidad los virus no sólo proviene de la motivación por erradicar las enfermedades que estos producen, sino también de su estudio como materiales. Las cápsidas de los virus son extraordinariamente resistentes.

Como los virus son menores que la longitud de onda de la luz, no pueden observarse con un microscopio luminoso ordinario, pero los bioquímicos disponen de métodos ingeniosos que les permiten deducir su estructura, ya que pueden verlos mediante bombardeos con rayos X u otras partículas elementales.

En ralidad, se puede decir que un cristal “crece”, pero lo hace de un modo ciertamente trivial. Cuando se encuentra en una solución que contiene un compuesto semejante a él, dicho compuesto se irá depositando sobre su superficie; a medida que esto ocurre, el cristal se va haciendo mayor, pero el virus, igual que todos los seres vivos, crece de una manera más asombrosa: toma elementos de su entorno, los sintetiza en compuestos que no están presentes en el mismo y hace que se combinen unos con otros de tal manera que lleguen a dar una estructura compleja, réplica del propio virus.

 

Los virus sólo se multiplican en células vivientes. La célula huésped debe proporcionar la energía y la maquinaria de síntesis, también los precursores de bajo peso molecular para la síntesis de las proteínas virales y de los ácidos nucleicos. El ácido nucleico viral transporta la especificidad genética para cifrar todas las macromoléculas específicas virales en una forma altamente organizada.

El poder que tienen los virus de infectar, e incluso matar, un organismo, se debe precisamente a esto. Invade las células del organismo anfitrión, detiene su funcionamiento y lo sustituye, por decirlo de alguna manera, por otros nuevos. Ordena a la célula que deje de hacer lo que normalmente hace para que comience a fabricar las sustancias necesarias para crear copias de sí mismo, es decir, del virus invasor.

El primer virus que se descubrió, y uno de los más estudiados, es el virus sencillo que produce la “enfermedad del mosaico” en la planta del tabaco. Cristaliza en forma de barras finas que pueden observarse a través del microsopio electrónico. Recientemente se ha descubierto que cada barra es, en realidad, una estructura helicoidal orientada a la derecha, formada por unas 2.000 moléculas idénticas de proteína, cada una de las cuales contiene más de 150 subunidades de aminoácidos.

Las moléculas de proteínas se enrollan alrededor de una barra central imaginaria que va de un extremo a otro del cristal. Sumergido en la proteína (y no en la parte central, como podría pensar un estudiante) hay una única hebra helicoidal, enroscada hacia la derecha, de un compuesto de carbono llamado ácido nucleico. El ácido nucleico es una proteína, pero igual que éstas es un polímero: un compuesto con una molécula gigante formada por moléculas más pequeñas enlazadas de manera que formen una cadena.
Un polímero es una macromolécula en la que se repite n veces la misma estructura básica (monómero). En el caso del hule, las cadenas pueden tener desde n=20 000 hasta n=100 000.
La doble hélice del ADN consiste en dos polinucleótidos enlazados a través de puentes de hidrógeno entre bases de cada cadena. b) Una timina de un lado se une con una adenina del otro. c) Una citosina con una guanina. Las unidades menores , llamadas nucleótidos están constituidas por átomos de Carbono, Oxñigeno, Nitrógeno, Hidrógeno y Fósforo; pero donde las proteínas tienen unas veinte unidades de aminoácidos, el ácido nucleico tiene solamente cuatro nucleótidos distintos. Se pueden encadenar miles de nucleótidos entre sí, como lo hacen las subunidades de aminoácidos de las proteínas en una variedad practicamente infinita de combinaciones, para formar cientos de miles de millones de moléculas de ácido nucleico. Exactamente igual que los aminoácidos, cada nucleótido es asimétrico y orientado a la izquierda. A causa de ello, la espina dorsal de una molécula de ácido nucleico, igual que la de una molécula de proteína, tiene una estructura helicoidal orientada hacia la derecha.
Recientemente se han descubiertos unas moléculas sorprendentes con irregularidades en su quiralidad. Por ejemplo, existen segmentos anómalos de ADN que se enroscan al reves. Este ADN “zurdo” se halló por primera vez en un tubo de ensayo, pero en 1987 se ideó un procedimiento para identificar dichos segmentos anómalos en células vivas. El papel del ADN invertido no está claro, y pudiera estar implicado en los mecanismos que ponen en marcha mutaciones que nos lleven a ser hombres y mujeres del futuro con otros “poderes” que vayan más allá para que, de esa manera, podamos llegar a comprender la Naturaleza de las cosas y, en definitiva, nuestra propia naturaleza que, de momento, sigue siendo un gran misterio para nosotros.
Otra vez la preencia del carbono asimétrico
Esta cosita tan pequeñita… ¡tendría tanto que contarnos! La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromocloroyodometano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación entre una molécula y su imagen especular no superponible es de enantiómeros.
Lo cierto es que todo está hecho de esas pequeñas partículas… Quarks y Leptones. Las estudiamos y observamos los comportamientos que en situaciones distintas puedan tener y, una de las cuestiones que resultó curioso constatar es que,   existen partículas subatómicas que podríamos llamar pares y otras que podríamos llamar impares, porque sus combinaciones y desintegraciones cumplen las mismas propiedades que la suma de enteros pares e impares. Una partícula de paridad par puede partirse en dos de paridad par, o en dos de paridad impar, pero nunca en una de paridad par y otra de paridad impar (esto implica la conservación de la paridad). Y, de la misma manera que existen principios de ocnservación para la paridad, el momento angular, la materia…, también es un hecho irreversible ese principio que nos lleva a saber que, a partir de la materia “inerte”, surgieron los “seres” más pequeños que conocemos y que hicieron posible el surgir de la inmensa variedad de formas de vida que la evolución hizo llegar hasta nosotros que, estamos aquí hablando de todas estas cuestiones curiosas que nos llevan a saber, un poco más, del mundo en el que vivimos, de la Naturaleza y, de nosotros.
emilio silvera
 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting