domingo, 17 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los misterios de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en La Tierra y su energía    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Encuentros espaciales

La más destructiva intensificación temporal de los normalmente suaves flujos de energía geotectónica – erupciones volcánicas o terremotos extraordinariamente potentes – o de energía atmosférica – vientos o lluvias anormalmente intensas –, parecen irrelevantes cuando se comparan con las repetidas colisiones del planeta con cuerpos extraterrestres relativamente grandes.

Hace unos seis mil años, en una región argentina denominada Campo del Cielo, se suscitó una lluvia de meteoritos, producto de la explosión en la atmósfera de un asteroide que pesaba unos 840 mil kilos. En la actualidad, se conserva uno de esos fragmentos, al cual se le denominó como “El Chaco”. Es el segundo más pesado del cual se tiene registro, pues en la báscula registra 37 toneladas.

En los primeros años del siglo XIX, varios exploradores se asentaron en Cape York, Groenlandia, en donde descubrieron que los habitantes de las tribus del lugar utilizaban armas punzocortantes hechas, supuestamente, con materiales de origen meteórico. Años más tarde, Robert E. Peary fue quien encontró los resquicios de un gran asteroide que golpeó la Tierra en la llamada “Edad de Hierro”. A esta gran piedra se le llamó Ahnighito, la cual fue venida al Museo Americano de Historia Natural, en donde actualmente se le puede observar.

Este meteorito cayó hace miles de años en Bacubirito, Sinaloa. Se dice que en 1863, varios pobladores de dicha localidad hallaron esta gran piedra, aunque no se dio a conocer al mundo sino hasta finales del siglo XIX, gracias a la labor periodística de Gilbert Ellis. Bacubirito pesa cerca de 20 toneladas; mide más de cuatro metros de largo y dos metros de ancho, características por las cuales lo convierten en el quinto meteorito más grande que ha caído en el planeta. Hoy en día se encuentra en la explanada del Centro de Ciencias de Culiacán.

apophis_keyhole_300

No sabemos cuando un asteroide “asesino”, caerá sobre la Tierra. Los Encuentros espaciales, han sido relativamente frecuentes en la historia del planeta y, desde luego, no podemos asegurar que no se volverá a repetir, sino que, por el contrario, lo único que no sabemos es cuando pasará.

Existen simulaciones de lo que puede ser el choque del meteorito en la Tierra y, desde luego, no quisiera estar aquí cuando suceda. La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.

 

 

 

 

Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.

Entre Marte y Júpiter hay cientos de miles de cuerpos pequeños que orbitan alrededor del Sol llamados asteroides. También podemoas encontrarlos más allá de Plutón, llamado cinturón de Kuiper, y que en este caso reciben el nombre de objetos transneptunianos y que están hecho de hielo. Ceres es el asteroide más grande y tiene 913 km de diámetro.

http://1.bp.blogspot.com/-SwuAJK5Bz2U/TV76KPZo_lI/AAAAAAAACQc/JZfFb_Du7kE/s1600/crater_c%255B2%255D.jpg

El cráter de Arizona, casi perfectamente simétrico, se formó hace 25.000 años por el impacto de un meteorito que iba a una velocidad de 11 Km/s, lo que representa una potencia cercana a 700 PW. Estas gigantescas liberaciones de energías palidecen cuando se comparan con un choque frontal con un cometa típico. Su masa (al menos de 500 millones de toneladas) y su velocidad relativa (hasta 70 Km/s) elevan su energía cinética hasta 1022 J. Aunque se perdiera un diez por ciento de esta energía en la atmósfera, el impacto sería equivalente a una explosión de unas 2.500 bombas de hidrógeno de 100 megatones. Está claro que un fenómeno de estas características produciría impresionantes alteraciones climatológicas. Sin embargo, no es seguro y sí discutible que un impacto parecido fuese la causa de la extinción masiva del cretácico, siendo lo más probable, si tenemos en cuenta el periodo relativamente largo en que se produjo, que se podría explicar por la intensa actividad volcánica de aquel tiempo.

La frecuencia de impactos sobre la Tierra disminuye exponencialmente con el tamaño del objeto. Muchas toneladas son las que recibimos cada año de pequeños fragmentos de todo tipo pero, cuando estos van aumentando de tamaño, los sucesos de espacian de manera sustancial

Aproximadamente, cada cincuenta o sesenta millones de años se produce una colisión con un cometa, lo que significaría que la biosfera, que ha evolucionado durante cuatro mil millones de años, ha debido superar unos cuarenta impactos de este tipo. Está claro que ha salido airosa de estas colisiones, ya que aunque haya sido modificada, no ha sido aniquilada.

 

         Esperemos que esta imagen no la podamos ver nunca en directo

Igualmente, la evolución de la biosfera ha sobrevivido a las explosiones altamente energéticas de las supernovas más “cercanas”. Dado que en nuestra galaxia se produce por término medio la explosión de una supernova cada 50 años, el Sistema Solar se encuentra a una distancia de 100 parsecs de la explosión cada dos millones de años y a una distancia menor de 10 parsecs cada dos mil millones de años. En este último caso, la parte alta de la atmósfera se vería inundada por un flujo de rayos X y UV de muy corta longitud de onda, diez mil veces mayor que el flujo habitual de radiación solar, lo que implica que la Tierra recibiría, en unas pocas horas, una dosis de radiación ionizante igual a la que recibe anualmente. Exposiciones de 500 roentgens son setales para la mayoría de los vertebrados y, sin embargo, los diez episodios de esta magnitud que se han podido producir en los últimos 500 millones de años no han dejado ninguna consecuencia observable en la evolución de la biosfera.

          La imagen de arriba corresponde a un suceso que ninguno quisiéramos que ocurriera

Si suponemos que una civilización avanzada podría preparar refugios para la población durante el año que transcurre ente la llegada de la luz y la llegada de la radiación cósmica, se encontraría con la inevitable dosis de 500 roentgens cada mil millones de años, tiempo suficiente para permitir el desarrollo de una sociedad cuyo conocimiento le sirviera para defenderse de un flujo tan extraordinario y de consecuencias letales.

Como nos queda tiempo, hablemos de… ¡La fotosíntesis! Y, sus consecuencias.

Todo el Oxígeno de la Atmósfera terrestre procede del oxígeno que desprenden los organismos autótrofos durante la fotosíntesis.

          La fotosíntesis es el principal proceso bioquímico que consigue pasar materiales desde el biotopo hasta la biocenosis de un ecosistema. Una vez incorporados como parte de los organismos autótrofos, los heterótrofos (por ejemplo, los animales) solo tienen que aprovecharse de aquellos; con la existencia de pequeñas cantidades de agua, todo está preparado para que el ecosistema entero comience a funcionar. Además, siempre habrá animales depredadores, carnívoros, que seguirán aprovechando los materiales de otros.

La conocida ecuación básica que describe la reacción endotérmica por la cual se sintetiza una molécula de glucosa a partir de sus seis moléculas de CO2 y H2O, y 2’8 MJ de radiación solar, es una simplificadísima caja negra. Una caja negra más realista sería la siguiente:

106 CO2 + 90 H2O + 16 NO3 + PO4 + nutrientes minerales + 5’4 MJ de radiación = 3’258 g de protoplasma (106 C, 180 H, 46 O, 16 N, 1 P y 815 g de cenizas minerales) + 154 O2 + 5’35 MJ de calor disipado.

Sin macronutrientes ni micronutrientes no se puede producir fitomasa, que está compuesta por los nutrientes básicos necesarios para todos los seres heterótrofos: azúcares complejos, ácidos grasos y proteínas.

Para entender esta caja negra hay que comenzar por destacar la acción de unos pigmentos sensibles a la luz entre los cuales destacan las clorofilas. Éstas absorben la luz en dos bandas estrechas, una entre 420 y 450 nm, y la otra entre 630 y 690 nm. Así, la energía necesaria para la fotosíntesis sólo procede de la radiación azul y roja a la que corresponde menos de la mitad de la energía total de la insolación. Esta parte de la radiación fotosintéticamente activa (RFA) no se utiliza en reducir CO2, sino en la regeneración de compuestos consumidos durante la fijación del gas.

La síntesis de fitomasa en el ciclo reductor del fosfato pentosa (RPP) – un proceso con varios pasos de carboxilación por catálisis enzimática, reducción y regeneración – tiene que empezar con la formación de trifosfato de adenosina (ATP) y nicotinamida adenina dinucleótido fosfato (NADP), que son los dos compuestos que suministran energía a todas las reacciones biosintéticas. La síntesis de las tres moléculas de ATP y las dos de NADP que se necesitan para reducir cada molécula de CO2 requiere de diez cuantos de radiación solar con longitud de onda próxima al pico rojo de absorción de la clorofila (680 nm). El carbono procedente del CO2, combinado con el hidrógeno del agua y con los micronutrientes, dará lugar a nueva fitomasa que contiene 465 KJ/mol.

La cantidad de energía de un cuanto de luz roja es de 2’92×10-19 J (el producto de la constante de Planck, 6’62×10-34 por la frecuencia de la luz, que a su vez es el cociente entre la velocidad de la luz y la longitud de onda).

Un einstein (definido como un mol o número de Avogadro, 6’02×1023) de fotones rojos tiene una energía aproximadamente igual a 17 Kg. Suponiendo que la RFA es el 45% de la luz directa, la eficiencia global de la fotosíntesis es del 11%, que equivale a 456/(1.760/0’43). Esta eficiencia se reduce por lo menos en una décima parte más si tenemos en cuenta la reflexión de la luz en las hojas y la pérdida que supone atravesar la cubierta vegetal. Ninguna planta, sin embargo, se acerca siquiera a esta eficiencia teórica, porque parte de la luz absorbida por las clorofilas (generalmente, el 20 – 25 por ciento) vuelve a ser emitida en forma de calor, debido a que los pigmentos no pueden almacenar la luz y las reacciones enzimáticas no se producen con suficiente velocidad como para utilizar completamente el flujo de energía incidente. En la respiración se cede el carbono fijado en el metabolismo de la planta y en el mantenimiento de las estructuras que la soportan.

 La luz y el calor que en una pequeña fracción recibinmos de la energía solar, hace posible todas estas maravillas en nuestro planeta. La vida incluida.

Para cada especie, la tasa con la que se pierde carbono está determinada principalmente por el tipo de fotosíntesis. Así, existen diferencias sustanciales entre las plantas C3 y C4. La respiración a escala de una comunidad o ecosistema depende del estado de crecimiento, y varía entre menos del 20 por ciento en plantas jóvenes en rápido crecimiento, hasta más del 90 por ciento en bosques maduros.

Con una pérdida del 25 por ciento para la reacción, y otro tanto para la respiración, la eficiencia fotosintética es ligeramente superior al 5 por ciento. En este punto, las estimaciones teóricas y los valores reales coinciden, ya que el valor medio de fotosíntesis neta en plantas muy productivas y en condiciones óptimas y durante cortos periodos de tiempo, oscila entre el 4 y el 5 por ciento. La mayoría de las plantas rinden en función de los nutrientes, especialmente nitrógeno y agua, o por las bajas temperaturas en las regiones de mayor altura y latitud. Los mejores rendimientos en sistemas naturales muy productivos, como los humedales y los cultivos, están entre el 2 y el 3 por ciento. En otros ecosistemas, como los pantanos tropicales templados y los bosques templados, el rendimiento de la transformación es del 1’5 por ciento, y en las praderas muy áridas sólo del 0’1 por ciento. Globalmente, la producción anual es, al menos, de 100.000 millones de toneladas de fitomasa, que se sintetizan con un rendimiento medio del 0’6 por ciento.

http://rainforestradio.com/wordpress/wp-content/uploads/2010/11/vidamar2.gif

La fotosíntesis en los océanos, muy afectada por la escasez de nutrientes, es incluso menos eficiente. La productividad medie es de poco más de 3 MJ/m2 y se realiza con un rendimiento fotosintético del 0’06 por ciento. La media ponderada total es 0’2 por ciento, es decir, que sólo uno de cada 500 cuantos de energía solar que llega a la superficie de la Tierra se transforma en energía de biomasa en forma de tejido vegetal.

La mayor parte de esta energía se almacena en forma de azúcares simples, que contienen más energía, y que sólo se encuentran en las semillas.

La mayor parte de la fitomasa está en los bosques. En los océanos, los principales productores son los organismos que componen el fitoplancton, que son muy pequeños y flotan libres. Su tamaño varía entre algo menos de 2 y 200 μm de diámetro y están formados por cantidades variables de bacterias y protoctistas eucarióticos. Las cianobacterias cocoides son tan abundantes en algunas aguas oligotrópicas que pueden ser las responsables de la mayor parte de la producción de fitoplancton.

http://www.conciencianatural.com/wp-content/uploads/2011/08/plani.jpg

Los protoctistas fotosintetizadores varían entre los más pequeños flagelados pigmentados (como las criptomonas y crisofitos), hasta las diatomeas y dinoflagelados, que son mayores (más de 10 mm) y generalmente dominantes. Las diatomeas están formadas por células sin flagelos, con paredes de silicio amorfo mezclados con otros compuestos orgánicos. Presentan una sorprendente y amplia variedad de diseño, desde las que tienen simetría central (las de forma radial son las dominantes en el océano), a las pennadas (simetría lateral), y otras forman largas cadenas.

La productividad de fitoplancton está controlada por la temperatura del agua y por la disponibilidad de radiación solar y nutrientes. La temperatura no es determinante, porque muchas especies son muy adaptables y consiguen una productividad similar en distintos ambientes. Aunque es frecuente la adaptación a diferentes condiciones lumínicas, tanto el volumen como en contenido en clorofila de las diatomeas aumenta con la intensidad de la luz. En el mar abierto, la mayor limitación es la cantidad de nutrientes disponibles.

Entre las carencias que más limitan la producción de fitoplancton está la de nitrógeno, el macronutriniente más importante, la de fósforo, y la de algunos otros micronutrientes clave como el hierro y el silicio.

http://www.conciencianatural.com/wp-content/uploads/2011/08/plancton-.jpg

Los medios menos productivos de la Tierra están en la capa superficial y la capa inmediatamente inferior de los océanos. En el mar abierto, las concentraciones más altas de nutrientes se encuentran entre los 500 y los 1.000 metros, a bastante más profundidad que la zona eufórica, capa en la que penetra la luz solar y que se extiende a unos 100 metros en las aguas transparentes.

El pequeñísimo tamaño de los productores dominantes es una adaptación eficaz a la escasez de nutrientes, ya que cuanto mayor sea el cociente entre la superficie y el volumen, y más lento el hundimiento de las células de fitoplancton en la capa eufórica, mayor es la tasa de absorción de nutrientes.

Cuando las corrientes elevan a la superficie las aguas frías y cargadas de nutrientes, la producción de fitoplancton aumenta sustancialmente. Las aguas costeras de Perú, California, noroeste y sudoeste de África, y de la India occidental son ejemplos destacados de ascensión costera de aguas frías. También se dan casos de ascensión mar adentro en la mitad del Pacífico, cerca del ecuador y en las aguas que rodean la Antártida. Otras zonas altamente productivas se encuentran en las aguas poco profundas cercanas a la costa que están enriquecidas por el aporte continental de nutrientes. Este enriquecimiento, con una proporción N/P muy descompensada, es especialmente elevados en los estuarios adonde van a parar grandes cantidades de aguas residuales y fertilizantes.

 

Las diferentes medidas de la productividad en las aguas oligotróficas de los mares subtropicales y de las aguas eutróficas con corrientes ascensionales, varían entre menos de 50 gC/m2 y 1 gC/m2, más de un orden de magnitud. Las estimaciones de la producción global de fitoplancton están comprendidas entre 80.000 y 100.000 millones de toneladas, que representan entre dos tercios y cuatro quintos de la fitomasa total terrestre. Contrasta con el resultado anterior el hecho de que, dado el corto periodo de vida del fitoplancton (1 – 5 días), la fitomasa marina represente sólo una pequeña fracción de todo el almacenamiento terrestre.

La distribución espacial del fitoplancton muestra zonas delimitadas que se extienden a escala local y global. La exploración desde los satélites es, con gran diferencia, la que permite detectar con mayor precisión las concentraciones de clorofila y la que ha posibilitado obtener las pautas de la distribución de fitoplancton. En las aguas que rodean la Antártida se observa claramente una distribución asimétrica en dos bandas casi concéntricas. La mejor distribución se explica por el hecho de que se deba a corrientes circumpolares y a la abundancia de ácido silicílico. Pero las zonas de mayor riqueza de fitoplancton se encuentran cerca de los continentes donde los ríos arrastran abundantes nutrientes disueltos.

Figura 4-3 > Ejemplo de cadena trófica” width=”484″ height=”383″ border=”1″ /></p>
<p align=

La vida necesita un aporte continuo de energía que llega a la Tierra desde el Sol y pasa de unos organismos a otros a través de la cadena trófica.

El fitoplancton es la base energética de las intrincadas pirámides tróficas. Las cadenas alimenticias en el océano, generalmente, son redes complicadas. Una gran parte de la fitomasa disponible no la consumen directamente los herbívoros, sino que primero se almacena en depósitos de materia muerta que, transformada por bacterias, se convertirá en alimento para otros seres heterótrofos.

Diatomeas vistas a través de un microscopio electrónico.

La gran producción de fitoplancton puede alimentar grandes cantidades de zoomasa. El kril, pequeños crustáceos parecidos a las quisquillas que se alimentan de diatomeas, son los organismos más abundantes en la superficie del mar; sus densas acumulaciones pueden contener hasta mil millones de individuos y su producción anual de zoomasa quizá llegue hasta los 1.300 millones de toneladas. Esta prodigiosa cantidad de zoomasa sirve de alimento a focas, calamares y peces, así como a los mayores carnívoros de la biosfera, las especies de ballenas con barbas que se alimentan filtrando el agua.

emilio silvera

Energías de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en Energías de la Tierra    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Ojos del Salado summit.jpg
                                 El volcán Nevado Ojos del Salado, en la frontera entre Argentina y Chile, es el más alto del planeta

Los volcanes

La unívoca asociación de los volcanes activos con las zonas de subducción de las grandes placas tectónicas permite localizar casi todas las erupciones recientes alrededor del océano Pacífico y, sobre todo, en América central, Sudamérica, Filipinas, Japón y Kamchatka. Una categoría menos común incluye los volcanes asociados a los puntos calientes, donde las placas tectónicas se ven atravesadas por flujos magmáticos procedentes del manto, a la cual pertenecen los volcanes de Hawai y África central.

File:Pahoeoe fountain original.jpg

                                                             Fuente de lava de 10 metros de altura en un volcán de Hawái

Las erupciones históricas más conocidas son las Théra, en Grecia (alrededor del 1.500 a. C.), del Vesubio en Italia (79 a. C.) y del Cracatoa (1.883 d. C.) en Indonesia, y el del monte St. Helens en el estado de Washington en 1.980. Éste último caso es la erupción volcánica mejor estudiada hasta la fecha. Se conoce, no solamente el volumen de los depósitos expulsados (0’18 Km3) y de lava (0’5 Km3), sino también un detallado desglose de la energía relacionada con la erupción.

 

El Vesubio: En Italia, se encuentra ubicado uno de los volcanes que más devastación ha causado en la historia. Hace varios siglos, este volcán hizo erupción destruyendo Pompeya y Herculano, matando a 25 mil personas. Según los registros, mucha gente fue petrificada viva.

File:MSH82 st helens spirit lake reflection 05-19-82.jpg

                                                       Imagen del Monte St. Helens tomada el 19 de mayo de 1982.

Los flujos de calor dominan en el proceso: la energía térmica de los productos expulsados, las avalanchas, los chorros de agua, los flujos piroplásticos y las nubes de ceniza, dan un total de 1’66 EJ, cerca de veinte veces la energía cinética total de la erupción.

El 18 de mayo de 1.980, el volcán del monte St. Helens desarrolló, durante nueve horas de erupción, una energía total de 1’7 EJ, lo que equivale a una potencia media de 52 TW, es decir, unas cinco veces el consumo anual mundial de energía en el sector primario en los primeros años noventa. Aún más potentes fueron las de Bezymyannyi, Kamchatka, en 1.956 (3’9 EJ), y la de Sakurajima, Japón, en 1.914 (4’6 EJ). La mayor erupción que tuvo lugar en el siglo XIX fue la del volcán Tambora, en 1.815, que liberó más de 80 EJ de energía (basado en los depósitos de cenizas) que es un orden de magnitud superior a los anteriormente mencionados. Pero incluso la más potente erupción conocida es irrelevante comparada con las sucedieron hace varios vientos de miles de años, y que a su vez, son pequeñas comparadas con las erupciones magmáticas más antiguas.

yellowstone1

                                                                    Cuando Yellowstone estalle

Debajo del parque de Yellowstone, una monstruosa pluma de roca caliente levanta la tierra y la hace temblar. Las pasadas erupciones tuvieron una potencia comparable a la de mil montes Saint Helens. El futuro es imprevisible.

Entre las cerca de diez calderas jóvenes, enormes cráteres formados en las gigantescas erupciones que se produjeron en el último millón de años, están la de Yellowstone (formada hace 600.000 años, con un diámetro de 70 Km y 1.000 m3 de material expulsado, principalmente piedra pómez y cenizas), y la de Toba (situada en el noroeste de Sumatra, formada hace 75.000 años, de casi 100 Km de anchura y con más de 2.000 m3 de material eyectado).

                               Decan Traps de la India

Un prolongado periodo de erupciones volcánicas que empezó hace 66 millones de años – varios cientos de millones de años de cataclismos que lanzaron a la atmósfera enormes cantidades de cenizas y produjeron dos millones de Km3 de lava, creando la inmensa Decan Traps de la India – parece ser la causa, al menos tan plausible como la colisión de la Tierra con un asteroide, de la masiva extinción que se produjo en la frontera del cretácico y el terciario.

Aunque las erupciones históricas han supuesto una considerable pérdida en vidas humanas (cerca de 250.000 desde 1.700), pérdidas materiales enormes y han sido una de las causas más importantes de los cambios climáticos temporales, ninguna de estas consecuencias está claramente correlacionada con la energía total liberada en las mismas. Las emisiones térmicas son casi siempre dominantes, de una a tres órdenes de magnitud mayores que todos los demás flujos de energía, y se dividen en varias clases de flujos diferentes. En algunas erupciones, la mayor parte de la energía térmica liberada está asociada con la emisión de nubes de cenizas que se elevan hasta la estratosfera; así las cenizas de la erupción del monte St. Helens se elevaron a 20 Km, y otras hasta los 30 Km, e incluso más, con cambios atmosféricos locales y espectaculares puestas de Sol y uno o dos años con temperaturas más bajas de las habituales en algunas regiones. En Nueva Inglaterra, por ejemplo, no hubo verano en 1.816.

En otras erupciones, la mayor parte de la energía térmica es transportada por las corrientes piroclásticas. Estas corrientes se forman por explosión y están compuestas por partículas volcánicas, cuyos tamaños varían entre los μm y varios metros, y gases calientes. Alcanzan temperaturas cercanas a los 1.000º C, se propagan a velocidades de hasta 300 m/s y se extienden a distancias de cientos de kilómetros del lugar de origen.

                                                                          Monte Pelée, 1902

En la erupción del monte Pelée, isla de Martinica en 1.902, estas nubes incandescentes acabaron con la vida de 28.000 personas. En las erupciones de los volcanes hawaianos, el principal flujo de calor está predominantemente asociado a la emisión de lavas que se desplazan lentamente; así, en la erupción del Mauna Loa en 1.950, con una energía liberada de magnitud parecida a la del monte St. Helens, no se produjeron desplazamientos de lodos, avalanchas ni nubes de cenizas.

Siendo espectaculares y a veces devastadoras, las erupciones volcánicas representan una fracción muy pequeña de la energía térmica que mueve la geotectónica terrestre. Suponiendo que en total aflora 1 Km3/año de lava continental y que las erupciones oceánicas contribuyen con otros 4 Km3/año, el calor global perdido anualmente está cerca de los 800 GW, lo cual representa solamente el 2 por ciento del flujo geotérmico terrestre global. La grandiosidad de estos fenómenos está enmascarada en ámbitos de límites regionales, que a nivel global son casi insignificantes.

emilio silvera

Fenómenos naturales

Autor por Emilio Silvera    ~    Archivo Clasificado en Naturaleza misteriosa    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Varias personas observan la silueta de La Habana desde el castillo del Morro el 21 de agosto del 2013. En los últimos días ha habido una bruma causada por nubes de polvo sahariano que llegan desde el norte de Africa. Los científicos dicen que estas nubes pueden incrementar la incidencia del asma y cambiar el patrón de los huracanes.  Foto: Ramón Espinosa / AP

Los científicos del Caribe están preocupados con las ráfagas de arena venidad del Sahara

Varias personas observan la silueta de La Habana desde el castillo del Morro el 21 de agosto del 2013. En los últimos días ha habido una bruma causada por nubes de polvo sahariano que llegan desde el norte de Africa. Los científicos dicen que estas nubes pueden incrementar la incidencia del asma y cambiar el patrón de los huracanes.

http://www.gustavopierral.net/wp-content/woo_custom/3586-splitEW.jpg

En estos días, los amaneceres y atardeceres podrían verse en tono rojizo en los países del Caribe, pero el bello espectáculo podría traer un mensaje poco alentador, ya que se trata de una tormenta de arena proveniente del Sahara conteniendo material biológico y químico potencialmente dañino para la salud.

Como cada año, partículas infinitamente pequeñas recorrieron miles de kilómetros desde el desierto del Sahara hacia el Caribe. A simple vista solo provocan atardeceres más intensos y algo de bruma en las mañanas, pero ahora los científicos saben que también pueden incrementar la incidencia del asma y cambiar el patrón de los huracanes.

Inusualmente grande, la cobertura de polvo que llegó en las semanas pasadas descargó material sobre las Antillas y llegó hasta Yucatán e incluso Wyoming, en el centro de Estados Unidos, según la NASA.

Aunque el fenómeno existe desde que hay arena en el desierto, los científicos están cada vez más preocupados por sus efectos, mientras buscan comunicarse para compartir investigaciones y tratan de desentrañar muchos misterios sobre estas nubes.

“Es un tema de gran envergadura y sumo interés y de importancia para la salud”, manifestó a la AP el toxicólogo de la Universidad de Puerto Rico en Mayagüez Braulio Jiménez-Vélez. “La inhalación de partículas contaminadas se puede asociar con varias enfermedades respiratorias, alergias, asma, enfermedades cardiovasculares”, agregó.

En casos extremos podría inducir cáncer de pulmón, pero los científicos aseguran que aún falta mucho por estudiar. Este año hubo dos alertas en Puerto Rico por nubes del Sahara por lo cual las autoridades hicieron un llamado a las personas que sufren de alergias y asma para que eviten actividades al aire libre. En República Dominicana se dieron a conocer alertas más suaves.

              Esta tormenta cruza por encima de Las Islas Canarias camino de otros lugares que fastidiar

En Cuba los meteorólogos recordaron al público que el fenómeno es anual y se mostraron precavidos, mientras en México fue tratado como una “curiosidad meteorológica”. El fenómeno es parecido a las gigantescas tormentas de polvo que pintan el cielo de amarillo en las metrópolis asiáticas y que pueden llegar a la costa del Pacífico estadounidense, aunque sus nubes son más polvorientas todavía.

Un estudio del 2011 de Atmospheric Chemistry and Physics estimó que más del 70% de las emisiones de polvo mundiales se originan en el norte de Africa. Este fenómeno fue estudiado por el naturalista Charles Darwin a mediados del siglo XIX y es, aseguran los expertos, un ejemplo de cómo la acción humana está distorsionando un fenómeno natural.

Varios científicos consultados por AP en Cuba, Puerto Rico, México y Estados Unidos indicaron que los compuestos detectados en el polvo incluyen entre otros hierro, arsénico, mercurio, virus, bacterias, hongos, fertilizantes, pesticidas y hasta compuestos fecales.

La mayor parte del polvo atmosférico en todo el mundo tiene trazas químicas y material biológico, pero las cantidades son por lo general pequeñas como para constituir un riesgo. Joseph M. Prospero, profesor emérito de la Universidad de Miami, aseguró que algunas muestras tomadas en Barbados contenían niveles elevados de arsénico y cadmio, pero no eran peligrosos.

“Ha sido extremadamente difícil vincular la composición de la partícula específica a efectos en la salud “, dijo Prospero, autor de un artículo sobre el tema que se publicará en septiembre en el boletín de la Sociedad Americana de Meteorología. “No se puede decir qué efecto tiene todo este polvo, pero sí hay motivos para cierta preocupación”.

El fenómeno es seguido de cerca por el Instituto de Meteorología de Cuba.

Diagrama de ciclo

Además hay que tener en cuenta que este proceso genera otros efectos sobre los territorios al sur del Sahara, el incremento de la sequía produce un gran stress en los bosques y plantaciones que propician la ocurrencia de incendios forestales cada vez más frecuentes y devastadores con sus correspondientes consecuencias.

“Hemos hecho un estudio amplio de muchos años del comportamiento del polvo”, comentó a la AP el experto cubano Eugenio Mojena, del Instituto de Meteorología.

 

Mojena indicó que el mecanismo de la nube es “sencillo”: bajo las condiciones extremas de sequía del norte de Africa, las tormentas del Sahara levantan partículas súper finas y los vientos Alisios las trasladan.

Los compuestos, explicó Mojena, no solo pertenecen al desierto como tal, sino a las zonas al sur aledañas (Sahara-Sahel) donde se realiza una agricultura con el uso de productos químicos.

Los expertos coinciden además en la incidencia que tiene en los ecosistemas, por ejemplo los corales que se afectan con el aumento de algas “abonadas” por el hierro de la nube, un aspecto de interés económico para unos países que viven del turismo de playa.

“El polvo actual no es el mismo que medía Darwin, no tenía DDT, no tenía pesticidas, ni herbicidas”, manifestó Mojena. Las nubes también pueden complicar el tráfico aéreo, reduciendo la visibilidad, explicó Jason Dunion, investigador de la Administración Nacional Oceánica y Atmosférica de Estados Unidos, pero no lo suficiente como para obligar a las desviaciones de los vuelos comerciales o cerrar aeropuertos.

Para Mojena la cantidad de polvo que llega a Cuba se incrementó en 10 veces en las últimas tres décadas, mientras su colega puertorriqueño Jiménez-Vélez aseguró que en lo que a ellos respecta detectaron un incremento en el número de tormentas a lo largo de estos los años.

Omar Torres, investigador especializado en física atmosférica de la NASA, explicó que los estudios por satélite comenzaron en 1980 y no muestran aumento de las emisiones de polvo del Sahara fuera de la variabilidad estacional normal, aunque admitió que las emisiones son más altas que los niveles de 1960.

En esta ocasión, advirtió Torres, la nube de comienzos de agosto llegó hasta el centro de los Estados Unidos. “El avance de este año hasta llegar a Wyoming (Estados Unidos) fue totalmente inesperado. Nunca he visto nada como eso en los últimos años”, expresó Torres.

Red Sea

Por otra parte, lo cierto es que, las tormentas de arena del Sahara son una fuente importante de minerales escasos para las plantas de la pluvisilva amazónica. Nunca llueve a gusto de todos y, como dicen que la Naturaleza es “sabia”… ¿quién sabe por qué hace muchas de las cosas que hace?

En los últimos años, además, los científicos han estado descubriendo el papel que juegan las nubes del Sahara en la formación –o desintegración– de los huracanes, cuya mayor intensidad debido al cambio climático preocupa a los países del Caribe.

La nube del desierto tiene un efecto “trascendental para la inhibición de los de ciclones tropicales”, manifestó a la AP el experto del Servicio Meteorológico Nacional de la Comisión Nacional del Agua de México, Juan Antonio Palma Solís.

Pero incluso con todo lo que hoy sabemos del fenómeno gracias al desarrollo de la tecnología satelital, los científicos coincidieron en la necesidad de compartir más sus trabajos y coordinarlos regionalmente. “Estamos en un planeta que no deja de moverse… hay que meterle invstigación”, señaló Palma.

Los científicos que estudian las tormentas de arena saben desde hace tiempo que la arena del Sahara puede viajar a través del Atlántico hasta América. Sin embargo, la arena asiática tiene que viajar mucho más lejos para llegar al mismo destino. En Abril del 2001, los investigadores observaron con sorpresa como la arena de una tormenta asiática cruzó el Pacífico alcanzando lugares tan lejanos cómo los Grandes Lagos e incluso Maryland.

emilio silvera

El presente trabajo, en su mayor parte (salvo algunos añadidos) corresponde al redactor de ciencia Seth Borenstein en Washington y los corresponsales Peter Orsi en La Habana y Dánica Coto en Puerto Rico que contribuyeron con este reportaje.