miércoles, 02 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Los pensamientos! Nos hacen saber y crear

Autor por Emilio Silvera    ~    Archivo Clasificado en Divagando    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Es curioso cuando mi mente está libre y divagando sobre una gran diversidad de cuestiones que sin ser a propósito, se enlazan o entrecruzan las unas con las otras, y lo mismo estoy tratando de sondear sobre el verdadero significado del número 137 (sí, ese número puro, adimensional, que encierra los misterios del electromagnetismo, de la luz y de la constante de Planck – se denomina alfa (α) y lo denotamos 2πe2/hc), o que me sumerjo en las profundidades del número atómico para ver de manera clara y precisa el espesor de los gluones que retienen a los quarks. Sin embargo, mi visión mental no se detiene en ese punto, continúa avanzando y se encuentra con una sinfonía de colores que tiene su fuente en miles y miles de cuerdas vibrantes que, en cada vibración o resonancia, producen minúsculas partículas que salen disparadas para formar parte en otro lugar, de algún planeta, estrella, galaxia e incluso del ser de un individuo inteligente.

Me pregunto por el verdadero significado de la materia, y cuanto más profundizo en ello, mayor es la certeza de que allí están encerradas todas las respuestas. ¿Qué somos nosotros? Creo que somos materia evolucionada que ha conseguido la conquista de un nivel evolutivo en el que ya se tiene conciencia de ser, de estar, de comprender para poder generar ideas propias sobre las cosas de la Naturaleza que nos creó.

 

 

 

Las dos imágenes representan la materia: Una es Naturaleza “inerte” y, la otra, de pensamientos

 

Pienso que toda materia en el universo está cumpliendo su función para conformar un todo que, en definitiva, está hecho de la misma cosa, que interaccionan con las fuerzas que rigen el cosmos y toda la naturaleza del universo que nos acoge. La luz, la gravedad, la carga eléctrica y magnética, las fuerzas nucleares, todo, absolutamente todo, se puede entender a partir del comportamiento de la materia en sus distintos estadios y situaciones, tanto a niveles microscópicos como en nuestro más cotidiano mundo macroscópico, todo son aspectos y escenarios distintos, en los que la materia, se pone distintos ropajes para representar su papel en la más grande función del Teatro del Universo: para que existan estrellas y galaxias, planetas, árboles, desiertos, océanos y multitud de espacies de seres vivos y, algunas como la nuestra por ejemplo, hemos podido evolucionar hasta alcanzar la Conciencia de Ser.

 

 

Todos somos iguales pero… ¡Con pensamientos tan diversos!

 

Mirando a mi alrededor, de manera clara y precisa, puedo comprobar que el mundo está compuesto por una variedad de personas que, siendo iguales en su origen de especie, son totalmente distintas en sus mentes, en sus costumbres, en sus creencias y en sus conocimientos del mundo que nos rodea localmente y en ese otro que saliendo de nuestras fronteras nos lleva hasta el microscópico mundo del átomo, o, al extremo opuesto, el de las grandes estructuras de las galaxias. Desgraciadamente, no todos conocemos de cuestiones esenciales que conforman el “mundo” y, consecuentemente, también a nosotros.

 

 

Las imágenes representan la parte más amable de nuestra realidad pero… Hay otra

La mayor parte, se aplica en sus vidas cotidianas y sin grandes sobresaltos: al trabajo, la familia y dejar transcurrir el tiempo. Es la mayoría silenciosa. Una parte menor, conforman el grupo de los poderosos; sus afanes están centrados en acumular poder, dirigir las vidas de los demás y de manera consciente o inconsciente, dañan y abusan de aquella mayoría. Son los grandes capitalistas y políticos, que con sus decisiones hacen mejor o peor las vidas del resto. Por último, existe una pequeña parte que está ajena y “aislada” de los dos grupos anteriores; se dedican a pensar y a averiguar el por qué de las cosas. La mayor preocupación de este grupo de “elegidos” es saber, quiero decir ¡SABER!, de todo y sobre todo; nunca están satisfechos y gracias a ellos podemos avanzar y evitar el embrutecimiento de nuestra especie que, a pesar de todo… ¡Se puede salvar!

 

 

 

Su trabajo es pensar, experimentar, buscar la verdad de la Naturaleza para saber, el por qué de las cosas

 

Pensando en el cometido de estos tres grupos me doy cuenta de lo atrasados que aún estamos en la evolución de la especie. El grupo mayor, el de la gente corriente, es muy necesario; de él se nutren los otros dos. Sin embargo, el grupo de mayor importancia “real”, el de los pensadores y científicos, está utilizado y manejado por políticos, militares y capitalistas que, en definitiva, aprueban los presupuestos y las subvenciones de las que se nutren los investigadores. Si el dinero empleado en inútiles ejercitos y armas, se empleara en investigación y desarrollo… ¿Dónde estaríamos ya?

 

 

La II Guerra Mundial de mal recuerdo. ¿Qué sacamos de ella? ¿Destrucción y muerte? En las dos grandes guerras mundiales (sobre todo en la segunda), tenemos un ejemplo de cómo se utilizaron a los científicos con fines militares. Los que no se prestaron a ello, lo pasaron mal y fueron marginados en no pocos casos.

Es una auténtica barbaridad el ínfimo presupuesto que se destina al fomento científico en cualquiera de los niveles del saber. Cada presupuesto, cada proyecto y cada subvención conseguida es como un camino interminable de inconvenientes y problemas que hay que superar antes de conseguir el visto bueno definitivo, y lastimosamente, no son pocos los magníficos proyectos que se quedan olvidados encima de la mesa del político o burócrata de turno, cuyos intereses particulares y partidistas miran en otra dirección.

 

 

En España, se paraliza en seco la Investigación y, nuestros jovenes científicos, faltos de incentivo y trabajo, tienen que marcharse fuera a buscar, lo que aquí no encuentran. Años de estudios y sacrificio para que, al final, tengan que dejar sus casas y sus familias para buscar el futuro en otros paises que, como EE. UU., Alemania y otros, recogen los frutos del empuje inteligente de mentes con un potencial incalculable.

La I+D española no solo sufre los ajustes presupuestarios, sino que además tiene partidas sin utilizar. La ciencia y la tecnología, incluidas actividades civiles y militares, sufrirán el año próximo una reducción de la financiación de un 8,4% respecto a 2010, según el proyecto presupuestario, lo que se acumula al 5,5% de recorte de este año respecto a 2009. “Esto entierra definitivamente la etapa de crecimiento del gasto en I+D+i de la anterior legislatura”, señala un análisis sobre la política de investigación realizado por CC OO a partir de datos oficiales.

España partió de un retraso en este ámbito respecto a los países más desarrollados, “atraso que se corrige muy lentamente y, al ritmo actual, la convergencia con Europa tardará aún muchos años”, advierte el estudio. Igualmente se aleja el ansiado cambio del modelo productivo.

 

 

 

 

¡Qué lastima! Haber llegado a esta situación tiene un motivo de todos conocido. Sin embargo, muchos son los interesados en que el tiempo pase y no se hable de ello. Los responsables están bien instalados, tienen muy alta e inmerecidas pensiones y, mientras tanto, el Pueblo llano, la Ciencia, y la gente de la calle en general, padecen y sufren lo que otros hicieron que, además, no sólo no pagaron su culpa, sino que se encuentran tan ricamente en sus mansiones, sus viajes, sus abultadas cuentas corrientes… ¡Qué canallas y miserables! Es la peor condición humana a la que podemos llegar.

A pesar de ello, milagrosamente, el avance continúa implacable gracias a personajes que, como Ramón y Cajal -en su momento-, con medios insuficientes pero con sacrificio e inteligencia, triunfan sobre estas adversidades materiales que superan por amor a la ciencia, con trabajo y con ingenio.

 

 

Prof Cirac office klein.jpg

 

 

Un ejemplo de lo que digo: “Juan Ignacio Cirac Sasturain (11 de octubre de 1965, Manresa, provincia de Barcelona, Cataluña) es un físico español reconocido por sus investigaciones en computación cuántica y óptica cuántica, enmarcadas en la teoría cuántica y en la física teórica. Desde 2001 es director de la División Teórica del Instituto Max-Planck de Óptica Cuántica (Max-Planck-Institut für Quantenoptik) en Garching, Alemania“.

Einstein nos decía algo parecido a:

 

el hombre encuentra su verdad detrás de cada puerta que la ciencia logra abrir”.

 

 

Ese momento mágico de comprobar que la teoría coincide con la Naturaleza

 

Ese encuentro maravilloso con la luz suprema del saber es un momento mágico, que reciben y el precio que pagan al científico por sus esfuerzos, y es el incentivo que necesitan para seguir trabajando en la superación de los muchos secretos que la naturaleza pone ante sus ojos para que sean desvelados.

Cuando me pongo a escribir sin un programa previamente establecido, vuelco sobre el papel en blanco todo lo que va fluyendo en mis pensamientos, y a veces me sorprendo a mí mismo al darme cuenta de cómo es posible perder la noción del tiempo inmerso en los universos que la mente puede recrear para hacer trabajar la imaginación sin límites de un ser humano.

 

 

 

¡Nuestra Imaginación! ¿Dónde estará el límite? NO, no hay límites, el único límite está impuesto por el conocimiento de la propia Naturaleza

 

Aunque es cierto que nuestras limitaciones son enormes y enorme nuestra ignorancia, también lo es que, son inmensamente enormes las posibilidades que tenemos de poder ir desvelando los secretos del Universo.  Las carencias se pueden compensar con la también enorme ilusión de aprender y la inagotable curiosidad y espíritu de sacrificio que tenemos en nuestro interior, que finalmente, van ganando pequeñas batallas en el conocimiento de la naturaleza, y que sumados hacen un respetable bloque de conocimientos que, a estas alturas de comienzos del siglo XXI, parecen suficientes como punto de partida para despegar hacia el interminable viaje que nos espera.

 

 

 

 

A veces tengo que sonreir al ver el esfuerzo de mi mujer: Pone delante de mí un reloj para que sea consciente del tiempo. Sin embargo, sumergido en las cuestiones que me inquietan, el tiempo transcurre tan lentamente que… ¡No parece transcurrir! Lo que no deja de ser una maravilla si consideramos que, estoy en total reposo y es, únicamente mi mente, la que desbocada, corre mucho más rápido que lo pueda hacer la luz.

 

 

 

 

Es tal la pasión que pongo en estas cuestiones que, literalmente, cuando estoy pensando en el nacimiento y vida de una estrella y en su final como enana blanca, estrella de neutrones o agujero negro (dependiendo de su masa), siento cómo ese gas y ese polvo cósmico estelar se junta y gira en remolinos, cómo se forma un núcleo donde las moléculas, más juntas cada vez, rozan las unas con las otras, se calientan e ionizan y, finalmente, se fusionan para brillar durante miles de millones de años y, cuando agotado el combustible nuclear degeneran en enanas blancas, veo con claridad cómo la degeneración de los electrones impide que la estrella continúe cediendo a la fuerza de gravedad y queda así estabilizada. Lo mismo ocurre en el caso de las estrellas de neutrones, que se frena y encuentra el equilibrio en la degeneración de los neutrones, que es suficiente para frenar la enorme fuerza gravitatoria. Y, cuando llego a la implosión que dará lugar a una singularidad, ahí quedo perdido, mi mente no puede, como en los casos anteriores, “ver” lo que realmente ocurre en el corazón del agujero negro, ya  que, lo que llamamos singularidad, parece como si desapareciera de este mundo.

emilio silvera

Ahora sabemos viajar desde el núcleo atómico hasta las galaxias

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El propio Rutherford empezó a vislumbrar la respuesta a la pregunta que arriba hacemos. Entre 1.906 y 1.908 (hace más de un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos.

En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado. Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido. Rutherford supuso que aquella “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad desviaban los proyectiles que acertaban a chocar contra él. Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica

Era lógico suponer, pues, que los protones constituían ese núcleo duro. Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo).

En 1.908 se concedió a Rutherford el premio Nobel de Química por su extraordinaria labor de investigación sobre la naturaleza de la materia. Él fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.

File:Hydrogen.svg

    Átomo de hidrógeno, núcleo y electrón.

Desde entonces se pueden describir con términos más concretos los átomos específicos y sus diversos comportamientos. Por ejemplo, el átomo de hidrógeno posee un solo electrón. Si se elimina, el protón restante se asocia inmediatamente a alguna molécula vecina; y cuando el núcleo desnudo de hidrógeno no encuentra por este medio un electrón que participe, actúa como un protón (es decir, una partícula subatómica), lo cual le permite penetrar en la materia y reaccionar con otros núcleos si conserva la suficiente energía.

El helio, que posee dos electrones, no cede uno con tanta facilidad. Sus dos electrones forman un caparazón hermético, por lo cual el átomo es inerte. No obstante, si se despoja al helio de ambos electrones, se convierte en una partícula alfa, es decir, una partícula subatómica portadora de dos unidades de carga positiva.

Hay un tercer elemento, el litio, cuyo átomo tiene tres electrones. Si se despoja de uno o dos, se transforma en ión, y si pierde los tres, queda reducida a un núcleo desnudo, con una carga positiva de tres unidades.

Las unidades de carga positiva en el núcleo atómico deben ser numéricamente idénticas a los electrones que contiene por norma, pues el átomo suele ser un cuerpo neutro, y esta igualdad de lo positivo con lo negativo es el equilibrio. De hecho, los números atómicos de sus elementos se basan en sus unidades de carga positiva, no en las de carga negativa, porque resulta fácil hacer variar el número de electrones atómicos dentro de la formación iónica, pero en cambio se encuentran grandes dificultades si se desea alterar el número de sus protones.

Apenas esbozado este esquema de la construcción atómica, surgieron nuevos enigmas. El número de unidades con carga positiva en un núcleo no equilibró, en ningún caso, el peso nuclear ni la masa, exceptuando el caso del átomo de hidrógeno. Para citar un ejemplo, se averiguó que el núcleo de helio tenía una carga positiva dos veces mayor que la del núcleo de hidrógeno; pero como ya se sabía, su masa era cuatro veces mayor que la de este último. Y la situación empeoró progresivamente a medida que se descendía por la tabla de elementos, e incluso cuando se alcanzó el uranio, se encontró un núcleo con una masa igual a 238 protones, pero una carga que equivalía sólo a 92.

¿Cómo era posible que un núcleo que contenía cuatro protones (según se suponía el núcleo de helio) tuviera sólo dos unidades de carga positiva? Según la más simple y primera conjetura emitida, la presencia en el núcleo de partículas cargadas negativamente y con peso despreciable neutralizaba dos unidades de carga. Como es natural, se pensó también en el electrón. Se podría componer el rompecabezas si se suponía que en núcleo de helio estaba integrado por cuatro protones y dos electrones neutralizadores, lo cual deja libre una carga positiva neta de dos, y así sucesivamente, hasta llegar al uranio, cuyo núcleo tendría, pues, 238 protones y 146 electrones, con 92 unidades libres de carga positiva. El hecho de que los núcleos radiactivos emitieran electrones (según se había comprobado ya, por ejemplo, en el caso de las partículas beta), reforzó esta idea general. Dicha teoría prevaleció durante más de una década, hasta que por caminos indirectos, llegó una respuesta mejor como resultado de otras investigaciones.

Pero entre tanto se habían presentado algunas objeciones rigurosas contra dicha hipótesis. Por lo pronto, si el núcleo estaba constituido esencialmente de protones, mientras que los ligeros electrones no aportaban prácticamente ninguna contribución a la masa, ¿cómo se explicaba que las masas relativas de varios núcleos no estuvieran representadas por número enteros? Según los pesos atómicos conocidos, el núcleo del átomo cloro, por ejemplo, tenía una masa 35’5 veces mayor que la del núcleo de hidrógeno. ¿Acaso significaba esto que contenía 35’5 protones? Ningún científico (ni entonces ni ahora) podía aceptar la existencia de medio protón.

Este singular interrogante encontró una respuesta incluso antes de solventar el problema principal, y ello dio lugar a una interesante historia.

Los tres isótopos naturales del carbono: carbono-12 (6 protones y 6 neutrones), carbono-13 (6 protones y 7 neutrones) y carbono-14 (6 protones y 8 neutrones). En los tres casos es carbono, tiene el aspecto de carbono y se comporta químicamente como carbono, por tener seis protones (y forma parte de nuestro organismo, por ejemplo). Sin embargo, sus propiedades físicas varían. Por ejemplo, mientras que el carbono-12 y el carbono-13 son estables, el carbono-14 es inestable y radioactivo: emite radiación beta, uno de sus neutrones “extras” se transforma así en un protón y el núcleo se convierte en nitrógeno-14 (que tiene 7 protones y 7 neutrones), con el aspecto y las propiedades del nitrógeno (por tener 7 protones). Dado que la mitad de la masa del carbono-14 pasa a ser nitrógeno-14 cada 5.730 años aproximadamente (más o menos lo que llevamos de civilización humana), la presencia de este isótopo natural resulta especialmente útil para la datación precisa de objetos históricos.

Isótopos; construcción de bloques uniformes

Allá por 1.816, el físico inglés William Prout había insinuado ya que el átomo de hidrógeno debía entrar en la constitución de todos los átomos. Con el tiempo se fueron desvelando los pesos atómicos, y la teoría de Prout quedó arrinconada, pues se comprobó que muchos elementos tenían pesos fraccionarios (para lo cual se tomó el oxígeno, tipificado al 16). El cloro, según dije antes, tiene un peso atómico aproximado de 35’5, o para ser exactos, 35’457. otros ejemplos son el antimonio, con un peso atómico de 121’75, el galio con 137’34, el boro con 10’811 y el cadmio con 112’40.

El Uranio 235 que es el único que de manera natural es apto para la fisión nuclear, es escaso, sólo el 7 por 1.000 es uranio 235, el resto, es uranio 238 que, no es combustible nuclear y, como la madera mojada, no arde. Sin embargo, si se bombardea con neutrones lentos del uranio 235, resulta que se convierte en Plutonio 239 que sí, es combustible nuclear válido. ¡Qué no idearemos para conseguir los objetivos!

          El Uranio es muy radiactivo y si está enriquecido… ¡Ya sabemos las consecuencias!

Hacia principios de siglo se hizo una serie de observaciones desconcertantes, que condujeron al esclarecimiento. El inglés William Crookes (el del tubo Crookes) logró disociar del uranio una sustancia cuya ínfima cantidad resultó ser mucho más radiactiva que el propio uranio. Apoyándose en su experimento, afirmó que el uranio no tenía radiactividad, y que ésta procedía exclusivamente de dicha impureza, que él denominó uranio X. Por otra parte, Henri Becquerel descubrió que el uranio purificado y ligeramente radiactivo adquiría mayor radiactividad con el tiempo, por causas desconocidas. Si se deja reposar durante algún tiempo, se podía extraer de él repetidas veces uranio activo X. Para decirlo de otra manera, por su propia radiactividad, el uranio se convertía en el uranio X, más radiactivo aún.

Por entonces, Rutherford, a su vez, separó del torio un torio X muy radiactivo, y comprobó también que el torio seguía produciendo más torio X. Hacia aquellas fechas se sabía ya que el más famoso de los elementos radiactivos, el radio, emitía un gas radiactivo, denominado radón. Por tanto, Rutherford y su ayudante, el químico Frederick Soddy, dedujeron que durante la emisión de sus partículas los átomos radiactivos se transformaron en otras variedades de átomos radiactivos.

El Radón, uno de los llamados gases nobles, es incoloro, inodoro e insípido, además de –para nuestro mal- radioactivo. Suele presentarse según el tipo de suelos de determinadas zonas y con la descomposición de uranio, concentrándose en la superficie y siendo “arrastrado” en y por el aire que respiramos, y es en grandes cantidades es un gas  perjudicial para la salud… y que anticipa terremotos.

Varios químicos que investigaron tales transformaciones lograron obtener un surtido muy variado de nuevas sustancias, a las que dieron nombres tales como radio A, radio B, mesotorio I, mesotorio II y actinio C. Luego los agruparon todos en tres series, de acuerdo con sus historiales atómicos. Una serie se originó del uranio disociado; otra del torio, y la tercera del actinio (si bien más tarde se encontró un predecesor del actinio, llamado protactinio).

En total se identificaron unos cuarenta miembros de esas series, y cada uno se distinguió por su peculiar esquema de radiación. Pero los productos finales de las tres series fueron idénticos: en último término, todas las cadenas de sustancias conducían al mismo elemento, el plomo.

Ahora bien, esas cuarenta sustancias no podían ser, sin excepción, elementos disociados. Entre el uranio (92) y el plomo (82) había sólo diez lugares en la tabla periódica, y todos ellos, salvo dos, pertenecían a elementos conocidos.

En realidad, los químicos descubrieron que aunque las sustancias diferían entre sí por su radiactividad, algunas tenían propiedades químicas idénticas. Por ejemplo, ya en 1.907 los químicos americanos Herbert Newby McCoy y W. H. Ross descubrieron que el radiotorio (uno entre los varios productos de la desintegración del torio) mostraba el mismo comportamiento químico que el torio, y el radio D, el mismo que el plomo, tanto que a veces era llamado radioplomo. De todo lo cual se infirió que tales sustancias eran en realidad variedades de mismo elemento: el radiotorio, una forma de torio; el radioplomo, un miembro de una familia de plomos; y así sucesivamente.

En 1.913, Soddy esclareció esta idea y le dio más amplitud. Demostró que cuando un átomo emitía una partícula alfa, se transformaba en un elemento que ocupaba dos lugares más abajo en la lista de elementos, y que cuando emitía una partícula beta, ocupaba, después de su transformación, el lugar inmediatamente superior. Con arreglo a tal norma, el radiotorio descendía en la tabla hasta el lugar del torio, y lo mismo ocurría con las sustancias denominadas uranio X y uranio Y, es decir, que los tres serían variedades del elemento 90. Así mismo, el radio D, el radio B, el torio B y el actinio B compartirían el lugar del plomo como variedades del elemento 82.

Soddy dio el nombre de isótopos (del griego iso y topos, “el mismo lugar”) a todos los miembros de una familia de sustancias que ocupaban el mismo lugar en la tabla periódica. En 1.921 se le concedió el premio Nobel de Química.

El modelo protón-electrón del núcleo concordó perfectamente con la teoría de Soddy sobre los isótopos. Al retirar una partícula alfa de un núcleo, se reducía en dos unidades la carga positiva de dicho núcleo, exactamente lo que necesitaba para bajar dos lugares en la tabla periódica. Por otra parte, cuando el núcleo expulsaba un electrón (partícula beta), quedaba sin neutralizar un protón adicional, y ello incrementaba en una unidad la carga positiva del núcleo, lo cual era como agregar una unidad al número atómico, y por tanto, el elemento pasaba a ocupar la posición inmediatamente superior en la tabla periódica de los elementos. ¡Maravilloso!

¿Cómo se explica que cuando el torio se descompone en radiotorio después de sufrir no una, sino tres desintegraciones, el producto siga siendo torio? Pues bien, en este proceso el átomo de torio pierde una partícula alfa, luego una partícula beta, y más tarde una segunda partícula beta. Si aceptamos la teoría sobre el bloque constitutivo de los protones, ello significa que el átomo ha perdido cuatro electrones (dos de ellos contenidos presuntamente en la partícula alfa) y cuatro protones. (La situación actual difiere bastante de este cuadro, aunque en cierto modo, esto no afecta al resultado).

El núcleo de torio constaba inicialmente (según se suponía) de 232 protones y 142 electrones. Al haber perdido cuatro protones y otros cuatro electrones, quedaba reducido a 228 protones y 138 electrones. No obstante, conservaba todavía el número atómico 90, es decir, el mismo de antes.

Así pues, el radiotorio, a semejanza del torio, posee 90 electrones planetarios, que giran alrededor del núcleo. Puesto que las propiedades químicas de un átomo están sujetas al número de sus electrones planetarios, el torio y el radiotorio tienen el mismo comportamiento químico, sea cual fuere su diferencia en peso atómico (232 y 228 respectivamente).

Los isótopos de un elemento se identifican por su peso atómico, o número másico. Así, el torio corriente se denomina torio 232, y el radiotorio, torio 228. Los isótopos radiactivos del plomo se distinguen también por estas denominaciones: plomo 210 (radio D), plomo 214 (radio B), plomo 212 (torio B) y plomo 211 (actinio B).

Se descubrió que la noción de isótopo podía aplicarse indistintamente tanto a los elementos estables como a los radiactivos. Por ejemplo, se comprobó que las tres series radiactivas anteriormente mencionadas terminaban en tres formas distintas de plomo. La serie del uranio acababa en plomo 206, la del torio en plomo 208 y la del actinio en plomo 207. cada uno de estos era un isótopo estable y corriente del plomo, pero los tres plomos diferían por su peso atómico.

Mediante un dispositivo inventado por cierto ayudante de J. J. Thomson, llamado Francis William Aston, se demostró la existencia de los isótopos estables. En 1.919, Thomson, empleando la versión primitiva de aquel artilugio, demostró que el neón estaba constituido por dos variedades de átomos: una cuyo número de masa era 20, y otra con 22. El neón 20 era el isótopo común; el neón 22 lo acompañaba en la proporción de un átomo cada diez. Más tarde se descubrió un tercer isótopo, el neón 21, cuyo porcentaje en el neón atmosférico era de un átomo por cada 400.

Entonces fue posible, al fin, razonar el peso atómico fraccionario de los elementos. El peso atómico del neón (20, 183) representaba el peso conjunto de los tres isótopos, de pesos diferentes, que integraban el elemento en su estado natural. Cada átomo individual tenía un número másico entero, pero el promedio de sus masas (el peso atómico) era un número fraccionario.

Aston procedió a mostrar que varios elementos estables comunes eran, en realidad, mezclas de isótopos. Descubrió que el cloro, con un peso atómico fraccionario de 35’453, estaba constituido por el cloro 35 y el cloro 37, en la proporción de cuatro a uno. En 1.922 se le otorgó el premio Nobel de Química.

Sabiendo todo lo anteriormente explicado, hemos llegado a comprender cómo parte de la Astronomía que estudia las características físicas y químicas de los cuerpos celestes, la astrofísica es la parte más importante de la astronomía en la actualidad debido a que, al avanzar la física moderna: Efecto Doppler-Fizeau, el efecto Zeeman, las teorías cuánticas y las reacciones termonucleares aplicadas al estudio de los cuerpos celestes han permitido descubrir que el campo magnético solar, el estudio de las radiaciones estelares y sus procesos de fusión nuclear, y determinar la velocidad radial de las estrellas, etc. La radiación electromagnética de los cuerpos celestes permite realizar análisis de los espectros que nos dicen de qué están hechas las estrellas y los demás cuerpos del espacio interestelar y, de esa manera, hemos ido conociendo la materia y sus secretos que cada vez, van siendo menos.

emilio silvera

Interacciones fundamentales

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las fuerzas fundamentales del Universo que rigen en todas sus regiones y son las responsables de imponer el ritmo con el que se comporta la materia que con ellas interacciona y, en consecuencia, hace que cada objeto y cada objeto que en el Cosmos existe, tenga un comportamiento particular que lo define y que va, desde la materia inerte hasta ese otro nivel, mucho más elevado en el que la materia, evolucionada, alcanzó la facultad, no solo ya de moverse por sí misma, sino de generar pensamientos y…¡hasta sentimientos!

http://upload.wikimedia.org/wikipedia/commons/2/2d/Fuerzas.png

                 El cuadro que arriba nos explica de manera sencilla la  interacción nuclear fuerte, interacción nuclear débil, interacción electromagnética e interacción gravitatoria.

En física, se denominan interacciones fundamentales los cuatro tipos de campos cuánticos mediante los cuales interactúan las partículas. Según el modelo estándar, las partículas que interaccionan con las partículas materiales, fermiones, son los bosones.

Existen 4 tipos de interacciones fundamentales: interacción nuclear fuerte, interacción nuclear débil, interacción electromagnética e interacción gravitatoria. Casi toda la historia de la física moderna se ha centrado en la unificación de estas interacciones, y hasta ahora la interacción débil y la electromagnética se han podido unificar en la interacción electrodébil.1 En cambio, la unificación de la fuerte con la electrodébil es el motivo de toda la teoría de la gran unificación. Y finalmente, la teoría del todo involucraría esta interacción electronuclear con la gravedad.

La comunidad científica prefiere el nombre de interacciones fundamentales al de fuerzas debido a que con ese término se pueden referir tanto a las fuerzas como a los decaimientos que afectan a una partícula dada. (fuente: Wikipeia)


Fuerza nuclear fuerte

Su alcance en metros: < 3 × 10-15, se dice que la propiedad de los quarks conocida como libertad asintótica hace que la interacción entre ellos sea débil cuanto más cerca están los unos de los otros, están confinados con los gluones en un radio o región de:  r » hc/L » 10-13  cm. Al contrario de las otras fuerzas, esta crece con la distancia. Tiene una fuerza relativa de 1041. Es la responsable de mantener unidos a los protones y neutrones en el núcleo atómico.

La partícula portadora de la fuerza es el gluón (glue en inglés, es pegamento) que en número de ocho, actúa como un espeso pegamento en forma de muelle que, cuanto más se estira más fuerza genera. La interacción nuclear fuerte es la mayor, la de más potencia de las cuatro fuerzas fundamentales, es 102 veces mayor que la fuerza electromagnética, aparece sólo entre los hadrones (protones, neutrones, etc). Como dijimos al principio, actúa a tan corta distancia como 10-15 metros, mediado por mesones virtuales que llamamos gluones.


Fuerza nuclear débil

Su alcance es de < 10-15  metros, su fuerza relativa de 1028, intervienen en la radiación radiactiva, ocurre entre leptones (electrones, muones, tau y los correspondientes neutrinos asociados) y en la desintegración de los hadrones, la desintegración beta de las partículas y núcleos. Está mediada por el intercambio de partículas virtuales, llamadas bosones vectoriales intermediarios: en este caso, las partículas W+, W  y  Z0. Esta interacción se describe por la teoría electrodébil que la unifica con las interacciones electromagnéticas.

 

Las interacciones electromagnéticas

Tiene un alcance infinito, su fuerza relativa es de 1039, es la responsable de las fuerzas que controlan la estructura atómica, reacciones químicas y todos los fenómenos electromagnéticos. Unen los átomos para formar moléculas, propaga la luz, las ondas de radio y otras formas de energías.

Puede explicar las fuerzas entre las partículas cargadas, pero al contrario de las interacciones gravitacionales, puede ser tanto atractiva como repulsiva. Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un campo clásico de fuerzas (ley de Coulomb) como por el intercambio de unos fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tienen una teoría clásica bien definida dada por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas, se describen con la electrodinámica cuántica, que es una forma sencilla de teoría gauge.

                 Todo cae por su peso, fuera del espacio

La interacción gravitacional

La interacción gravitacional, conocida como la fuerza de gravedad, es unas 1040 veces más débil que la interacción electromagnética; es la más débil de todas las fuerzas de la naturaleza. Su alcance, como el de la fuerza electromagnética, es infinito, y su fuerza relativa es de 1. Su función es actuar entre los cuerpos masivos sobre los que ejerce una fuerza atractiva en función de sus masas y de las distancias que los separa, mantienen unidos los planetas alrededor del Sol, las estrellas en las galaxias y nuestros pies pegados a la superficie de la Tierra.

La interacción puede ser comprendida utilizando un campo clásico en el que la intensidad de la fuerza disminuye con el cuadrado de la distancia entre los cuerpos interaccionantes (Ley de Newton). El hipotético cuanto de gravitación, el bosón denominado gravitón, es también un concepto útil en algunos contextos. En la escala atómica, la fuerza gravitacional es despreciablemente débil, pero a escala cosmológica, donde las masas son enormes, es inmensamente importante para mantener el equilibrio entre los componentes del universo.

Sin la fuerza de gravedad, el universo sería un completo caos, todos los planetas, estrellas y demás objetos cosmológicos estarían vagando sin rumbo por el vacío estelar y las colisiones serían lo cotidiano. Debido a que las interacciones gravitacionales son de largo alcance, hay una teoría macroscópica bien definida, que es la relatividad general.

 

Nuestro Universo (no sabemos si podrían existir otros),  es como es,  porque las fuerzas que lo rigen son tal y como las hemos descrito más arriba; si alguna de estas fuerzas fueran mínimamente distintas, si la carga o la masa del electrón variaran sólo una millonésima, el universo sería otro muy distinto y, seguramente, nosotros no estaríamos aquí para contarlo.

Todo el conjunto está sometido a un equilibrio que, entre otras cuestiones, hizo posible la existencia de vida inteligente en nuestro universo, al menos, que sepamos, en un planeta insignificante de un sistema solar insignificante situado en la periferia de una de las más de cien mil millones de galaxias que se supone pueblan el Universo. Estadísticamente hablando, sería casi imposible que no existieran otros muchos planetas, en otros sistemas solares, ocupados por seres inteligentes similares o distintos a nosotros. El problema está en que podamos coincidir en el tiempo y en que podamos, de alguna manera, vencer las distancias que nos separan.

Comparación entre estructuras del universo y de la vida

Los procesos científicos que comentamos en este lugar, los fenómenos del Universo que hemos debatido y, también,  los misterios y secretos que el inmenso Cosmos nos oculta han contribuido, aunque inadvertidamente, a comprometer e involucrar a nuestra especie en la vastedad del universo que ha sido una fuente de misterio y curiosidad para todas las civilizaciones que poblaron la Tierra desde tiempos inmemoriales. La astronomía ha venido a descorrer el velo, que supuestamente, aislaban la Tierra de los ámbitos interestelares que están situados mucho más allá de nuestro Sistema solar, y todo eso nos llevó lejos, al auténtico Universo que ahora, sí conocemos. La Física cuántica llegó para destruir esa barrera invisible que separaba lo grande de lo muy pequeño y que supuestamente, separaba al observador distante del mundo observado; descubrimos que estamos inevitablemente enredados en aquello que estudiamos.

Goethe  dice en su Fausto: “primero que todo debéis estudiar la metafísica”. La metafísica es la auténtica disciplina de las grandes escuelas de oriente y occidente afirman enfáticamente que todo fenómeno de la naturaleza se halla íntimamente conectado con todos los fenómenos que le rodean. Ningún fenómeno puede estar aislado y cuando se le estudia aisladamente puede parecer un absurdo. La ley de causa y efecto es el engranaje secreto de la mecánica de la naturaleza.

Hay cuestiones que van mucho más allá de nuestros pensamientos, sobrepasan la propia filosofía y entran en el campo inmaterial de la Metafísica, quizá el único ámbito que realmente pueda explicar lo que la Mente es. Allí reside la esencia de lo complejo, del SER. Ya sabéis:

“Todo estado presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro.”

 

 

http://herschel.esac.esa.int/Images/2013/M78_NASA_24+160+350_and_IRAC+24.jpg

 

                         En esta “fragua” se forjan estrellas y mundos mediante la transmutación de la materia simple en material complejo que…

La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, reveló una unidad cósmica que se extiende desde la fusión nuclear en las estrellas hasta la química de la vida que allí se produce a lo largo de todo el Universo. La evolución darwiniana, al destacar que todas las especies de la vida terrestre están relacionadas y que todas surgieron de la materia ordinaria, puso de manifiesto que no hay ninguna muralla que nos separe de las otras criaturas de la Tierra, o del planeta que nos dio la vida: que estamos hechos del mismo material del que están hechos los mundos y, de la misma manera (creo), estarán también, formados los otros mundos y las posibles formas de vida que en ellos puedan estar presentes y surjan en el futuro.

               Aquel no era un mundo para nosotros y, del espacio llegó la salvación

Hay que pensar en las especies que a lo largo de miles de millones de años se han extinguido en nuestro planeta. Hace ahora algo más de 65 millones de años que desaparecieron los dinosaurios, que reinaron en nuestro planeta durante 150 millones de años. Podemos decir entonces que nuestra especie es una recién llegada al planeta y, aunque es la primera -al menos así parece ser- que tiene conciencia de ser y algo de “racionalidad”, no sabemos por cuánto tiempo estaremos aquí, si nos extinguiremos antes de tener la oportunidad o los medios de contactar con otras inteligencias, o si nuestra manera de ser no nos lleva a la autodestrucción. Pero somos jóvenes, nuestra presencia más rudimentaria en el planeta -el origen- data de sólo 3 millones de años y, habrá que tener la ilusión de que, finalmente, seremos capaces de comprender, donde está el camino a seguir, dejar de lado las cosas superfluas y atender, a lo realmente importante para poder salvar, si la Naturaleza nos deja, a nuestra especie que, tiene su futuro en otros mundos, en otras estrellas que, como ahora el Sol, estén brillando en la secuencia principal… ¡de la Vida!

emilio silvera

Siempre queriendo saber ¡De tantas cosas!

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Tenemos que saber!    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Einstein nos dijo el límite con que podríamos recibir información en el universo, la velocidad de c. Que la velocidad de la luz era una constante sobrehumana fundamental de la naturaleza. También sabía el maestro que, en el proceso de nuevas teorías, la búsqueda de la teoría final que incluyera a otras fuerzas de la naturaleza distintas de la gravedad, daría lugar a teorías nuevas y cada vez mejores que irían sustituyendo a las antiguas teorías. De hecho, él mismo la buscó durante los 30 últimos años de su vida pero, desgraciadamente, sin éxito. Ahora se ha llegado a la teoría de supercuerdas que sólo funciona en 10 y 26 dimensiones y es la teoría más prometedora para ser la candidata a esa teoría final de la que hablan los físicos.

 

 

 

¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y  momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar. Esta teoría tan avanzada es que, ni podemos verificarla en nuestro tiempo, pertenece al futuro y la dejaremos por el momento para volver a los números puros de la Naturaleza.

El físico espera que las constantes de la naturaleza respondan en términos de números puros que pueda ser calculado con tanta precisión como uno quiera. En ese sentido se lo expresó Einstein a su amiga Ilse Rosenthal-Schneider, interesada en la ciencia y muy amiga de Planck y Einstein en la juventud.

Lo que Einstein explicó a su amiga por cartas es que existen algunas constantes aparentes que son debidas a nuestro hábito de medir las cosas en unidades particulares. La constante de Boltzmann es de este tipo. Es sólo un factor de conversión entre unidades de energía y temperatura, parecido a los factores de conversión entre las escalas de temperatura Fahrenheit y centígrada. Las verdaderas constantes tienen que ser números puros y no cantidades con “dimensiones”, como una velocidad, una masa o una longitud.  Las cantidades con dimensiones siempre cambian sus valores numéricos si cambiamos las unidades en las que se expresan.

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin. Estos números infinitesimales definen el mundo cuántico y marcan el límite de nuestras actuales teorías. Nunca hemos logrado ir más allá. De hecho, cuando los científicos y los grandes matemáticos han querido ir más allá del Tiempo de Planck, para conocer qué pasó en esos primeros momentos del Big Bang… Nunca se logró, aparecen resultados sin sentido si pretendemos ir más allá de 10-43 segundos.

La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza al tener que pensar en tan reducidas unidades, y sólo a finales de la década de 1.960 el estudio renovado de la cosmología llevó a una plena comprensión de estos patrones extraños. Uno de los curiosos problemas de la Física es que tiene dos teorías hermosamente efectivas (la mecánica cuántica y la relatividad general)  pero gobiernan diferentes dominios de la naturaleza.

La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua. Se parece más a una ola delictiva o una ola de histeria: es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros. Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son. En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

Ilustración de seres de otros mundos

¿Quién sabe cómo serán?

 

En sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros. Lo cierto es que, estas unidades, al tener su origen en la Naturaleza y no ser invenciones de los seres humanos, de la misma manera que nosotros y, posiblemente por distintos caminos, seres de otros mundos también las hallarán y serán idénticas a las nuestras. De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo. Planck nos decía:

“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33 de centímetros, más joven que el tiempo de Planck,  10-43 segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

α = 2πe2 / hc ≈ 1/137

αG = (Gmp2)2 / hc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

                           Siempre estamos tratando de desvelar los secretos de la Naturaleza

El cuásar 3C191 fue localizado con un desplazamiento al rojo de 1,95 y por eso su luz salió cuando el universo tenía sólo una quinta parte de su edad actual, hace casi once mil millones de años, llevando información codificada sobre el valor de la constante de estructura fina en ese momento. Con la precisdión de las medidas alcanzables entonces, se encontró que la constante de estructura fina era la misma entonces que ahora dentro de un margen de unos pocos por ciento:

α (z = 1,95/α(z = 0) = 0,97 ± 0,05

Poco después , en 1967, Bahcall y Schmidt observaron un par de líneas de emisión de oxígeno que aparecen en el espectro de cinco galaxias que emiten radioondas, localizadas con un desplazamiento hacia el rojo promedio de 0,2 (emitiendo así su luz hace unos dos mil millones de años: Aproximadamente la época en que el reactor de Oklo estaba activo en la Tierra y obtuvieron un resultado consistente con ausencia de cambio en la constante de estructura fina que era aún diez veces más fuerte:

α (z = 0,2)/α(z = 0) = 1,001 ± 0,002

Estas observaciones excluían rápidamente la propuesto por Gamow de que la constante de estructura fina estaba aumentando linealmente con la edad del universo. Si hubiese sido así, la razón α(z = 0,2)/α(z = 0) debería haberse encontrado con un valor próximo a 0,8.

 

La Constante de la Estructura Fina - www.pedroamoros.com

 

 

 

 

 

 

 

 

 

La Constante de la Estructura Fina

 

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, por qué todos los números puros definidos por las razones de cualquier par de masas son invariables.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

        Sí, algunas cosas nos quedan muy lejos pero, sobre todo recordad:

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.

α = 2πe2 /hc = 1/137

 

Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck. Todo esto no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h).

Nuestro destino es el de seguir preguntando. Nunca lo podremos saber todo sobre todo y, por cada respuesta que podamos lograr, aparecerán mil preguntas nuevas que plantear. El Universo es inmenso y en él se esconde todo lo que existe y, entre los muchos secretos que guarda, está el más grande de todos: ¡El surgir de las consciencias! Desde que la inteligencia y la consciencia de Ser aparecieron en el Universo, desde siempre estuvo acompañada por la curiosidad y la necesidad de saber. El conocimiento es nuestro destino y, seguramente también, nuestra salvación.

emilio silvera

Hay que buscar Teorías más avanzadas y modernas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Gordon Kane (en 2003), un físico teórico de la Universidad de Michigan, decía:

“… el Modelo Estándar es, en la historia de la física, la más sofisticada teoría matemática sobre la Naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones”.

De acuerdo con el Modelo Estándar, leptones y quarks son partículas verdaderamente elementales, en el sentido de que no poseen estructura interna. Las partículas que tienen estructura interna se llaman hadrones; están constituidas por quarks: bariones cuando están formadas por tres quarks o tres antiquarks, o mesones cuando están constituidas por un quark y un antiquark.

Nuevos datos del experimento BaBar, una colaboración internacional que tiene su sede en California, Estados Unidos, fueron analizados recientemente y los resultados obtenidos parecen indicar que existen posibles fallos en el Modelo Estándar de la Física de Partículas, teoría que hasta el momento es la que explica mejor cómo funciona el universo a escalas subatómicas.

Claro que, ya estamos acostumbrados a que el imparable avance del conocimiento de la física, a medida que se van descubriendo nuevas tecnologías, también nos posibilite para poder avanzar más y más profundamente en los modelos y teorías que manejamos y, lo que podemos ir viendo en los nuevos descubrimientos nos ayudan a mejorar los modelos y teorías actuales para ir adaptando la física a la realidad que la Naturaleza nos muestra.

Sin embargo, y a pesar de ello, lo cierto es que, el llamado Modelo Estándar (en lineas generales) nos ha servido bien como una teoría coherente y de extraordinario éxito en relación a las interacciones que operan en el Universo. De hecho, el Modelo Estándar incorpora las teorías relativistas y cuánticas de interacciones fuertes, electromagnéticas y débiles (dejando fuera la Gravedad) que ha superado todas las pruebas con la evidencia experimental, desde las energías más pequeñas hasta los millones de millones de electrón-voltios que se han alcanzado en los Laboratorios del Fermilab en Illinois; desde la precisión de las medidas de masas de estados ligados o de momentos magnéticos, a baja energía, hasta las fabulosas del acelerador LEP en el CERN y ahora del LHC los dos en Ginebra.

http://upload.wikimedia.org/wikipedia/commons/5/5d/Modelo_Estandar.png?uselang=es

Un átomo de Helio 4 según el modelo estándar, se muestra de color rojo las interacciones electromagnéticas y de color naranja las Fuertes. Entrar en este “universo” de lo muy pequeño resulta verdaderamente fascinante. Ahí podemos ver cosas que, en la vida cotidiana están ausentes y, nos puede parecer habernos transportado a otro mundo donde las cosas funcionan de otra manera.

Según el Modelo Estándar, la gran cantidad de partículas elementales hasta hoy detectadas, cerca de 300, en aceleradores/colisionadores de partículas o en rayos cósmicos, puede ser agrupada en leptones, quarks y hadrones o en leptones y hadrones, ya que los quarks son constituyentes de los hadrones o, también, en leptones, bariones y mesones, pues los hadrones pueden ser divididos en bariones y mesones.

Las interacciones fundamentales tienen lugar como si las partículas que interactúan “intercambiasen” otras partículas entre sí. Esas partículas mediadoras serían los fotones en la interacción electromagnética, los gluones en la interacción fuerte, las partículas W y Z en la interacción débil y los gravitones (aún no detectados) en la interacción gravitacional. Es decir, partículas eléctricamente cargadas interactuarían intercambiando fotones, partículas con carga color interactuarían intercambiando gluones, partículas con carga débil intercambiarían partículas W y Z, mientras que partículas con masa intercambiarían gravitones.

Las partículas mediadoras pueden no tener masa, pero tienen energía, o sea, son pulsos de energía. Por eso, se llaman virtuales. De los cuatro tipos de partículas mediadoras, las del tipo W y Z tienen masa, pero es común que todas sean llamadas partículas virtuales.

Entonces, se podría decir que las partículas de materia o partículas reales (leptones, quarks y hadrones) interactúan intercambiando partículas virtuales (fotones, gluones, W y Z, y gravitones). Aquí hay que tener en cuenta que las partículas de materia pueden tener más de una carga, de modo que experimentarían varias interacciones y fuerzas, pero el ámbito de la interacción puede variar mucho, de tal manera que en un determinado dominio una cierta interacción puede ser irrelevante. La fuerza gravitacional, por ejemplo, puede ser despreciada en el dominio subatómico. Es decir, aunque existan cuatro interacciones fundamentales, cuatro cargas y cuatro fuerzas, eso no quiere decir que todas las partículas tengan las cuatro cargas y experimenten las cuatro interacciones. a Gravedad en este ámbito, es tan pequeña que, pasa desapercibida para nuestros actuales instrumentos.


                                    

       Yoichiro Nambu                                       Toshihide Maskawa                                     Makoto Kobayashi

¿Por qué hay algo en vez de nada? ¿Por qué hay tantas partículas elementales diferentes? Los señores que arriba vemos fueron premiados con el Nobel de Física por sus ideas teóricas que suministraron una comprensión más profunda de lo que sucede en el interior de los bloques más pequeños que forman la materia.

La naturaleza de las leyes de simetría se encuentran en el corazón de este asunto. O más bien, la ruptura de las simetrías, tanto las que parecen haber existido en nuestro universo desde el principio como aquellas que han perdido su simetría original en alguna parte del camino.

De hecho, todos somos hijos de la simetría rota. Ello debió ocurrir inmediatamente después del Big Bang, hace unos 14.000 millones de años cuando fueron creadas la materia y la antimateria. El contacto de materia y antimateria es fatal para ambas, se aniquilan mutuamente y se transforman en radiación. Es evidente que la materia, al final, ganó la partida a la antimateria, de otra manera nosotros no estaríamos aquí. Pero estamos, y una pequeña desviación de la simetría perfecta parece que ha sido suficiente –un exceso de una partícula de materia por cada diez mil millones de partículas de antimateria fueron suficientes para hacer que nuestro mundo exista-. Este exceso de la materia fue la semilla de nuestro universo, lleno de galaxias, estrellas y planetas y, eventualmente, de vida. Pero lo que hay detrás de esta violación de la simetría en el cosmos es aún un gran misterio y un activo campo de investigación.

                 El paisaje que se refleja en las aguas del lago y nos muestra una simetría especualr

La teoría de las partículas elementales considera tres formas básicas de simetría: simetría especular, simetría de carga y simetría temporal (en el lenguaje de la física la simetría especular es denominada P, de paridad; la simetría de carga, C y la simetría temporal,T).

En la simetría especular todos los sucesos ocurren exactamente igual si son observados directamente o reflejados en un espejo. Ello implica que no existe ninguna diferencia entre izquierda y derecha y nadie sería capaz de distinguir su propio mundo de otro reflejado en un espejo. La simetría de carga predice que las partículas cargadas se comportarán exactamente igual que sus antipartículas, las cuales tiene exactamente las mismas propiedades pero carga opuesta. Y de acuerdo con la simetría temporal, las cosas sucederían exactamente igual con independencia de que el tiempo transcurra hacia delante o hacia atrás.

                           Cotidianidad o simetría temporal

El Modelo Estandar es una síntesis de todas las ideas que la física de partículas ha generado durante más de un siglo. Se asienta sobre la base teórica de los principios de simetría de la física cuántica y la teoría de la relatividad y ha resistido a innumerables pruebas. No obstante, varias crisis se sucedieron poniendo en peligro el bien construido edificio del modelo. Estas crisis tuvieron lugar porque los físicos asumían que las leyes de la simetría eran aplicables al micromundo de las partículas elementales. Pero esto no era totalmente  cierto.

La primera sorpresa surgió en 1956 cuando dos físicos teóricos chino-americanos, Tsung Dao Lee y Chen Ning Yang (galardonados con el Premio Nobel al año siguiente, en 1967) comprobaron que la simetría especular (simetría P) era violada por la fuerza  débil.

Una nueva violación de las leyes de la simetría tenía lugar en la desintegración de una extraña partícula llamada kaón (Premio Nobel concedido a James Cronin y Val Fitch en 1980). Una pequeña fracción de los kaones no seguían las leyes de la simetría especular y de carga; se rompía la simetría CP y se desafiaba la estructura misma de la teoría.

Como ya se ha explicado el Modelo Estándar comprende todas las partículas elementales conocidas y tres de las cuatro fuerzas fundamentales. Pero, ¿por qué son estas fuerzas tan diferentes?. ¿Y por qué las partículas tienen masas tan diferentes?. La más pesada, el quark top, es más de tres mil cien veces más pesado que el electrón. ¿Por qué tienen todas masa? La fuerza débil destaca en este aspecto una vez más: sus portadores, las partículas Z y W son muy pesadas, mientras que el fotón, que transmite la fuerza electromagnética, carece de masa.

La mayoría de los físicos piensa que el llamado mecanismo de Higgs es el responsable de que la simetría original entre fuerzas fuera destruido dando a las partículas sus masas en las primeras etapas del universo.

El camino hacia ese descubrimiento fue trazado por Yoichiro Nambu quien, en 1960, fue el primero en introducir la violación espontánea de la simetría en la física de partículas. Es por este descubrimiento por el que se le concede el Premio Nobel de Física.

Tenemos algunos ejemplos banales de violación espontánea de la simetría en la vida diaria. Un lápiz en equilibrio sobre su punta lleva una existencia totalmente simétrica en la cual todas las direcciones son equivalentes. Pero esta simetría se pierde cuando cae -ahora sólo una dirección cuenta-. Por otro lado su condición es ahora más estable, el lápiz no puede volver a caer, ha llegado a su nivel más bajo de energía.

El vacío de Boötes es uno de los mayores del Universo. El Gran Vacío, Vacío Boötes o Vacío del Boyero es una región enorme y casi esférica del espacio, que contiene muy pocas galaxias.  Tiene unos 250 millones de años luz de diámetro (casi el 0.27% del diámetro del universo visible), o unos 236,000 Mpc3 en el volumen, el Vacío Boötes es uno de los mayores vacíos conocidos en el universo, y nos referimos a el como un supervacío. Su descubrimiento fue reportado en Robert Kirshner y co. (1981), como parte de un estudio de corrimientos al rojo galácticos. El centro del Vacío Boötes esta a aproximadamente 700 millones de años luz de la Tierra.

El vacío tiene el nivel de energía más bajo posible en el cosmos. En efecto, un vacío en física es precisamente un estado con la menor energía posible. Sin embargo, no está totalmente vacío. Desde la llegada de la física cuántica, el vacío está lleno de una burbujeante sopa de partículas que aparecen e inmediatamente desaparecen en invisibles y ubicuos campos cuánticos. Estamos rodeados por campos cuánticos que se extienden por el espacio; las cuatro fuerzas fundamentales de la naturaleza también son descritas como campos. Uno de ellos, el gravitacional, es conocido por todos nosotros. Es el que nos mantiene pegados a la tierra y determina la dirección arriba-abajo.

Nambu indicó que las propiedades del vacío son de gran interés para el estudio de la rotura espontánea de la simetría. Un vacío, que es el estado más bajo de energía, no se corresponde con el estado de mayor simetría. Tan pronto como el lápiz se cae, la simetría del campo cuántico queda rota y sólo una de las muchas direcciones posibles es elegida. En las últimas décadas los métodos de Nambus para tratar la violación de la simetría espontánea en el Modelo Estandar han sido refinados y son frecuentemente usados hoy para calcular los efectos de la fuerza fuerte.

Hablar de todo esto nos lleva hacia caminos amplios y de un largo recorrido.

¡Pero faltan los campos! Los cuatro campos. Sabemos que un cuerpo con masa crea alrededor de sí un campo gravitacional, un campo de fuerza que ejerce una fuerza sobre otro cuerpo masivo y viceversa. Análogamente, un cuerpo cargado eléctricamente, crea un campo electromagnético (si está en reposo, se percibe sólo su componente eléctrico, si está en movimiento se manifiesta también el componente magnético) y ejerce una fuerza electromagnética sobre otro cuerpo electrizado y viceversa.

De la misma manera, está el campo de la fuerza fuerte y el campo de la fuerza débil. O sea, hay cuatro campos fundamentales: el electromagnético, el fuerte, el débil y el gravitacional. Las  partículas mediadoras son los quantos de los campos correspondientes: los fotones son los quantos del campo electromagnético, los gluones son los quantos del campo fuerte, las partículas W y Z del campo débil y los gravitones serían los quantos del campo gravitatorio.

En otras palabras, los cuatro campos fundamentales son el campo de fotones (electromagnético), el de gluones (fuerte), el de partículas W y Z (débil) y el de gravitones (gravitacional). El problema en esa bella simetría de cuatro cargas, cuatro interacciones, cuatro fuerzas, cuatro tipos de partículas mediadoras y cuatro campos es que aún no fue detectado ningún gravitón y la gravedad, en sí, no encaja bien en esa teoría llamada Modelo Estándar y, por eso precisamente, se dice que es incompleto y que necesitamosm una teoría cuántica de la Gravedad. En ese aspecto, yo, no las tengo todas conmigo, dado que la fuerza de Gravedad parece una teoría aparte y no quiere mezclarse con las otras. Sin embargo, dicen los de la teoría de cuerdas que allí, sí encajan las cuatro fuerzas.

d

Mucho, muchísimo nos queda por explicar en relación al Modelo estándar y a todo lo que en él está unido. Sin embargo, en física se avanza poco a poco, vamos conociendo cositas que unidas a otras cositas finalmente forman un todo en el que podemos contemplar una perspectiva más amplia y general y, a veces, hasta puede llegar a enseñarnos la belleza que encierram esos cuadros que pinta la Naturaleza y que nosotros, osados, tratamos de descubrir.

emilio silvera