Oct
5
¡La Vida! ¿En cuántos planetas estará instalada?
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica, El Universo y la Vida ~ Comments (29)
Si lo normal es que, cada estrella esté acompañada de algunos planetas formando sistemas planetarios como el nuestro. Si entre la préyade de planetas y lunas de esos sistemas, todo se comporta como ordenan las leyes de la Naturaleza. Si como es de esperar, algún que otro planeta o, incluso luna, pueden estar situados emn la zona habitable. Si todo eso es posible (que lo es), ¿qué puede impedir que la vida prolifere por todo el Univero?
El astrónomo estadounidense Frank Drake apuntó en 1960 un telescopio en el condado de Pocahontas hacia las estrellas Tau Ceti y Épsilon Eridani en busca de señales de radio de otros mundos. ¡Era tanta la ilusión volcada en aquel proyecto! y, sin embargo, nada se pudo aclarar…aunque, el ániomo no decayó nunca.
Tau Ceti, en la Constelación de la Ballena (Cetus), es una estrella muy parecida a nuestro Sol. Tiene una clase espectral G8 -la del Sol es G2- y un tamaño ligeramente inferior. Después de Alfa Centauri A es una de las estrellas que más se parecen al Sol y, algunos, como Carl Sagan y Shklovskii, abogaban por el hecho de que albergaban planetas con las condiciones aptas para la vida. Si tiene algún planeta situado a la distancia adecuada, como lo está la Tierra del Sol, pudiera haberse desarrollado un escenario natural propicio para la existencia de seres vivos.
Oct
5
A pesar de todo… ¡Debemos estar orgullosos!
por Emilio Silvera ~ Clasificado en Un recorrido desde el comienzo del tiempo ~ Comments (6)
Representación de la ciudad de Uruk.
Es mucho lo que hemos podido lograr en tan solo unos miles de años y a partir de que fuésemos capaces de construir aquellas primeras ciudades que, marcó la pauta de una convivencia en una comunidad-sociedad más moderna, en la que cada cual, podía dar a los demás aquello de lo que era capaz. Estamos obligados a retrotraernos hasta aquella región: Mesopotamia que era una zona geográfica, no una civilización. Durante el período de varios miles de años, esta zona estuvo controlada por un conjunto difuso y variado de pueblos: sumerios, hititas, árabes y otros. No obstante, la tecnología evolucionó y se transfirió entre estas civilizaciones dentro de Mesopotamia como si se tratara de una sola sociedad coherente. Es fácil hacer un seguimiento retrospectivo del desarrollo de la tecnología llegando hasta los sumerios, hasta la que podría ser la civilización humana a partir de la cual se desarrollaron todas las demás, si se exceptúa el caso de las civilizaciones de América.
Lo que llamamos los Sumerios fueron unas tribus que habían llegado del este. de las montañas de Elam, quizá ya en el año 8000 a. C. Se asentaron cerca de los pantanos frente al Golfo Pérsico, entre los ríos Tigris y Éufrates. Posteriormente los griegos lo llamaron Mesopotamia. En realidad Sumer surgió en elgún momento anterior a 5000 a. C., y allí comienza la crónica escrita de la Humanidad. “Si comparamos a los sumerios con los cazadores recolectores que les precedieron”, nos dice Crosby, “veremos que el contraste entre este pueblo del amanecer de la civilización y cualquier pueblo de la Edad de Piedra es mayor que el contraste entre los sumerios y nuestra propia civilización. Al contemplar a los sumerios, los arcadios, los egipcios, los israelitas y los babilonios, “lo que estamos haciendo es mirarnos en un espejo muy viejo y polvoriento.
Son abundantes las muestras de grabados y tablillas con escritura cuneiforme sumerias encontradas. Los sumerios descubrieron la rueda, tenían avanzados conocimientos de matemáticas, geometría y astronomía, descubrieron también la agricultura en esa región del mundo y tuvieron escuelas donde se impartían conocimientos científicos y musicales. Esta prodigiosa civilización utilizó la música como una ofrenda a los dioses, compuso en la escala de siete notas que aún hoy usamos en la música occidental, llegó a tener más de 20 instrumentos entre vientos, percusión y cuerdas (especialmente la Lira), y lo más sorprendente es que también desarrolló una escritura para la música que producían, algo así como el actual pentagrama. El jabón ha acompañado al hombre desde hace milenios. Los sumerios, 3000 años a.C., ya lo fabricaban hirviendo sustancia alcalinas y usando el residuo sobrenadante para lavarse.
Las primeras ciudades se desarrollaron en Mesopotamia,en la región comprendida entre el Tigris y el Eúfrates. Al ser una tierra fértil, sus habitantes cultivaban cereales y criaban ganado.Los sumerios (habitantes de Mesopotamia) intercambiaban cereales con las regiones vecinas a cambio de metales y útiles. Distintas ciudades destacaron según la época, pero todas tuvieron una cultura similar.
Los sumerios profesaban una religión jerarquizada, con muchos dioses. En cada ciudad había un zigurat (templo) que estaba formado por una plataforma y varios pisos unidos a través de escaleras. El zigurat de Ur, construido ca. 2100 a. C., estaba dedicado al dios lunar Nannar, que era el dios de la ciudad. Los sacerdotes le hacían ofrendas a diario.
Los primeros signos pictográficos se transformaron gradualmente en la escritura cuneiforme (forma de cuña) utilizada por los sumerios. Con una caña hacían marcas sobre tablillas de arcilla húmeda. Esa manera de registros se extendió para expresar todo aquello que ellos hacían y veían en sus vidas cotidianas.
KITUS ó Computador Prehispánico encontrado en Tiahuanaco, Bolivia.
La informática no es un invento en si misma, sino un largo proceso a través de la Historia, cuyos inicios se pueden datar en el año 3500 aC con el invento del ábaco en Babilonia. Primera generación. En la que se desarrolló durante los años 50, utilizandose la tecnología de las válvulas de vacío. El lenguaje de Programación era básicamente de bajo nivel. Linea de Tiempo de la Computación 2500 aC El ábaco , su origen se asocia a diversas civilizaciones, especialmente a los Babilonios y los Chinos. El ábaco fue el primer instrumento mecánico utilizado por el hombre para facilitar sus operaciones de cálculo. 1944 1947 1671 1642 1833 1893 1847 1889 1890 1941 1943 2500 aC 2000 aC 6000 aC 500 aC 1633.
El primer calculador de tipo mecánico fue ideado en Babilonia alrededor de 500 A.C. Este dispositivo mecánico llamado ábaco consistía de un sistema de barras y poleas con lo cual se podían efectuar diferentes tipos de cálculos aritméticos. Algunos llegaron a manejar el artilugio con verdadera maestría.
Los tradicionalistas han evitado durante mucho tiempo mencionar los avances científicos precolombinos que se lograron en el Nuevo Mundo. Los mayas inventaron el cero casi al mismo tiempo que los hindúes y, practicaron unas matamáticas y una astronomía que superaba con mucho la de la Europa Medieval. En el medio oeste americano los nativos construyeron pirámides y otras estructuras de un tamaño mucho mayor que las de cualquiera que existían entonces en Europa.
Muchos hisoriadores occidentales tradicionales creen que después del hundimiento de la Cilivización griega se produjeron pocos hallazgos originales en el campo de la ciencia; que los árabes copiaron obras de Euclides, Tolomeo, Apolonío y otros, y que Europa, finalmente, recuperó su patrimonio científico a través de los árabes. Durante la Edad Media los eruditos árabes se entregaron a la búsqueda de manuscritos griegos y fundaron centros de estudios y traducción en Jund-i Sahpur, Persia y en Bagdad, Irak. A los historiadores occidentales no le suelen gustar admitir que esos mismos eruditos también buscaron manuscritos de China y de la India, y crearon su propia Ciencia.
Alhacen, el gran erudito Persa
La ciencia es el estudio del mundo físico, pero no es sólo un campo de interés. Es una disciplina de un sistema de investigación que se adhiere a una metodología específica. Esa metodología es conocida como la método científico. Se compone de siete pasos: 1) la observación, 2) la declaración de un problema o pregunta, 3) formulación de una hipótesis o una posible respuesta al problema o pregunta, 4) prueba de la hipótesis con un experimento, y 5) análisis de los resultados del experimento, 6) interpretación de los datos y la formulación de una conclusión, y 7) la publicación de los resultados. Se puede estudiar la naturaleza sin respetar el método científico, por supuesto. El resultado, sin embargo, no es ciencia.
Muchas personas a lo largo de la historia han estudiado la naturaleza, sin el método científico. Algunas de las personas más conocidas en hacerlo fueron Los antiguos griegos. Estudiosos como Aristóteles trató de explicar los fenómenos naturales, pero no a prueba sus ideas con experimentos. Ellos basaron sus hallazgos en la lógica. Como resultado, muchas veces se equivocó. Estos errores fueron descubiertas más tarde por los eruditos utilizando el método científico.
Alcázar y Puente de Alcántara en el Toledo antiguo
La erudición pasó de El Cairo a Córdoba y Toledo, en España. Cuansdo el Imperio musulmán se extendió invadiendo Europa. Cuando los cristianos lograron reconquistar Toledo, los eruditos de Europa cayeron como cuervos sobre los socumentos que los arabes habían traduciso, no ya de los griegos, sino también de egipcios, chinos, indúes y babilonios cuyos conocimientos fueron encausados hacia Europa a través de España.
Hay muchas pruebas de ese intenso tráfico de obras que, desde España, circuló por toda Europa: Damasco y Padua se benefició de un intenso tráfico de manuscritos árabes a principios de la primera década del siglo XVI, en todas las bibliotecas europeas se estaba redescubriendo cada vez más documentos escritos en árabe y proveniente de las más diversas culturas. El mismo Copérnico se inspiró en obras árabes de Astronomía.
Los fenicios fueron localizados en la parte norte de Palestina, en lo que hoy es el Líbano. El pueblo natal de esta civilización son los semitas que, dejando la costa norte del Mar Rojo, se asentaron en Palestina practicando el cultivo de cereales, vid y olivo. Además de la agricultura, la pesca y la artesanía también desarrollaron otras actividades.
La proximidad al mar y el comienzo del comercio de productos agrícolas con que los egipcios dieron las condiciones óptimas para el comercio marítimo y se destaca como uno de los sectores más dinámicos de la economía de los fenicios. A lo largo de la costa ocupada por ellos había varias ciudades-estado como Arad, Biblos, Tiro, Sidón y Ugarit. En cada una de estas ciudades un gobierno independiente era responsable de los asuntos políticos y administrativos.
De lo que hicieron en España (fundaron Gadir -hoy Cádiz), todos tenemos noticias y, también andaron por las costas de Tartessos, y lo que ahora se conoce como Huelva, lugar al que llevaron cultura, enseñanzas de oficios y trueques.
Los primeros elementos fueron representados por los artistas de distintas maneras
“Todo lo que existe, no importa el tiempo en el que estavo presente,
Todo era Agua, Tierra, Aire y Fuego”
Mezclados en la debida proporción,
conformaban todo lo que existía.”
Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. del que nos habló Demócrito que, habiéndo viajado por muchos lugares, se enteró de su posible existencia por antiguas profesías hindúes que también, hablaban del vacío.
Pero demos un salto en el tiempo y viajémos hasta los albores del siglo XX cuando se hacía cada vez más ervidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de eneromes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más, sobre los átomos y las estrellas.
El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.
La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).
El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversaspartículas de familias diferentes: unas son bariones que en el seno del átomo llamamos necleones, otras son leptones que gitan alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.
Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.
De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción inifintesimal del total atómico.
Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sonderaron el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del nucleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.
Todos sabemos ahora, la función que desarrollan los electrones en el atomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)
Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Es un gran triunfo del ingenio humano el saber de qué, están confomadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.
Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.
En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.
Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.
Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blancoazuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad denajo de la asombrosa variedad de las estrellas.
Las Híades
Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung. Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado dialgrama Hertzsprung-Russel.
analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiamado cuando recorre con el telecopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.
El progreso en física, mientras tanto, estaba bloquedado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustó los esfuerzos de las físicos teóricos para copmprender como la fusión nuclear podía producir energía en las estrellas.
La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.
Hasta el momento todo lo que hemos repasado está bien pero, ¿que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículasd de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.
Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica. La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.
George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.
A veces, en Física hablamos de belleza y, la imagen de arriba, es un fiel ejemplo de la inmensa belleza que crea la Naturaleza que se vale de mil caminos para conseguir lo que quiere: Lo de arriba representa el Efecto Triple Alfa, mediante el cual, el Helio se fusiona con el Helio y, como otra fusión con Helio es improbable, coge el camino de fusionarse con Berilio y más tarde, de nuevo con Helio para conseguir Carbono en las estrellas.
Hoyle y su equipo, descubrieron que las estrellas, en la medida que van gastando su combustible nuclear, transmutan el Hidrógeno en Helio; el Helio a Carbono y Oxígeno; y así sucesivamente, subiendo hasta llegar hasta los más pesados de la Tabla Periódica. En las explosiones de las supernovas se crean mucho de los elementos más pesados, incluidos el platino, el oro y el uranio. El trabajo que fue un inmenso logro científico, no sólo explicó la síntesis de todos los elementos más allá del Hidrógeno, sino que predijo su formación exactamente en las mismas proporciones que ocurrían en el Universo. Pero quedó por explicar la cuestión del Hidrógeno: Cómo se genera el combustible inicial de las estrellas.
Así, en las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos hasta el Hierro y, a partir de ahí, como la fusión se hace imposible, ya son las supernovas las encargadas de traer elementos más complejos y pesados que, como el oro y el platino o el uranio, se “fabrican” en esos eventos de inmensas energías. Mucho más, tendríamos que escribir para explicar todo lo que vino después y, con la mecánica cuántica y la relatividad en sus dos versiones, se dio un inmenso impulso al saber de la Física y de la Cosmología.
emilio silvera
Oct
5
El cerebro, siempre misterioso
por Emilio Silvera ~ Clasificado en ¡La Mente! Ese prodigio ~ Comments (0)
Conexiones sin fin
La naturaleza de la mente es el misterio más profundo de la humanidad., se trata, además de un enigma de proporciones gigantescas, que se remonta a milenios atrás, y que se extiende desde el centro del cerebro hasta los confines del Universo. Es un secreto que provocó vértigo y depresión en alguna de las mentes más preclaras de algunos de los filósofos y pensadores más grandes que en el mundo han sido. Sin embargo, este amplio vacío de ignorancia está, ahora, atravesado, por varios rayos de conocimiento que nos ayudará a comprender cómo se regula la energía mental.
Aunque puede que no sepamos que es la mente, sabemos algunas cosas sobre el cerebro. Está formado por una red, una increíble maraña de “cables” eléctricos que serpentean a través de una gran cantidad de “sustancias” neuroquímicas. Existen quizás cien mil millones de neuronas en el cerebro humano, tantas como estrellas hay en la Vía Láctea, y, cada una de ellas recibe datos eléctricos de alrededor de mil neuronas, además de estar en contacto y en comunicación con unas cien mil neuronas más.
El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.
Oct
4
¿Universos? Nada hay que lo niegue
por Emilio Silvera ~ Clasificado en ¿Multiverso? ~ Comments (4)
Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del nuestro que lo hace como si existiera más materia de la que realmente hay debido a que, “la fuerza de gravedad de esos universos” vecinos, incide de manera real en este Universo nuestro, y, si es así, la tan cacareada “materia oscura” podría ser el mayor fraude de la cosmología moderna.
¿Estaremos rodeados de universos?
Los estudios del MAPW han derivado en deducciones que nos dicen: “El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.
La Wilkinson Microwave Anisotropy Probe (WMAP) su misión es estudiar el cielo y medir las diferencias de temperatura que se observan en la radiación de fondo de microondas, un remanente del Big Bang. Fue lanzada por un cohete Delta II el 30 de junio de 2001 desde Cabo Cañaveral, Florida, Estados Unidos. El objetivo de la misión WMAP es comprobar las teorías sobre el origen y evolución del Universo. Es la sucesora del COBE y entra dentro del programa de exploradores de clase media de la NASA. (Wikipedia)
Ωbh2 = 0,002267 + o,000558/ – 0,000059
Ωch2 = 0,1131 ± 0.0034
ΩΛ = 0,726± 0.015
ns = 0,960 ± 0,013
τ = 0,084 ± 0.016
σ8 = 0,812 ± 0.026
Estos son los valores de los parámetros cosmológicos obtenidos a partir de los datos combinados de 5 años de observación de WMAP, medidas de distancia de supernovas tipo I y la distribución de galaxias Omega b, c, lambda que son las densidades de materia bariónica, materia oscura y energía oscura respecto a la densidad crítica (la correspondiente a un espacio euclideo) h = 0,71 es el parámetro de Hubble que mide la razón de expansión del universo, τ es la profundidad óptica, y ns y σ8 son el índice espectral y la amplitud del espectro de las fluctuaciones de la materia, respectivamente.
Además de los parámetros cosmológicos, el estudio de la distribución estadística de las anisotropías en la intensidad de la polarización de la radiación también nos proporciona una información muy valiosa sobre la historia remota del Universo. El Modelo estándar de inflación predice que las fluctuaciones en la densidad de energía se distribuye siguiendo, muy aproximadamente, un campo aleatorio gausiano. Sin embargo el modelo estándar se basa en el caso ideal de existencia de un solo campo cuántico, el inflatón, que evoluciona lentamente hasta el mínimo de potencial.
En el artículo nos dicen:
“El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.
Línea de tiempo de la gran explosión.
En los numerosos análisis realizados a los datos de WMAP se han encontrado una serie de “anomalías” cuyo origen está aún por determinar. En el artículo se nos dice: ” El flujo oscuro es controvertido debido a que la distribución de la materia en el Universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del Universo visible -fuera de nuestro “horizonte”- está tirando de la materia en nuestra vecindad”. Es decir, que de lo que en realidad se trata es, de saber cuanto vale Omega (Ω), o, lo que es lo mismo, la cantidad de materia que contiene el Universo metiendo en ese “saco” tanto a la materia bariónica como a la oscura.
Las anomalías observadas no son debidas ni al ruido ni a residuos contaminantes, lo más probable es que sea debida a defectos topológicos en forma de textura. Seguramente la misión Planck de la ESA nos proporcionará la mejor medida de la anisotropía en la intensidad del Fondo Cósmico de Microondas en todo el cielo con una sensibilidad, resolución y cubrimiento frecuencial sin precedentes.
Las fronteras del conocimiento sobre el Universo se amplian día a día y, a no tardar mucho podremos saber sobre:
- Las caracterísiticas de la época inflacionaria así como de las fluctuaciones primordiales en la densidad que allí se generaron.
- La existencia de ondas gravitatorias primordiales.
- La naturaleza -si existe- de la materia oscura y la energía oscura y su contribución al contenido material/energético total del Universo.
- La distribución de cúmulos de galaxias seleccionados mediante el efecto Sunyaev-Zeldovich.
- La época de reionización”.
- En qué clase de universo estamos: abierto, plano, cerrado.
Y, muchas cosas más que de momento ignoramos y que, como podemos leer en el artículo de arriba, cada día quedan más cerca de nuestro entendimiento gracias al trabajo de muchos y, sobre todo, al ingenio de los seres humanos que, con su inagotable imaginación y, por fin, unificando los conocimientos adquiridos durante largos años, ahora van aprendiendo a dirigir sus esfuerzos en la debida dirección, que nos llevará, a desvelar cosas que no comprendemos para saber, cada vez más profundamente, como funciona el Universo en el que vivimos y por qué de sus comportamientos.
La naturaleza a temperaturas muy bajas, por ejemplo, esconden muchos secretos que debemos desvelar para seguir avanzando en el conocimiento de la materia que nos dará, cuando lo consigamos, maravillosos resultados tecnológicos y aplicaciones diversas en muchos campos tanto de computación como de salud, industriales, o, incluso espaciales. En Científico comentaba: “No quiero especular sobre cuál resultará ser la explicación de la emisión criogénica, pero no me sorprendería si la estructura de banda de los semiconductores desempeña un papel importante”.
Estructuras desconocidas arrastran las galaxias de nuestro universo
¡Hay tantas cosas que desconocemos! Pudiera incluso ser posible que, esa fuerza misteriosa que tira de nuestras galaxias y, cuya responsabilidad se la adjudicamos a “la materia oscura”, sea, en realidad, la fuerza de Gravedad que generan cientos de miles de Galaxias situadas en otro universo que, vecino del nuestro, incide de manera directa en el comportamiento de los objetos que el nuestro contiene y estos, a su vez, incidirán en los objetos de aquel otro universo.
Sabemos que existen miles de millones de estrellas, de mundos, de galaxias y… ¿De Universos?
Es la pregunta que no podemos responder… ¡de momento! ¿Quién puede asegurar que nuestro Universo es el único universo? Nosotros decimos, en relación a “nuestro” Universo, que comprende “todo” lo que existe, incluyendo el espacio, el tiempo y la materia. Claro que, al decir “todo lo que existe” nos estamos refiriendo al ámbito del propio Universo, sin pensar en que, más allá de éste nuestro, puedan existir otros iguales o diferentes que, como el nuestro, tenga también espacio, tiempo y materia, y, si es así, ¿Por qué esa materia vecina no puede incidir, con la fuerza de Gravedad que su materia genera, en éste Universo nuestro? Si recordamos bien, se dice que, tanto el alcance de la fuerza electromagnética como el de la Gravitatoria, son infinitos. De esa manera, esa materia que conforma otros universos, podría estar “tirando” de nuestras galaxias y, haciendo que corran a más velocidad de la que tendrían de no concurrir en escena, alguna otra fuerza externa. Claro que, nosotros, creyendo que la idea de otros universos es algo atrevida, hemos preferido adoptar a la “Materia Oscura” para que explique, o, más bien justifique, las anomalías observadas.
Una cosa sí que está clara, el Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Tal separación gradual, a medida que el tiempo pasa, hace que el Universo sea, cada vez más frío.
¿No pasará con los universos como ocurre con las galaxias? Sabemos que Andrómeda se nos echa encima a 300 Km/s, y, de la misma manera, son múltiples las galaxias que se han fundido en una sola galaxia mayor. Si eso es así (que lo es), si las leyes del Universo son las que son, ¿quién puede negar que al igual que las galaxias, también los universos se funden en otro mayor? En la Naturaleza todo se repite una y mil veces: colisionan estrellas de neutrones, agujeros negros y todos los objetos conocidos del Cosmos para formar otro mayor, así que… ¿Por qué no universos?
Yo, la verdad es que no acabo de estar de acuerdo con la dichosa “materia oscura”, algo me dice que hay algo más que no sabemos ver y, posiblemente, la fuerza de Gravedad tenga alguna propiedad o extensión desconocida. Por otra parte, la idea, no de universos paralelos que serían intangibles para nosotros al estar situados en otro plano dimensional, sino la idea de universos conexos que, de alguna manera, se relacionan entre sí a una escala tan enorme que aún no hemos podido captar, es la que más me gusta.
Cada vez que surge una idea lo hace mediante un destello luminoso: Son las estrellas del cerebro
Creo firmemente que eso debe ser así según los indicios cada vez más fuertes y que están apuntando en dicha dirección, y, esos modelos que nos hemos inventado del Universo Plano, Abierto o Cerrado, no son más que palos de ciego tratando de explicar lo que no comprendemos.
La materia que conforma nuestro Universo es la que podemos ver y detectar, la que conforman todos los objetos existentes, nosotros incluidos, y, sin importar la forma que esté adoptando en este momento, todo lo material se conforma de Quarks y Leptones. Es posible que, seguramente, esté acompañada de esa otra escondida (la materia cósmica primordial o el Ylem de los griegos clásicos), en eso que llamamos “fluctuaciones de vacío” donde, que sepamos, puede haber oculto mucho más de lo que hemos podido observar, ya que, su dominio, el dominio de los llamados “océanos de Higgs” nos quedan muy, pero que muy lejos, y, ahora, con el LHC, posiblemente podamos obtener algunas de las respuestas tan deseadas y necesarias para rellenar muchos de los espacios “vacíos” que están presentes en nuestros conocimientos tan limitados.
Pensemos en el Universo y que con el Hubble y otros magníficos aparatos tecnológicos de complejo diseño, hemos podido acceder a un conocimiento más profundo de lo que puede ser la materia y las partículas de que está conformada. Por otra parte y pensando en el enorme costo que nos suponen esos inmensos aceleradores de partículas que nos llevan (hasta una fracción de segundo) al instante mismo de la creación para que, allí, podamos “ver” lo que fue y entender, de esa manera, lo que es, a costa de una inemnsa energía. Precisamente por ello, sería deseable busca otros caminos más dinámicos y menos costosos (¿la Química?) que nos llevaran hasta el mismo lugar sin tanta estructura y con menos esfuerzo económico que se podría destinar a otros proyectos del espacio.
¿Qué es lo que genera esa fuerza que arrastra a nuestras galaxias de manera irresistible?
Sabemos de su magnificencia y de su “infinitud”. Lleva 13.700 millones de años creciendo, y, hemos logrado la proeza de captar galaxias situadas a unos 13.ooo millones de años-luz de nosotros, es decir, de cuando el Universo era muy joven. Con las nuevas generaciones de aparatos, con las nuevas y más avanzadas tecnologías, seguramente, alcanzaremos a poder ver incluso el momento mismo de “la gran explosión”, si es que finalmente resulta que es así como nació el Universo.
Sin embargo, tales hallazgos no serán suficientes para explicar todo lo que en verdad existe y está ahí, “junto” a nosotros, haciéndonos señales que no podemos captar, y, seguramente, enviándonos mensajes que no podemos recibir. ¡Algún día, muy lejos en el futuro, podremos, al fin saber, en qué Universo estamos y si, éste Universo nuestro, tiene otros hermanos!
Es posible que al igual que nacen las estrellas en las galaxias, puedan nacer los universos en el Multiverso
“Kashlinsky y su equipo afirman que su observación representa la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”
“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.
En el escenario de inflación, la expansión está dirigida por un campo de energía de un origen misterioso. Erickcek y sus colegas argumentan que la asimetría podría ser el remanente de las fluctuaciones en un campo de energía adicional, el cual empezó siendo diminuto, pero estalló por la inflación hasta que se hizo mayor que el universo observable.
Como resultado, el valor de este campo de energía varió desde un lado del universo al otro en los inicios, aumentando las variaciones de temperatura – y densidad de materia – en un lado del cielo con respecto a otro.
La conclusión, si es correcta, haría añicos una apreciada suposición sobre el universo. “Uno de los sustentos básicos de la cosmología es que el universo es el mismo en todas las direcciones, y el modelo estándar de la inflación se construye sobre estos cimientos”, dijo Erickcek a New Scientist. “Si la asimetría es real, entonces nos dice que un lado del universo es de algún modo distinto al otro lado”.
http://www.cienciakanija.com/2008/06/10/pistas-de-estructura-mas-alla-del-universo-visible/
“El universo, tan vasto para la mayoría de nosotros, a veces les resulta pequeño a los cosmólogos. Observando a enormes distancias de la Tierra han encontrado una “ventana” que podría mostrarnos que existe algo más allá de los 45.000 millones de años luz, el “borde final” observable de esta burbuja cósmica que nos aloja. ¿Constituye esto una evidencia de la existencia otros universos?”
He buscado diversas opiniones y estudios que en este blog (a retazos sueltos) están para su lectura, y, también he plasmado aquí mis propias opiniones sobre todo este complejo tema. Leyendo a unos y otros sabemos que a nada se ha llegado de manera definitiva pero, la idea de que más allá del horizonte de nuestro Universo, hay algo más, toma fuerza y amplía nuestra visión en relación a dónde podemos estar y lo que verdaderamente pueda ser todo esto que, por cierto, parece que es mucho más de lo que en principio podíamos creer.
emilio silvera
Oct
4
La vecindad galáctica
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (1)
Nuestra vecina galáctica la Pequeña Nebe de Magallanes
Hoy dejaré una pincelada de la preciosa Galaxia Irregular que es la más pequeña de las dos que tienen el mismo nombre y que acompañan a nuestra Galaxia, La Vía Láctea; es también conocida como Nubecula Minor. Tiene unos 9 ooo años-luz de longitud y se encuentra a 190 000 años-luz, visible a simple vista como una mancha brumosa de unos 3º en Tucana. Su masa visible es menor que el 25 de nuestra Galaxia, y contiene relativamente más gas y menos polvo que la Gran Nube de Magallanes, aunque menos cúmulos y Nebulosas. Su estructura puede estar alargada en la dirección de la Tierra.
El cúmulo globular de estrellas 47 Tucanae. Maravillas como esta están presentes en la pequeña Nube de Magallanes. Este brillante cúmulo de estrellas es 47 Tucanae (NGC 104), en una imagen captada por el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy) de ESO, instalado en el Observatorio Paranal, en Chile. Este cúmulo se encuentra a unos 15.000 años luz de nosotros y contiene millones de estrellas, algunas de las cuales son bastante inusuales y exóticas. Esta imagen fue captada como parte del sondeo “Magellanic Cloud” de VISTA, un proyecto que sondea la región de las Nubes de Magallanes, dos pequeñas galaxias muy cercanas a nuestra Vía Láctea.
NGC 346 en la Pequeña Nube de Magallenes. Entre los cúmulos de SMC y la nebulosa NGC 346 hay una región de formación de estrellas de unos 200 años luz -fotogrrafía arriba-, por el telescopio espacial Hubble. Explorando esta Nebulosa, los astrónomos han identificado una población de estrellas embrionarias concatenadas a tavés de las sombrías, entrelazadas franjas de polvo, que se ven aquí, a la derecha.
Gran Nube de magallanes
Al igual que la Gran Nube de Magallanes, la pequeña que hoy nos visita, presenta evidencia de una etapa de formación de estrellas en su historia remota, seguida de un tiempo sin ninguna actividad, y luego otra etapa de formación de estrellas más recientes. Las estrellas y la materia interestelar tienen una abundancia de elementos pesados menor (entre un cuarto y un décimo) que las estrellas de las regiones vecinas al Sol de la Galaxia.
En este cúmulo estelar llamado NGC 602, cerca de la Pequeña Nube de Magallanes, millones de estrellas jóvenes emiten radiación y energía en forma de ondas que erosionan el material que las rodea creando formaciones visualmente interesantes. El tamaño de lo que se ve en la foto abarca 200 años luz de lado a lado. Foto: NASA / Hubble ST.
“NGC 602 es un grupo joven, brillante abierto de estrellas situadas en la Nube Menor de Magallanes (SMC), una galaxia satélite de la Vía Láctea. Ondas de radiación y el choque de las estrellas han apartó mucho del encendedor de gas circundante y el polvo que componen la nebulosa conocida como N90, y esto a su vez ha dado lugar a la formación de nuevas estrellas en las crestas (o “trompas de elefante”) de la nebulosa. Estos jóvenes, incluso pre-principales estrellas de la secuencia siguen envueltos en polvo, pero son visibles para el Telescopio Espacial Spitzer en longitudes de onda infrarrojas. [5] El grupo es de particular interés ya que se encuentra en el ala del SMC que conduce al Puente de Magallanes . Por lo tanto, mientras que sus propiedades químicas deben ser similares a las del resto de la galaxia, está relativamente aislado y tan fácil de estudiar. Un número de otras galaxias más distantes también aparecen en el fondo de las imágenes del Hubble de NGC 602″
Cerca de la imponente franja de la Vía Láctea vista desde el hemisferio Sur, las dos Nubes de Magallanes parecen fragmentos desprendidos de nuestra galaxia. Hasta hace poco los astrónomos creían que siempre habían orbitado en torno a la Vía Láctea más o menos a la misma distancia, al igual que las otras galaxias satélites menores, atrapadas en el campo gravitatorio de la Vía Láctea. Pero nuevos datos parecen indicar que han pasado gran parte de su existencia bastante más lejos y que actualmente están experimentando una inusual cercanía con nuestra galaxia. De ser así, estaríamos siendo testigos del inicio de un pas de trois intergaláctico, una danza que puede alterar la compostura de las galaxias y crear miles de millones de estrellas y planetas nuevos, y también catapultar otros hacia fuera, para perderse en las profundidades del espacio intergaláctico.
Los astrónomos que usan los datos del Hubble de la NASA, el Telescopio Espacial ha detectado dos cúmulos de estrellas masivas que pueden estar en las primeras etapas de la fusión. Los racimos son de 170.000 años luz de distancia en la Gran Nube de Magallanes, una pequeña galaxia satélite de nuestra Vía Láctea. Lo que al principio se pensaba que era solo grupo, en el centro de la enorme región de formación estelar 30 Doradus (también conocida como la Nebulosa de la Tarántula) se ha encontrado que un compuesto de dos grupos que difieren en la edad de aproximadamente un millón de años.
Las dos Galaxias Irregulares que son satélites de la Vía Láctea, y, cuyo destino futuro es fundirse con nuestra Galaxia, son fácilmente distinguibles a simple vista en el hemisferio Sur como parters separadas de la Vía Láctea. Se llaman así en honor del explorador portugués Fernando Magallanes (1480-1521), quien las descubrió durante su viaje alrededor del mundo. Se cree que ambas nubes orbitan en torno a nuestra Galaxia en un plano casi perpendicular a su disco, y que, como he dicho antes, finalmente caeran en espiral hacia ésta.
Los modernos Telescopios de la clase de 8-10 m permiten el estudio espectroscópico de las estrellas masivas que, de manera abundante, están presentes en ésta pequeña galaxia que, no por pequeña, deja de exhibir orgullosa una riqueza inmensa de materiales y nuevas estrellas de incríble fulgor y belleza.
Otra de las propiedades de esta pequeña galaxia es su elevada metalicidad que la hace rica en elementos complejos muy necesarios para la biología-química de la vida. La población de estrellas masivas aquí es abundante y nos habla de un futuro plagado de explosiones supernovas que sembraran el espacio circundante de materiales para nuevas estrellas y mundos. Las estrellas variables Azul Luminosa (LBV) no son aquí extrañas en esta galaxia que, no por pequeña es menos importante en nuestro Grupo Local.
Una curiosidad hallada en esta Galaxia es que se ha encontrado una estrella de luminosidad tan Alta que se sitúa por encima del limite de estabilidad conocido como limite de Eddintong (donde la presión de radiación iguala la Gravedad), y constituye por tanto un reto a la teoría. Ya sabeis que, estrellas masivas superiores a 120 masas solares, según la teoría no son posibles, ya que, serían destruidas por su propia radiación.
El cúmulo central de muchas galaxias (así pasa en la nuestra) contiene un gran número de estrellas masivas, por tanto jóvenes, formadas cerca del Agujero Negro Supermasivo que está, generalmente, en el centro de las grandes galaxias, y, cómo puede haber un episodio tal de formación de estrellas masivas en las cercanías de un Agujero Negro, es todavía una incognita. Más incognita puede resultar que, en una Galaxia pequeña como la de Magallanes, surjan estrellas masivas con tante intensidad y fuerza. En la Imagen de arriba podemos contemplar la exuberancia insultante de las azuladas estrellas OB con su inusitada fuerza de radiación ultravioleta que ioniza toda la región enmarcándola en un cuadro de suaves formas y colores que nos hace soñar.
La Pequeña Nube de Magallanes es un rico Laboratorio situado en el Espacio Interestelar que ha servido para que la Física asociada al desarrollo y evolución de Supervientos galácticos sean de una gran trascendencia para entender la formación y evolución de las galaxias. Allí, hemos podido saber que, brotes estelares violentos -mucho más de lo que podemos ver ahora- fueron muy frecuentes en el Universo en épocas pasadas. Sin embargo, y a pesar de su trascendencia, no conocemos en detalle la génesis de un starburst nuclear y tampoco su evolución.
Con todo esto quiero significar que, siendo muchos los avances logrados en el estudio de las galaxias y de las estrellas que allí se forman y nacen, aún nos queda un largo camino para el estudio y la observación, y, desde luego, este que hoy tenemos con nosotros, La Pequeña Nube de Magallanes, es un lugar privilegiado para que, con buenos aparatos, podamos avanzar en el saber del Universo.
Claro que existen otras galaxias más espectaculares que, como la que vemos arriba -comparable a la Vía Láctea-, aunque al verla nos pueda parece que esté aquí al lado, en realidad, esta galaxia espiral típica, conocida como Messier 66, se encuentra a más de 36 millones de años luz. Su tamaño es tan inmenso que es difícil de imaginar: 96.000 años luz de lado a lado, lo cual quiere decir que ese es el tiempo que se tardaría en cruzarla viajando a la velocidad de la luz: 300.000 kilómetros por segundo. Foto: NASA, ESA y el Hubble Heritage Team (STScI/AURA).
Hoy nos quedamos con las dos pequeñas galaxias: La Pequeña y la Gran Nube de Magallanes que, relativamente cercanas a nuestra Galaxia, parece que finalmente se unirán para formar un sólo conjunto mayor y, en el evento, se produciran cambios espectaculares que a todos nos gustaría ver… ¡Acierta distancia de seguridad!
El Universo amigos, siempre será, para nosotros, ¡Una maravilla!
emilio silvera