Oct
13
¡La curiosidad! Nos lleva al conocimiento de las cosas
por Emilio Silvera ~
Clasificado en Queriendo saber ~
Comments (0)
Poco tiempo después resultó evidente que existían otras subpartículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas. Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó rayos alfa, y denominó rayos beta a la emisión de electrones.
Los electrones volantes constitutivos de esta última radiación son, individualmente, partículas beta. Así mismo, se descubrió que los rayos alfa estaban formados por partículas, que fueron llamadas partículas alfa. Como ya sabemos, alfa y beta son las primeras letras del alfabeto griego y se escriben con los gráficos α y β.
Entretanto, el químico francés Paul Ulrico Villard descubría una tercera forma de emisión radiactiva, a la que dio el nombre de rayos gamma, es decir, la tercera letra del alfabeto griego (γ). Pronto se identificó como una radiación análoga a los rayos X, aunque de menor longitud de onda.
Mediante sus experimentos, Rutherford comprobó que un campo magnético desviaba las partículas alfa con mucho menos fuerza que las partículas beta. Por añadidura, las desviaba en dirección opuesta, lo cual significaba que la partícula alfa tenía una carga positiva, es decir, contraria a la negativa del electrón. La intensidad de tal desviación permitió calcular que la partícula alfa tenía como mínimo una masa dos veces mayor que la del hidrogenión, cuya carga positiva era la más pequeña conocida hasta entonces.
En 1.909, Rutherford pudo aislar las partículas alfa. Puso material radiactivo en un tubo de vidrio fino rodeado por vidrio grueso, e hizo el vacío entre ambas superficies. Las partículas alfa pudieron atravesar la pared fina, pero no la gruesa, lo que dio lugar a que las partículas quedaran aprisionadas entre ambas, y Rutherford recurrió entonces a la descarga eléctrica para excitar las partículas alfa, hasta llevarlas a la incandescencia. Entonces mostraron los rayos espectrales del helio.
Hay pruebas de que laspartículas alfa producidas por sustancias radiactivas en el suelo constituyen el origen del helio en los pozos de gas natural. Si la partícula alfa es helio, su masa debe ser cuatro veces mayor que la del hidrógeno. Ello significa que la carga positiva de éste último equivale a dos unidades, tomando como unidad la carga del hidrogenión.
Más tarde, Rutherford identificó otra partícula positiva en el átomo. A decir verdad, había sido detectada y reconocida ya muchos años antes. En 1.886, el físico alemán Eugen Goldstein, empleando un tubo catódico con un cátodo perforado, descubrió una nueva radiación que fluía por los orificios del cátodo en dirección opuesta a la de los rayos catódicos. La denominó rayos canales.
Part of Astronomy that study physical and chemical characteristics of heavenly bodies. Astrophysics is the most important part of Astronomy at the present time owing to advance of modern physics. Doppler- Fizeau´s effect, Zeeman´s effect, quantum theories and thermonuclear reactions applied to study of heavenly bodies have permitted to discover the solar magnetic field, study stellar radiations and their processes of nuclear fusion, and determine radial velocity of stars, etc. Electromagnetic radiation of heavenly bodies permits to make spectrum analysis of themselves, and they are the principal fountain of information in this part of Astronomy
En 1.902, esta radiación sirvió para detectar por vez primera el efecto Doppler-Fizeau respecto a las ondas luminosas de origen terrestre. El físico alemán de nombre Johannes Stara orientó un espectroscopio de tal forma que los rayos cayeron sobre éste, revelando la desviación hacia el violeta. Por estos trabajos se le otorgó el premio Nobel de Física en 1.919.
Puesto que los rayos canales se mueven en dirección opuesta a los rayos catódicos de carga negativa, Thomson propuso que se diera a esta radiación el nombre de rayos positivos. Entonces se comprobó que las partículas de rayos positivos podían atravesar fácilmente la materia. De aquí que fuesen considerados, por su volumen, mucho más pequeños que los iones corrientes o átomos. La desviación determinada, en su caso, por un campo magnético, puso de relieve que la más ínfima de estas partículas tenía carga y masa similares a los del hidrogenión, suponiendo que este ión contuviese la misma unidad posible de carga positiva.
Por consiguiente se dedujo que la partícula del rayo positivo era la partícula positiva elemental, o sea, el elemento contrapuesto al electrón; Rutherford lo llamó protón (del neutro griego proton, “lo primero”).
Desde luego, el protón y el electrón llevan cargas eléctricas iguales, aunque opuestas; ahora bien, la masa del protón, referida al electrón, es 1.836 veces mayor (como señalo en el gráfico anterior).
Parecía probable pues que el átomo estuviese compuesto por protones y electrones, cuyas cargas se equilibraran entre sí. También parecía claro que los protones se hallaban en el interior del átomo y no se desprendían, como ocurría fácilmente con los electrones. Pero entonces se planteó el gran interrogante: ¿cuál era la estructura de esas partículas en el átomo?
El núcleo atómico
El propio Rutherford empezó a vislumbrar la respuesta. Entre 1.906 y 1.908 (hace ahora un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos. En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado. Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido. Rutherford supuso que aquella “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad desviaban los proyectiles que acertaban a chocar contra él. Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica.
Era lógico suponer, pues, que los protones constituían ese núcleo duro. Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo).
En 1.908 se concedió a Rutherford el premio Nobel de Química por su extraordinaria labor de investigación sobre la naturaleza de la materia. Él fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.
Desde entonces se pueden describir con términos más concretos los átomos específicos y sus diversos comportamientos. Por ejemplo, el átomo de hidrógeno posee un solo electrón. Si se elimina, el protón restante se asocia inmediatamente a alguna molécula vecina; y cuando el núcleo desnudo de hidrógeno no encuentra por este medio un electrón que participe, actúa como un protón (es decir, una partícula subatómica), lo cual le permite penetrar en la materia y reaccionar con otros núcleos si conserva la suficiente energía.
El helio, que posee dos electrones, no cede uno con tanta facilidad. Sus dos electrones forman un caparazón hermético, por lo cual el átomo es inerte. No obstante, si se despoja al helio de ambos electrones, se convierte en una partícula alfa, es decir, una partícula subatómica portadora de dos unidades de carga positiva.
Con tres electrones, el litio es el elemento sólido más ligero
Hay un tercer elemento, el litio, cuyo átomo tiene tres electrones. Si se despoja de uno o dos, se transforma en ión, y si pierde los tres, queda reducida a un núcleo desnudo, con una carga positiva de tres unidades.
Las unidades de carga positiva en el núcleo atómico deben ser numéricamente idénticas a los electrones que contiene por norma, pues el átomo suele ser un cuerpo neutro, y esta igualdad de lo positivo con lo negativo es el equilibrio. De hecho, los números atómicos de sus elementos se basan en sus unidades de carga positiva, no en las de carga negativa, porque resulta fácil hacer variar el número de electrones atómicos dentro de la formación iónica, pero en cambio se encuentran grandes dificultades si se desea alterar el número de sus protones.
Apenas esbozado este esquema de la construcción atómica, surgieron nuevos enigmas. El número de unidades con carga positiva en un núcleo no equilibró, en ningún caso, el peso nuclear ni la masa, exceptuando el caso del átomo de hidrógeno. Para citar un ejemplo, se averiguó que el núcleo de helio tenía una carga positiva dos veces mayor que la del núcleo de hidrógeno; pero como ya se sabía, su masa era cuatro veces mayor que la de este último. Y la situación empeoró progresivamente a medida que se descendía por la tabla de elementos, e incluso cuando se alcanzó el uranio, se encontró un núcleo con una masa igual a 238 protones, pero una carga que equivalía sólo a 92.
¿Cómo era posible que un núcleo que contenía cuatro protones (según se suponía el núcleo de helio) tuviera sólo dos unidades de carga positiva? Según la más simple y primera conjetura emitida, la presencia en el núcleo de partículas cargadas negativamente y con peso despreciable neutralizaba dos unidades de carga. Como es natural, se pensó también en el electrón. Se podría componer el rompecabezas si se suponía que en núcleo de helio estaba integrado por cuatro protones y dos electrones neutralizadores, lo cual deja libre una carga positiva neta de dos, y así sucesivamente, hasta llegar al uranio, cuyo núcleo tendría, pues, 238 protones y 146 electrones, con 92 unidades libres de carga positiva. El hecho de que los núcleos radiactivos emitieran electrones (según se había comprobado ya, por ejemplo, en el caso de las partículas beta), reforzó esta idea general. Dicha teoría prevaleció durante más de una década, hasta que por caminos indirectos, llegó una respuesta mejor como resultado de otras investigaciones.
Pero entre tanto se habían presentado algunas objeciones rigurosas contra dicha hipótesis. Por lo pronto, si el núcleo estaba constituido esencialmente de protones, mientras que los ligeros electrones no aportaban prácticamente ninguna contribución a la masa, ¿cómo se explicaba que las masas relativas de varios núcleos no estuvieran representadas por número enteros? Según los pesos atómicos conocidos, el núcleo del átomo cloro, por ejemplo, tenía una masa 35’5 veces mayor que la del núcleo de hidrógeno. ¿Acaso significaba esto que contenía 35’5 protones? Ningún científico (ni entonces ni ahora) podía aceptar la existencia de medio protón.
Este singular interrogante encontró una respuesta incluso antes de solventar el problema principal, y ello dio lugar a una interesante historia.
Isótopos; construcción de bloques uniforme,
Allá por 1.816, el físico inglés William Prout había insinuado ya que el átomo de hidrógeno debía entrar en la constitución de todos los átomos. Con el tiempo se fueron desvelando los pesos atómicos, y la teoría de Prout quedó arrinconada, pues se comprobó que muchos elementos tenían pesos fraccionarios (para lo cual se tomó el oxígeno, tipificado al 16). El cloro, según dije antes, tiene un peso atómico aproximado de 35’5, o para ser exactos, 35’457. otros ejemplos son el antimonio, con un peso atómico de 121’75, el galio con 137’34, el boro con 10’811 y el cadmio con 112’40.
Hacia principios de siglo se hizo una serie de observaciones desconcertantes, que condujeron al esclarecimiento. El inglés William Crookes (el del tubo Crookes) logró disociar del uranio una sustancia cuya ínfima cantidad resultó ser mucho más radiactiva que el propio uranio. Apoyándose en su experimento, afirmó que el uranio no tenía radiactividad, y que ésta procedía exclusivamente de dicha impureza, que él denominó uranio X. Por otra parte, Henri Becquerel descubrió que el uranio purificado y ligeramente radiactivo adquiría mayor radiactividad con el tiempo, por causas desconocidas. Si se deja reposar durante algún tiempo, se podía extraer de él repetidas veces uranio activo X. Para decirlo de otra manera, por su propia radiactividad, el uranio se convertía en el uranio X, más radiactivo aún.
Por entonces, Rutherford, a su vez, separó del torio un torio X muy radiactivo, y comprobó también que el torio seguía produciendo más torio X. Hacia aquellas fechas se sabía ya que el más famoso de los elementos radiactivos, el radio, emitía un gas radiactivo, denominado radón. Por tanto, Rutherford y su ayudante, el químico Frederick Soddy, dedujeron que durante la emisión de sus partículas los átomos radiactivos se transformaron en otras variedades de átomos radiactivos.
El material radiactivo llega a producir mutaciones.
Varios químicos que investigaron tales transformaciones lograron obtener un surtido muy variado de nuevas sustancias, a las que dieron nombres tales como radio A, radio B, mesotorio I, mesotorio II y actinio C. Luego los agruparon todos en tres series, de acuerdo con sus historiales atómicos. Una serie se originó del uranio disociado; otra del torio, y la tercera del actinio (si bien más tarde se encontró un predecesor del actinio, llamado protactinio).
En total se identificaron unos cuarenta miembros de esas series, y cada uno se distinguió por su peculiar esquema de radiación. Pero los productos finales de las tres series fueron idénticos: en último término, todas las cadenas de sustancias conducían al mismo elemento, el plomo.
Ahora bien, esas cuarenta sustancias no podían ser, sin excepción, elementos disociados. Entre el uranio (92) y el plomo (82) había sólo diez lugares en la tabla periódica, y todos ellos, salvo dos, pertenecían a elementos conocidos.
Hay que huir de los desechos radiactivos que causan la actividad del hombre
En realidad, los químicos descubrieron que aunque las sustancias diferían entre sí por su radiactividad, algunas tenían propiedades químicas idénticas. Por ejemplo, ya en 1.907 los químicos americanos Herbert Newby McCoy y W. H. Ross descubrieron que el radiotorio (uno entre los varios productos de la desintegración del torio) mostraba el mismo comportamiento químico que el torio, y el radio D, el mismo que el plomo, tanto que a veces era llamado radioplomo. De todo lo cual se infirió que tales sustancias eran en realidad variedades de mismo elemento: el radiotorio, una forma de torio; el radioplomo, un miembro de una familia de plomos; y así sucesivamente.
En 1.913, Soddy esclareció esta idea y le dio más amplitud. Demostró que cuando un átomo emitía una partícula alfa, se transformaba en un elemento que ocupaba dos lugares más abajo en la lista de elementos, y que cuando emitía una partícula beta, ocupaba, después de su transformación, el lugar inmediatamente superior. Con arreglo a tal norma, el radiotorio descendía en la tabla hasta el lugar del torio, y lo mismo ocurría con las sustancias denominadas uranio X y uranio Y, es decir, que los tres serían variedades del elemento 90. Así mismo, el radio D, el radio B, el torio B y el actinio B compartirían el lugar del plomo como variedades del elemento 82.
Soddy dio el nombre de isótopos (del griego iso y topos, “el mismo lugar”) a todos los miembros de una familia de sustancias que ocupaban el mismo lugar en la tabla periódica. En 1.921 se le concedió el premio Nobel de Química.
El modelo protón–electrón del núcleo concordó perfectamente con la teoría de Soddy sobre los isótopos. Al retirar una partícula alfa de un núcleo, se reducía en dos unidades la carga positiva de dicho núcleo, exactamente lo que necesitaba para bajar dos lugares en la tabla periódica. Por otra parte, cuando el núcleo expulsaba un electrón (partícula beta), quedaba sin neutralizar un protón adicional, y ello incrementaba en una unidad la carga positiva del núcleo, lo cual era como agregar una unidad al número atómico, y por tanto, el elemento pasaba a ocupar la posición inmediatamente superior en la tabla periódica de los elementos. ¡Maravilloso!
¿Cómo se explica que cuando el torio se descompone en radiotorio después de sufrir no una, sino tres desintegraciones, el producto siga siendo torio? Pues bien, en este proceso el átomo de torio pierde una partícula alfa, luego una partícula beta, y más tarde una segunda partícula beta. Si aceptamos la teoría sobre el bloque constitutivo de los protones, ello significa que el átomo ha perdido cuatro electrones (dos de ellos contenidos presuntamente en la partícula alfa) y cuatro protones. (La situación actual difiere bastante de este cuadro, aunque en cierto modo, esto no afecta al resultado).
El núcleo de torio constaba inicialmente (según se suponía) de 232 protones y 142 electrones. Al haber perdido cuatro protones y otros cuatro electrones, quedaba reducido a 228 protones y 138 electrones. No obstante, conservaba todavía el número atómico 90, es decir, el mismo de antes.
El torio en estado natural
Así pues, el radiotorio, a semejanza del torio, posee 90 electrones planetarios, que giran alrededor del núcleo. Puesto que las propiedades químicas de un átomo están sujetas al número de sus electrones planetarios, el torio y el radiotorio tienen el mismo comportamiento químico, sea cual fuere su diferencia en peso atómico (232 y 228 respectivamente).
Los isótopos de un elemento se identifican por su peso atómico, o número másico. Así, el torio corriente se denomina torio 232, y el radiotorio, torio 228. Los isótopos radiactivos del plomo se distinguen también por estas denominaciones: plomo 210 (radio D), plomo 214 (radio B), plomo 212 (torio B) y plomo 211 (actinio B).
Se descubrió que la noción de isótopo podía aplicarse indistintamente tanto a los elementos estables como a los radiactivos. Por ejemplo, se comprobó que las tres series radiactivas anteriormente mencionadas terminaban en tres formas distintas de plomo. La serie del uranio acababa en plomo 206, la del torio en plomo 208 y la del actinio en plomo 207. cada uno de estos era un isótopo estable y corriente del plomo, pero los tres plomos diferían por su peso atómico.
Mediante un dispositivo inventado por cierto ayudante de J. J. Thomson, llamado Francis William Aston, se demostró la existencia de los isótopos estables. En 1.919, Thomson, empleando la versión primitiva de aquel artilugio, demostró que el neón estaba constituido por dos variedades de átomos: una cuyo número de masa era 20, y otra con 22. El neón 20 era el isótopo común; el neón 22 lo acompañaba en la proporción de un átomo cada diez. Más tarde se descubrió un tercer isótopo, el neón 21, cuyo porcentaje en el neón atmosférico era de un átomo por cada 400.
distintos isótopos
Entonces fue posible, al fin, razonar el peso atómico fraccionario de los elementos. El peso atómico del neón (20, 183) representaba el peso conjunto de los tres isótopos, de pesos diferentes, que integraban el elemento en su estado natural. Cada átomo individual tenía un número másico entero, pero el promedio de sus masas (el peso atómico) era un número fraccionario.
Aston procedió a mostrar que varios elementos estables comunes eran, en realidad, mezclas de isótopos. Descubrió que el cloro, con un peso atómico fraccionario de 35’453, estaba constituido por el cloro 35 y el cloro 37, en la proporción de cuatro a uno. En 1.922 se le otorgó el premio Nobel de Química.
En el discurso pronunciado al recibir el premio, Aston predijo la posibilidad de aprovechar la energía almacenada en el núcleo atómico, vislumbrando ya las futuras y nefastas bombas y centrales nucleares. Allá por 1.935, el físico canadiense Arthur Jeffrey Dempster empleó el instrumento de Aston para avanzar sensiblemente en esa dirección; demostró que 993 de cada 1.000 átomos de uranio eran de uranio 238 (no válido para combustible nuclear). Y muy pronto se haría evidente el profundo significado de tal descubrimiento.
Sí, sólo el 7 por 1000 del uranio existente en la Tierra, es combustible nuclear, es decir, Uranio 235. El resto, es Uranio 238 que hay que reciclarlo en un Acelerador Generador para convertirlo en Plutonio 239 que nos sirva como combustible nuclaer de fisión.
Así, después de estar siguiendo huellas falsas durantes un siglo, se reivindicó definitivamente la teoría de Prout. Los elementos estaban constituidos por bloques estructurales uniformes; si no átomos de hidrógeno, sí, por lo menos, unidades con masa de hidrógeno.
¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?
emilio silvera
Oct
12
¿Qué hacemos aquí? ¿Por qué nos comportamos así?
por Emilio Silvera ~
Clasificado en ¡Qué mundo este nuestro! ~
Comments (1)
Si miramos hacia atrás en el Tiempo, si repasamos la Historia de la Humanidad, podremos ver que a lo largo de toda ella los seres humanos hemos tenido que trabajar duramente para poder satisfacer nuestras necesidades materiales. En los primeros milenios de esa larga andadura, no éramos muy conscientes de ello, simplemente actuábamos guiados por la necesidad y la intuición, el instinto. Sin embargo, pasaron los años y evolucionamos hasta el punto de que fuímos conscientes de que, además de buscar soluciones a los problemas, había “algo más”.
El Tiempo inexorable pasó y las mentes de aquellos seres primitivos crecieron para llegar a ser conscientes de que, “ese algo más” estaba presente en ellos y era diferente a la necesidad de comer o dormir, o, de cualquiera de las funciones físicas que el cuerpo les exigia. ¿Que podría ser “ese algo más” que, desde entonces ha sido inseparable compañero de los pensamientos del ser Humano. Esa consciencia nos llevó a preguntarnos por el sentido de la Vida. ¿Quiénes éramos? ¿Quién soy como individuo?
El hombre filósofo ha pensado en ello profundamente y, aunque ha dado algunas respuestas, ninguna ha llegado a ser satisfactoria ni ha llenado ese vacío que todos llevamos dentro, en el que se esconde un “ente” desconocido y misterioso que no sabemos quien es, y, lo paradógico es que resulta que somos nosotros mismos, nuestro YO desconocido que, residiendo en nuestro interior, no se deja “ver” del todo y esconde celosamente secretos que, siendo nuestros, no podemos desvelar.
Antes habiendo nombrado el largo camino recorrido por la Humanidad, en el camino, hemos tenido que soportar grandes sufrimientos y dolor, algunos esporádicos momentos de efímera felicidad, nos hemos topado con el bien y con el mal y, también, hemos podido conocer dónde está la inteligencia y la más ciega ignorancia, hemos sabido de la irreversibilidad de la muerte como último viaje y, sin embargo, algo nos dice que puede haber mucho más.
La Ciencia nos dice que más allá de la muerte no habrá nada y que, lo que somos ha quedado aquí, plasmado en nuestros descendientes que seguirán el camino con las experiencias pasadas, la historia aprendida, lo que de sus propias vidas puedan obtener y al compás que marquen los avances tecnológicos de su tiempo. Tendrán, como todos hemos tenido, momento felices y amargos, y, para conseguir objetivos la herramienta será el duro trabajo y la inteligencia que cada cual posea.
Preguntar dónde reside la auténtica felicidad no puede dar como resultado una respuesta general, toda vez que, cada cual, tiene su propio concepto de lo que es la felicidad y, lo que para unos es más que suficiente, para otros no es nada. Lo cierto es que, según los grandes maestros filósofos del mundo, la felicidad reside en las pequeñas cosas: Esa sonrisa del niño, ver a la familia unidad y en armonía, conseguir los logros propuestos, una taza de café en buena compañía, una caricia, una mirada… ¡Son tantas las pequeñas cosas que nos proporcionan felicidad!
Si miramos en el pasado, algunas de las respuestas que buscamos podríamos encontrar, pero…
Si miramos el futuro, nada de lo que buscamos estaría allí
Debemos mirar mejor… ¡Dentro de nosotros mismos! Que siendo como somos Naturaleza, tenemos todas las respuestas y, para llegar a ellas tendremos que avanzar en la evolución del Ser que llevamos dentro y que, estándo conectado con el Universo, forma parte de él. En nuestras mentes está escrito todo aquello que queremos y necesitamos saber: ¿Quiénes somos? ¿Hacia donde vamos? ¿Si la muerte es el último camino o hay más después de ella? ?Por qué tenemos que sufrir dolor? ¿Si vale la pena tan largo y doloroso recorrido? Y, sobre todo, podríamos saber si alguna vez, finalizará ese largo proceso de humanización que nos hace Ser y Sentir, nos posibilita ver más allá de lo que nuestros ojos desnudos nos pueden permitir.
Particularmente tengo la impresión de que en pleno siglo XXI, la Humanidad está más perdida que la Atlantida, aquella mítica ciudad, aquel Imperio de sabiduría y riqueza que nunca pudimos encontrar y que, según las leyendas, nos hablan de grandes Tesoros y de grandes conocimientos. Se dice:
“Que era una tierra ubérrima, bendecida por una vegetación exuberante y por la existencia de valiosos yacimientos minerales, entre ellos los de plata y de oro. Su pueblo gozaba de un alto nivel científico y cultural. En el mismo de ese reino isleño, sobre la cima de una pequeña colina, se ataban un palacio y un templo, en torno a los cuales se extendía la gran dad, que media 19 kilómetros de largo. Alrededor de la colina, un amplio o —en realidad, un canal— permitía el paso de barcos de vela. Alrededor de urbe, otras vías de agua formaban círculos concéntricos; el canal que rodeada la ciudadela se comunicaba con el mar abierto a través de un amplio sistema de muelles y puertos, que exportaban los valiosos productos del país a todo mundo conocido entonces. “
Si miramos a nuestro alrededor, si vemos lo que tenekos que estar soportando, si nos fijamos en la involución que a pesar de todo estamos padeciendo, podríamos sentir nostalgia de aquellos Tiempos pasados en los que, la Humanidad, a pesar de no conocer la Mecánica cuántica ni la Relatividad General, no tenía problemas de paro ni tampoco se producían desahucios que, de alguna manera, vienen a denigrarnos y resulta ser la mayor humillación por la que pasar pueda un ser Humano. No tener un trabajo es denigrante, no tener una Vivienda digna es bochornoso. ¿Cómo hemos podido retroceder tanto?
No debemos consentir que nos quiten la dignidad, ese don tan preciado del Ser Humano que la hace no avergonzarse de sí mismo. Un hombre tiene que poder mantener a su familia y ofrecerle lo más básico: Casa, vestido y alimento. El trabajo del hombre lo dignifica y hace posible que se siente satisfecho de sí mismo, sin importarle el esfuerzo y sacrificio que para lograrlo tenga que hacer. Es su realización como persona.
En palabras de Max Scheler:
“En la Historia de más de diez mil años somos nosotros la primera época en la que el hombre se ha convertido para sí mismo en radical y universalmente en un ser problematico: el hombre ya bo sabe lo que lo es y se da cuenta de que no lo sabe”
Claro que, lo cierto es que no lo hemos sabido nunca y, en algunos momentos de lucides hemos podido tener algún atisbo de “conocernos” pero, como la ráfaga efímera de luz que viaja por el espacio, tan rápido como vienen se van, esos pensamientos que no podemos retener para poder conquistar esa sabiduría necesaria que nos lleve a comprender quiénes somos y hacia donde vamos, toda vez que, de dónde venimos… ¡Tenemos una buena idea!
El hombre hace ya mucho tiempo que se planteó la pregunta sobre el sentido de la Vida
Civilizaciones muu antiguas Sumerios, Babilónicos, Egipcios, Hindúes, Chinos, Persas, Griegos y otros que llegaron después ya tenían inplantada en sus Sociedades una amplia escuela filosófica en la que esa pregunta: ¡El Sentido de la Vida!, siempre estuvo presente y todos los grandes pensadores la quisieraon responder sin lograrlo… ¡del todo!
La Sociedad Científico-Técnica que tenemos hoy, está llena de ambigüedades debido a que el Ser Humano no ha podido alcanzar -todavía- ese nivel de conocimiento que sería necesario para dominar todos los sercretos de la Naturaleza. El Universo es muy grande y vasto en su propia concepción, no podemos llegar a sus límites y, de la misma manera, estamos confinados en un pequño mundo desde el que tratamos de saber lo que pueda haber más allá y, para ello, nos valemos de “sentidos” artificiales” como microsopios y telescopios que nos hablen de lo pequeño y de lo grande pero, seguimos muy retrasados en el conocimiento mayor: ¡Nosotros mismos! Y, la Cienda que camina muy poco a poco, por el momento no nos ha podido decir ni quiénes somos ni hacia donde vamos.
Si bien la crisis de Identidad aparece con más fuerza y presencia durante la adolescencia, resurge también en distintos momentos de la vida de un individuo. La inestabilidad emocional que acompaña este momento vital, es una de sus principales características. Quizás por cuestiones que quedaron pendientes en la infancia o en la etapa puberal o que se presentaron difusas a lo largo de la vida, la construcción de un Yo débil y sin raíces, provoca la imposibilidad de crear relaciones sanas y positivas para el individuo. Sin embargo, dicha crisis identitaria puede tener su origen también en situaciones como la que hoy estamos viviendo en la que, el hombre, llega a dudar de sí mismo al verse abocado a una situación límite en la que, impotente, contempla como su vida de desmorona a su alredor.
Debemos reaccionar, y, salir de la actual situación en la que nos metieron los políticos de turno y los muchos desaprensivos que forman la Sociedad: Me refiero a Banqueros, Sindicatos y Patronales que, junto a otras Instituciones sólo han supuesto la ruina de todos los demás para su beneficio propio. Esa es, amigos míos, la realidad que hoy tenemos en nuestro tecnológico mundo.
¿Qué futuro le espera a la Juventud? ¿Por qué no pagan los cumplables? Y, si por casualiodad, aparece una Jueza Justiciera… ¡La quieren linchar!
emilio silvera
Oct
12
Nanofotónica: luz + nanopartículas = Futuro tecnológico
por Emilio Silvera ~
Clasificado en El futuro tecnológico ~
Comments (0)
Han pasado ya casi cincuenta años desde que Richard Feynman dictara su famosa plática There is plenty of room at the bottom: An invitation to enter a new field of physics (Hay suficiente espacio en el fondo: Una invitación a entrar en un nuevo campo en la Física). En ella estableció que las leyes de la Física no impiden manipular las cosas átomo a átomo; –es algo que se puede hacer pero no se ha hecho debido a que somos demasiado grandes para hacerlo-.
Desde entonces se ha estado buscando la manera de poder diseñar los materiales átomo a átomo. De hecho, los materiales nanoestructurados ya han sido utilizados en aplicaciones prácticas, siendo importantes en nuestra vida diaria. El color rojo de los vitrales en las catedrales góticas de Europa se obtenía utilizando nanopartículas de oro; la película fotográfica utiliza nanopartículas de plata; los bloqueadores solares utilizan nanopartículas de dióxido de titanio y de zinc como parte activa. El primer caso es una aplicación del efecto nano del oro y es quizás la primera aplicación de la nanotecnología. Quizás el mayor desarrollo de las nanoestructuras se dio con el descubrimiento de la microscopia de fuerza atómica ya que con esta se podía manipular a los átomos o partículas muy pequeñas. Hoy día, la investigación en el campo de los materiales nanoestructurados se ha multiplicado y sus aplicaciones abarcan todas las disciplinas convirtiendo a la nanotecnología en un campo interdisciplinario. Muchos países han implementado programas especiales para la investigación en este campo invirtiendo grandes cantidades de dinero. La apuesta puede ser de alto riesgo, pero el premio promete ser enorme.
Hoy día se estima el mercado de la nanotecnología en cientos de billones de dólares. Nuestro país también ha apoyado esta iniciativa aunque en menor proporción. De hecho la nanotecnología no es una prioridad dentro de nuestro sistema de investigación, no hay programas especiales de apoyo económico en este tópico y se compite por igual con todas las áreas. Con pocos recursos económicos se tiene poca infraestructura y en general grupos pequeños lo que dificulta la capacidad para competir. Aún con estas limitantes, se han obtenido excelentes resultados y hay grupos en nuestro país que cuentan con reconocimiento internacional.
Materiales nanoestructurados y nanotecnología
Los materiales nanoestructurados (NEMs, por siglas en inglés) han despertado rápidamente un gran interés debido a la diversidad de sus aplicaciones. De acuerdo a la definición más aceptada, los materiales nanoestructurados son aquellos en los que por lo menos una de sus
dimensiones se encuentra en el rango de 1-100 nm. Es decir, los NEMs son tres órdenes de magnitud más pequeños que los MEMS (sistemas microelectromecánicos, por sus siglas en inglés), e incluyen nanopartículas, nanocristales, nanoalambres, nanobarras, nanotubos, nanofibras, nanoespumas, etc. Los NEMs pueden ser semiconductores, dieléctricos, metales, orgánicos, inorgánicos, aleaciones, biomateriales, biomoléculas, oligómeros, polímeros, etc.
Nos sorprendería saber en qué lugares están presentes los cristales fotónicos con las nuevas técnicas alcanzadas en la nanotecnología
Aunque también existen sistemas nanoestructurados de dimensiones mayores como son los cristales fotónicos. En el rango de nanómetros, los materiales presentan propiedades ópticas, eléctricas, magnéticas y mecánicas únicas y totalmente diferentes de los materiales en el rango de los micrómetros o milímetros llamados también materiales en bulto.
Para tener una idea de que tan pequeño es un nanómetro podemos mencionar que un milímetro tiene un millón de nanómetros; el diámetro del cabello humano mide entre 10,000 y 50,000 nanómetros; los glóbulos rojos y blancos miden entre 2 y 5 nanómetros mientras que el ADN mide 2.5 nanómetros.
Los superátomos de silicio pueden formar, por ejemplo, nanotubos. Además, se les puede agregar un metal de transición con el objetivo de cambiar sus propiedades eléctricas, lo que se denomina dopaje. Cuando el superátomo es de tipo anión (tiene carga eléctrica negativa, le sobran electrones), “se le dopa con un metal alcalino, como el potasio”, que tiene un solo electrón en su nivel energético más externo. Del mismo modo, cuando son cationes (con carga negativa, al perder electrones) se les dopa con un metal halógeno, que necesita un electrón más para completar su último nivel energético.
Las propiedades de los NEMs son dominadas por los efectos de superficie mientras que las de los materiales en bulto son debidas a un efecto de volumen. La tecnología para su producción y uso se ha convirtiendo en una industria muy poderosa: la nanotecnología. La nanotecnología es la ciencia e ingeniería de producir materiales o estructuras funcionales de unos cuantos nanómetros. Es la tecnología del futuro con la cual se desarrollarán los nuevos materiales y dispositivos. Las aplicaciones son sorprendentes así como variadas, por ejemplo, la industria optoelectrónica y fotónica, biomedicina, sensores, celdas solares y de combustible, catálisis, memorias ópticas, procesadores de computadoras, fotodetectores, herramientas de corte, industria automotriz y aeronáutica, moduladores e interruptores, cosméticos, etc. Aunque todas las aplicaciones son de gran interés, sin duda alguna las aplicaciones en sistemas biológicos son las más sobresalientes. Especialmente las aplicaciones de las propiedades ópticas de los sistemas nanoestructurados.
La Tecnología fundamental del siglo XXI: Nano Tecnología
Uno de sus apartados es, la Nanofotónica
Esas nuevas formas, la nanotecnología, entrará en el “universo” de la mecánica cuántica, en el mundo infinitesimal, y, se lograrán cosas que ahora, serían impensables. Posiblemente, la primera visita que hagamos a un mundo habitado por otros seres, estará tripulada por seres nanotecnológicos que, al igual que la misma nave, tengan medidas tan pequeñas que serán imposibles de observar y, sin embargo, estarán dotadas de adelantos tales que, podrán medir, evaluar, estudiar, captar imágenes, enviar datos por medios ahora desconocidos, y, en fin, serán las avanzadillas de lo que irá después, la visita de humanos a otros mundos.
La nanofotónica es la fusión de la nanotecnología y la fotónica. Es un campo multidisciplinario que estudia las propiedades ópticas de los sistemas nanoestructurados y la interacción luzmateria a nivel nanoscópico. Ya mencionamos que las propiedades ópticas de las nanopartículas son dominadas por los efectos de superficie. Así, controlando el tamaño de las nanopartículas o nanoestructuras podemos controlar o amplificar ciertas propiedades de los sistemas bajo estudio. En general, las nanoestructuras pueden ser de tres tipos, semiconductoras, dieléctricas y metálicas.
La Nanotecnología marcará nuestro futuro. De ella partirán las nuevas ideas e instrumentos, los nuevos modos de construir lo que queda por venir, nuevas maneras de sondear el espacio “infinito”, de curar enfermedades, de sustituir órganos vitales, de construir robots.
Curiosamente, existe una creencia bastante arraigada en amplios sectores de la comunidad científica de que la fotónica (conjunto de tecnologías relacionadas con la luz) es un campo que cae fuera del universo de la nanotecnología. La creencia se apoya en el clásico criterio de Rayleigh de que la resolución espacial de un sistema óptico está limitada por la longitud de onda de la luz (≈ 500 nm), y por ello es próxima al micrómetro, muy lejos de los requisitos de la nanotecnología.
Yo, por mi parte, estimo que esta división es sin duda errónea, y hoy en día la fotónica está íntimamente implicada con la nanotecnología, e incluso se puede hablar propiamente de nanofotónica, de igual manera que se puede hablar de nanoelectrónica o de nanomagnetismo.
Cuando sepamos conectar de manera conveniente todas las disciplinas del sabe Humano… ¡Las cosas cambiaran!
Decía que: “En general, las nanoestructuras pueden ser de tres tipos, semiconductoras, dieléctricas y metálicas”. Cada una de ellas produce fenómenos de especial interés cuando interactúan con una señal óptica, pudiendo así ser aplicadas en diferentes campos. Un campo de especial interés es la biología.
El estudio de las propiedades luminiscentes de sistemas nanoestructurados en sistemas biológicos es el campo de estudio de la bionanofotónica. Especialmente trata sobre el estudio de sistemas nanoestructurados en aplicaciones biomédicas. Diferentes nanopartículas han sido propuestas para ser utilizadas en la detección de bajas concentraciones de diferentes elementos como células cancerigenas, virus, ADN, ARN, proteínas, etc. También han sido utilizadas para la entrega de medicamentos en forma dirigida y controlada así como para la destrucción de tumores cancerigenos. En la última década, los avances han sido sorprendentes pero aún hay mucho por hacer. En el CIO, durante los últimos 6 años hemos estado trabajando en la síntesis de nanopartículas y estudiado sus propiedades ópticas a fin de poder ser utilizadas en distintas aplicaciones.
Las propiedades luminescentes de nuestras nanopartículas son muy interesantes y prometen grandes oportunidades de aplicación en diferentes áreas.
Nanopartículas semiconductoras o puntos cuánticos
Los nanocristales semiconductores también llamados puntos cuánticos son nanoestructuras a base de materiales semiconductores inorgánicos y representan el grupo donde el efecto del tamaño es más evidente. El tamaño nano da lugar a lo que se conoce como confinamiento cuántico, que no es más que la localización de los electrones en un espacio bien definido, es como poner un electrón en una caja. Mientras que para tamaños mayores los electrones están no localizados. El confinamiento produce un ensanchamiento de la banda de energía prohibida del semiconductor así como la aparición de sub-bandas discretas en la banda de valencia y de conducción. Las dimensiones típicas oscilan entre uno y diez nanómetros.
Con frecuencia se les describe como átomos artificiales debido a que los electrones están dimensionalmente confinados como en un átomo y sólo se tiene niveles de energía discretos. Entre las nanoestructuras más estudiadas se encuentran las de CdSe/ZnS, CdSe/CdS, InP/ZnSe, CdTe/CdSe, entre otras. El resultado más vistoso de estas nanoestructuras es la capacidad para poder sintonizar la longitud de onda o color de la emisión.
Así, con un solo material y variando el tamaño de la nanopartícula es posible obtener múltiples colores o longitudes de onda de la señal emitida. Las aplicaciones son impresionantes y apuntan en todas las direcciones. Por ejemplo, podrían ser utilizados como colorantes inorgánicos sin problemas de degradación a diferencia de los colorantes orgánicos. También podrían ser utilizados en el diseño de los nuevos amplificadores ópticos de amplio ancho de banda tan importantes en los sistemas de comunicación óptica; en este caso cada nanopartícula con un diámetro determinado funcionaría como un amplificador, así el ancho de banda se determina con la selección adecuada de los diámetros de las partículas. O bien para la producción de fuentes de luz blanca mediante excitación con un LED u OLED o por electroluminiscencia. Quizás una de las aplicaciones que mayor atención ha recibido es en su uso como etiquetas fluorescentes con emisión en la región visible del espectro, para la detección de una gran variedad de compuestos entre ellas células cancerigenas. Las técnicas actuales no detectan bajas concentraciones de células cancerigenas o compuestos de interés, por lo que la técnica de detección de fluorescencia de nanopartículas es una gran promesa para la detección temprana de este mal, para así incrementar el éxito en el tratamiento. Dado el tamaño tan pequeño de los puntos cuánticos actualmente se intenta desarrollar nanoestructuras más complejas formadas por puntos cuánticos o nanocristales acomplejados con diferentes componentes que desempeñan distintas funciones, detección, entrega de medicamento dirigido, efecto de la terapia, etc. Es decir, se busca una nanoestructura inteligente con múltiples funciones. El problema que presentan los puntos cuánticos es que son poco estables ya que tienden a aglomerarse, además de que se excitan con una fuente de luz UV donde la mayoría de los compuestos que se pueden encontrar en interior del cuerpo humano emiten luz lo que significa pérdida de contraste en la imagen de la célula deseada.
Nanopartículas dieléctricas o nanocristales
Los nanocristales dieléctricos son óxidos que presentan una banda de energía prohibida muy ancha y como consecuencia requieren altas energías de bombeo o luz en el UV para obtener emisión que en general es débil, aunque cuando se combina en forma adecuadacon diversos componentes son excelentes emisores de luz debido a su eficiencia y alta estabilidad. Son excelentes matrices para soportar iones de tierras raras que son muy buenos emisores de luz. En este caso no se observan efectos de confinamiento debido a que los electrones se encuentran localizados en orbitales atómicos del ion activo. Sin embargo, la dinámica de los iones emisores de luz se ve afectada por la interacción a nivel nanoscópico lo que puede producir una mejora en la eficiencia de emisión.
Entre los nanocristales mas estudiados se encuentran algunos silicatos como Y2SiO5, la combinación nY2O3 + mAl2O3 que comprende puramente el óxido de itria, puramente el óxido de aluminio, cuando se combinan con n=3 y m=5 da lugar a la estructura cristalina mas utilizada en óptica para producir láseres conocida como YAG, o YAP para la combinación n=m=1 que corresponde a uno de los cristales mas sensibles a laradiación ionizante y que es utilizado para la detección de rayos X o rayos gama. El óxido de titanio (TiO2) y el óxido de zinc (ZnO) que se utilizan en los bloqueadores solares además de ser excelentes para los procesos de fotocatálisis, útiles en la reducción de contaminantes, para celdas solares y como bactericida.
Recientemente, hemos demostrado que el óxido de zirconio (ZrO2) combinado con otros elementos bloquea el rango completo de la luz ultravioleta, especialmente aquella región que produce el cáncer de piel. Este mismo nanocristal presenta excelente respuesta en la detección de radiación ionizante, UV, rayos X, gama, beta y alfa, tanto en tiempo real como en forma acumulada lo que sugiere buenas oportunidades para su uso en el diseño de dosímetros para la cuantificación de dosis recibidas.
Además, es excelente soporte para iones de tierras raras, con las cuales hemos obtenido luz visible (azul, verde y rojo) excitando con una fuente en el cercano infrarrojo. Ya que con esta fuente solo se excitan los nanocristales no hay emisión de fondo lo que mejora el contraste de las imágenes obtenidas. Estas características convierten a estos nanocristales en excelentes candidatos en aplicaciones biomédicas para la detección de diversos elementos a concentraciones bajas. La fabricación de estos nanocristales implica un tratamiento térmico para el proceso de oxidación lo que induce un tamaño de partícula grande. Se han reportado tamaños de partícula desde 10 a 90 nm.
Lo curioso es que en todo, siempre está la Luz presente
Muchas veces se obtienen cristales muy pequeños pero con poca eficiencia de emisión, el reto es obtener mayor eficiencia de emisión sin incrementar demasiado el diámetro de las nanopartículas. Tamaños promedios con los que se han obtenido excelente eficiencia de emisión son entre 40 y 60 nm.
Nano partículas metálicas, plasmones.
Las nanopartículas metálicas tienen la habilidad de esparcir y absorber la luz incidente. En este caso, los efectos en las propiedades ópticas respecto a su contraparte en bulto se derivan de los efectos electrodinámicos y de la modificación del ambiente dieléctrico. A escala nanométrica la frontera metaldieléctrico produce cambios considerables en las propiedades ópticas.
Como resultado de la interacción entre la nanopartícula metálica y la señal óptica se obtiene la oscilación colectiva de electrones de superficie lo que genera bandas de resonancia conocidas como plasmones localizados o plasmones de superficie localizados. La longitud de onda o color a la que se obtiene dicha resonancia se le conoce como banda de absorción del plasmón que depende tanto del tamaño como de la forma de la nanopartícula y es lo que da lugar a la diferente coloración observada. Las nanoestructuras metálicas más conocidas son partículas esféricas, barras y películas con núcleo dieléctrico. Aunque más recientemente se han reportado otras estructuras como cubos, triángulos, estrellas y ovoides. En todos los casos, la banda de resonancia se recorre hacia el cercano infrarrojo en comparación con las nanopartículas esféricas cuya banda esta centrada en la región verde del espectro.
Los plasmones producen en la interfase un campo eléctrico intensificado que a su vez intensifica varios procesos ópticos lineales y no lineales. El campo eléctrico producido es utilizado como una interfase sensible a las interacciones ópticas y se convierte en una poderosa herramienta para el monitoreo óptico y para la formación de imágenes ópticas
localizadas. Una de las aplicaciones bien establecidas es la espectroscopia Raman de superficie mejorada (SERS por sus siglas en inglés). En este caso el espectro Raman de un componente cercano a la superficie metálica se ve fuertemente amplificado. Se ha demostrado que es posible amplificar el campo hasta 11 000 veces más cuando las partículas presentan cierta aglomeración. Otros fenómenos que presentan amplificación son la espectroscopia infrarroja de superficie mejorada, espectroscopia de fluorescencia
y la espectroscopia de resonancia de plasmones de superficie. Todas estas técnicas son complementarias y son utilizadas en la detección de componentes químicos y bioquímicos a nivel de trazas.
Célula cancerígena
Células modificadas y célula cancerigena que la nanofotónica podrá modificar e incluso regenerar en el fiuturo.
Quizás un proyecto más ambicioso es el de poder detectar células cancerigenas a temprana edad de lo cual ya se han reportado importantes avances. En el CIO trabajamos con nanopartículas de oro y plata a fin de desarrollar sensores ópticos para la detección de diferentes compuestos a nivel de trazas y estamos aplicado exitosamente nanopartículas deoro en la detección de células cancerigenas.
En resumen, las nanoestructuras presentan propiedades ópticas únicas que no presentan su contraparte en bulto o de escala mayor. Éstas están siendo utilizadas para el desarrollo de la nueva generación de dispositivos optoelectrónicos y/o fotónicos. Las aplicaciones son muy variadas y abarcan muchos campos haciendo de la nanociencia y nanotecnología una área
multidisciplinaria. Especial atención recibe el uso de dichas propiedades en aplicaciones biomédicas para la detección a nivel de trazas de diversos agentes patógenos. El estudio de las propiedades ópticas de las nanoestructuras ha definido una nueva área conocida como nanofotónica.
¡El futuro está aquí!
emilio silvera
Oct
12
¡Los Elementos!
por Emilio Silvera ~
Clasificado en Alquimia estelar ~
Comments (6)
Ya he escrito en otras ocasiones sobre el gran astrofísico Fred Hoyle , que tenía un dominio de la física nuclear no superado entre los astrónomos, hombre de espíritu independiente, que por pura energía intelectual se había abierto camino desde los grises valles textiles del norte de Inglaterra hasta llegar a ser un distinguido profesor de Cambridgue. Hoyle era individualista hasta el punto de la iconoclasia, y tam combativo como si hubiese ganado luchando su título de sir. Sus clases eran carismáticas, con acento de clase obrera que parecía ahondar sus credenciales eruditas acumuladas, y era igualmente eficaz con la palabra escrita; publicaba penetrante artículos especializados, fascinantes obras de divulgación ciantífica y animadas narraciones de ciencia-ficción en la que encontraba una puerta de escape para exponer ideas avanzadas que, científicamente, no estaban contrastadas.
SIR FRED HOYLE
Su burla era temible y sus críticas de la teoría del big bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el big bang era una muralla de fuego, más allá de la cual la ciencia de la çepoca no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiermpo”. En aquel momento, no estaba falto de razón.
Oct
11
Retazos de historia
por Emilio Silvera ~
Clasificado en Curiosidades ~
Comments (0)
Icono conmemorativo del Primer Concilio de Nicea que se celebró en el año 325 en Nicea (actualmente Iznik), ciudad de Asia Menor, en el territorio de la actual Turquía, y de la que recibe el nombre por el que es conocido, Concilio de Nicea I. Fue convocado por el emperador Constantino I el Grande, por consejo del obispo San Osio de Córdoba.
Los cristianos calculaban la edad del mundo consultando las cronologías bíblicas de los nacimientos y muertes de los seres humanos, agregando los “engendrados”, como decían ellos. Este fue el método de Eusebio que presidió el Concilio de Nicea convocado por el emperador Constantino en 325 d. C. para definir la doctrina cristiana, y quien estableció que habían pasado 3.184 años entre Adan y Abraham; de san Agustin de Hipona, que calculó la fecha de la Creación en alrededor del 5500 a.C.; de Kepler, que la fechó en 3993 a.C.; y de Newton, que llegó a una fecha sólo cinco años anterior a la de Kepler. Su apoteosis llegó en el siglo XVII, cuando James Ussher, obispo de Armagh, Irlanda, llegó a la conclusión de que “el comienzo del tiempo… se produjo al comienzo de la noche que precedió al día 23 de octubre del año… 4004 a.C.”.
Pasado el tiempo, la exactitud de Ussher le convirtió en el blanco de las burlas de muchos eruditos modernos, pero, a pesar de todos sus absurdos, su enfoque -y, más en general, el enfoque cristiano de la historiografía- hizo más para estimular la investigación científica del pasado que el altanero pesimismo de los griegos. Al difundir la idea de que el universo tuvo un comienzo en erl tiempo y que, por lo tanto, la edad de la Tierra era finita y medible, los cronólogos cristianos montaron sin saberlo el escenario para la época de estudio científico de la cronología que siguió.
Georges Louis Leclerc, Conde de Buffon (Montbard, 7 de septiembre de 1707 – París, 16 de abril de 1788) fue un naturalista, botánico, matemático, biólogo, cosmólogo y escritor francés.
Claro que, la diferencia estaba en que los científicos no estudiaban las Escrituras, sino las piedras. Así fué como el naturalista que arriba podeis ver, expresaba el credo de los geólogos en 1778:
““Así como en la historia civil consultamos documentos, estudiamos medallones y desciframos antiguas inscripciones, a fin de establecer las épocas de las revoluciones humanas y fijar las fechas de los sucesos morales, así también en la historia natural debemos excavar los archivos del mundo, extraer antiguas reliquias de las entrañas de la tierra [y] reunir sus fragmentos… Este es el único modo de fijar ciertos puntos en la inmensidad del espacio, y colocar una serie de mojones en el camino eterno del tiempo.”
Abraham Gottlob Werner (científico alemán)
Entre los primeros que aprendieron a leer el lenguaje de las piedras estaban Abraham Gottlob, un geólo alemán, y William Smith, un inglés inspector de canales e ingeniero asesor que colaboró en la excavación del canal del carbón de Somersetshire en 1793, Werner observó que los mismos estratos podían hallarse en el mismo orden en lugares muy alejados unos de otros, lo cual indicaba que el mecanismo que los había formado había operado a gran escala. Esto implicaba que los estratos locales podían brindar elementos de juicio sobre cómo había cambiado el planeta como un todo. Smith, por su parte, observó que los estratos -dispuestos, según sus palabras, como “rebanadas de pan con mantequilla”- no sólo podían ser identificados por su composición total, sino también por las diversas clases de fósiles que contenían.
¿Son los fósiles un exponente universal de la evolución? ¿Cuál es el verdadero mensaje del registro estratigráfico de la tierra y de los fósiles incorporados en el mismo? El registro fósil podría ser la piedra de toque de la teoría de la evolución.
Grabado de la histórica monografía de William Smith, 1815, que dio impulso a la práctica de la correlación de estratos por los fósiles que contienen.
A partir de aquí la búsqueda de huellas del pasado se convirtió en una actividad desaforada y el registro fósil pronto empezó a ofrecer testimonio de seres que ya no se encontraban en el mundo actual. La ausencia de sus equivalentes vivos era un reto a los defensores de la versión bíblica de la historia, que afirmaba, basándose en las Escrituras, que todos los animales fueron creados al mismo tiempo y que ninguna especie se había extinguido desde entonces. A medida que pasaron los años se exploraron cada vez más profundamente las soledades del mundo y las listas de las especies que faltabn era cada vez más larga; George Cuvier, el zoólogo francés que fundó la ciencia de la paleontología, en 1801 había identificado veintitres especies de animales extinguidos en el registro fósil, y la palabra “extinguido” empezó a sonar como una campana que toca a muerto en la literatura científica y las salas universitarias. Ha seguido tocando a muerto desde entonces, y hoy se admite que el 99 por 100 de todas las especies que han vivído sobre la Tierra han desaparecido.
Casi igualmente problemática para los interpretes cristianos de la historia de la Tierra fue la desconcertante variedad de especies vivientes que los biólogos descubrían en sus laboratorios y los naturalistas al explorar las junglas de África, América del Sul y el sureste de Asia. Algunas, como los escarabajos subtropicales gigantes que mordieron al joven Darwin, eran dañinas; sus beneficios para la humanidad, para la que decía que Dios había hecho el mundo, no era evidente. Muchas eran las minúsculas que sólo podían ser detectadas con un microscopio; su papel en el plam de Dios no había sido previsto. Otras eran instintivamente inquietantes, y ninguna más que el orangután, cuyo nombre deriva de la voz malaya que significa “hombre salvaje”, y cuya mirada cálida yn casi íntima, al provenir de una especie muy cercana a la humana en la reserva genética de los primates, parecía burlarse de la pretensión de esta última de ser única.
Si se creía que ninguno de estos seres aparecía en las listas de pasajeros del Arca de Noé… ¿Qué hacían aquí? La ortodoxia religiosa se refugió temperalmente en el concepto de una “gran cadena del ser”. Éste sostenía que la jerarquía de los seres vivos, desde los más elementales microorganismos hasta los monos superiores y las grandes ballenas, habían sido creados por Dios simultáneamente, y que todos juntos formaban una maravillosa estructura, una montaña mágica, con los seres humanos en – o cerca de – su cúspide.
Es difícil sobrestimar la importancia de la gran cadena del ser en el pensamiento del siglo XVIII; figuraba en la estructura de la mayoría de las hipótesis científicas de la época. Pero la cadena no era más fuerte que su eslabón más débil; su mismo carácter completo era una prueba de la perfección de Dios y, por consiguiente, no podía haber ningún “eslabón perdido”. (El término adoptado luego por los evolucionistas proviene de aquí.) Como escribió John Locke:
“En todo el mundo corpóreo visible no vemos simas o abismos. Toda la escala descendente a partir de nosotros es muy gradual, es una serie continua que en cada paso difiere muy poco del anterior. Hay peces que tienen alas y no son extraños al aire, y hay algunos pájaros que son habitantes del agua, cuya sangre es tan fría como la de los peces… Cuando consideramos el poder y la sabiduría infinitos del Hacedor, tenemos razones para pensar que es propio de la magnifica armonía del universo, y al gran designio e infinita bondad de su arquitecto, que las especies de seres asciendan, en suaves transiciones, desde nosotros hacia su infinita perfección, como vemos que desdcienden gradualmente a partir de nosotros.”
Ellos reinaron en nuestro mundo durante unos 150 millones de años. Nosotros hemos llegado aquí, como aquel que dice, antes de ayer pero, “racionales” al fin y al cabo, queremos dolucidar todo lo que, desde los comienzos, pudo pasar y, para ello, el mejor camino será el de la ciencia, ya que, la religión, no puede emitir veredictos fehacientes y, en lugar de basarse en las pruebas, lo hace en la fe que, desde luego, no ofrece ninguna garantía de que lo que afirma, sea lo que en realidad se ajuste a la historia que buscamos saber. Ya sabeis, aquel obispo decía que… “el comienzo del tiempo… se produjo al comienzo de la noche que precedió al día 23 de octubre del año… 4004 a.C.”.
Bueno, no me río pero no por falta de ganas sino por respeto hacia la persona que emitió aquellas palabras y, en consideración al tiempo y al contexto donde las mismas fueron pronunciadas. Lo penoso es que ahora, después de pasados algunos siglos, existan personas que siguen erre que erre insistiendo en los mismos errores. Parece que el tiempo no pasa para ellos y se aferran a unos argumentos “divinos” de trasnochados pensamientos que, alejados de la realidad científica sólo nos pueden conducir hacia la confusión.
emilio silvera