jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Partículas! Sus particularidades

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Adentrarse en el universo de las partículas que componen los elementos de la Tabla Periódica, y en definitiva, la materia conocida, es verdaderamente fantástico”. Esos pequeños objetos que no podemos ver, de dimensiones infinitesimales, son, en definitiva, los componentes de todo lo que contemplamos a nuestro alrededor: Las montañas, ríos, Bosques, océanos, los más exoticos animales y, nosotros mismos, estamos hechos de Quarks y Leptones que, en nuestro caso, han podido evolucionar hasta llegar…¡A los pensamientos!

 

 

                los Quarks hasta los pensamientos

Estas dos familias de partículas conforman todo lo que podemos ver a nuestro alrededor, la materia del Universo y, si la “materia oscura” en realidad existe, no sabemos de qué pueda estar hecha y las clases de partículas que la puedan conformar. Habrá que esperar y, de , hablaremos de lo que conocemos.

       El matrimonio Jolit-Curie en el Laboratorio

Tan pronto como los Joliot-Curie crearon el aprimer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón.

Harold Urey, American chemist

                                                Harold Urey

En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

No todo ha sido bueno entonces pero, teníamos que avanzar en el saber y, la clave está en saber utilizar adecuadamente esos conocimientos.

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una por cada 6.000 partes de hidrógeno corriente. En 1.934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.

El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1.934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión a 20’5º K.

Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre, las matemáticas, ese lenguaje especial que hablamos cuando las palabras no pueden explicar las cosas, y, la única, que finalmente lo podrá explicar todo lo complejo que existe en la Naturaleza.

En Ginebra.- Físicos en el centro de investigación CERN están logrando colisiones de alta carga energética de partículas subatómicas en su intento por recrear las inmediatamente posteriores al Big Bang, el cual llevó al inicio del universo 13.700 millones de años atrás. Mucho se ha criticado al LHC y, sin embargo, es un gran paso adelante que nos posibilitará saber, es el Universo y, nos descubrirá algunos de sus secretos. Hará posible que avancemos en el conocimiento sobre de dónde venimos, cómo el universo temprano evolucionó, cómo tienen y adquieren su masa las partículas y, algunas cosas más.

Todo eso se logra mediante las colisiones de haces partículas que son lanzadas a velocidades relativistas y que, al chocar con otro lanzado en el sentido contrario, producen el efecto que arriba en la imagen podeis ver, es como recrear el de la creación, es decir, el big bang en miniatura. La materia se descompone en otras partículas más simples, se llega hasta las entrañas más profundas para poder estudiarla y saber.

La colisión de un quark (la esfera roja) un protón (la esfera naranja) con un gluon (la esfera verde) otro protón con espín opuesto. El espín está representado por las flechas azules alrededor de los protones y del quark. Los signos de interrogación azules alrededor del gluon representan la pregunta: ¿Están los gluones polarizados? Las partículas expulsadas de la colisión son una lluvia de quarks y un fotón (la esfera púrpura).

                                                        La escala de energía es la que marcará nuestro nivel de conocimiento del Universo

El Gran Colisionador de Hadrones (LHC), la mayor máquina del mundo en su , colisionó rayos de partículas a un récord de energía de 7 teraelectron voltios (TeV), tres veces y medio más rápido de lo conseguido anteriormente en un acelerador de partículas. Sin embargo, hasta que podamos llegar a la energía de Planck, para poder atisbar las cuerdas, falta mucho, muchísimo camino que recorrer…si finalmente, lo podemos lograr.

Una manera de ver la Naturaleza “por dentro” es hacer que haces de partículas choquen de manera violenta sí y nos enseñen de qué están hechas

Los científicos quieren creer que la naturaleza prefiere la economía en sus creaciones y que siempre parece evitar redundancias innecesarias al crear estructuras físicas, biológicas y químicas. La Naturaleza, siempre lleva su dinámica al ritmo más económico posible, no se produce absolutamente nada que sea superfluo, sino que, con lo estrictamente necesario, todo transcurre debe.

Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

Estadística Fermi-Dirac para las Fermiones. La estadística de Fermi-Dirac es la de contar estados de ocupación de forma estadística en un sistema de fermiones fermiones. Forma parte de la Mecánica Estadística. Y tiene aplicaciones sobre todo en la Física del sólido.

Hay también partículas cuya rotación, al duplicarse, resulta igual a un par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.

                                                      Estadística Bose-Einstein para los Bosones

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier de partículas puede ocupar un estado cuántico dado. Dichas partículas son bosones, que tienden a juntarse.

Los bosones tienen un momento angular nh/2π, donde n es 0 o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística. El teorema de la estadística del espín de la mecánica cuántica establece la relación directa entre el espín de una especie de partícula con la estadística que obedece. Fue demostrado por Fierz y Pauli en 1940, y requiere el formalismo de teoría cuántica de campos.

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula. Es de especial interés ya que los momentos magnéticos aparecen por el movimiento de cargas eléctricas, y puesto que el neutrón es una partícula neutra, ese magnético da indicios de la existencia de una substructura, es decir, que el neutrón está constituido por otras partículas, eléctricamente cargadas (¿Quarks?)

los-estrellamotos-desnudan-el-interior-de-las-estrellas-de-neutrones.jpg

  en las estrellas de neutrones está presente el campo magnético

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es: materia. La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra en todas partes (aunque no podamos verla).Y, la explicación más sencilla es que, el Neutrón tenga carga positiva y negativa que se anulan mutuamente, y, de esa manera, adquiere su propiedad neutra.

emilio silvera

¿Qué es la Luz?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:USA Antelope-Canyon.jpg

 

Aquí tenemos un rayo de luz solar dispersado por partículas de polvo en el canón del Antílope, en Estados Unidos. La luz es definida en cualquier diccionario de física como una forma de radiación electromagnética a la que el ojo humano es sensible y sobre la cual depende nuestra consciencia visual del universo y sus contenidos que son captados por nuestros ojos gracias a la existencia física de la luz. Hemos podido comprobar el comportamiento de la luz, sus características y sus manifestaciones. El estudio de la luz revela una serie de características y efectos al interactuar con la materia, que permiten desarrollar algunas teorías sobre su naturaleza.

File:Onde electromagnetique.svg

La luz presenta una naturaleza compleja: depende de cómo la observemos se manifestará como una onda o como una partícula. Estos dos estados no se excluyen, sino que son complementarios -dualidad onda – corpúsculo-.  Sin embargo, para obtener un estudio claro y conciso de su naturaleza, podemos clasificar los distintos fenómenos en los que participa según su interpretación teórica.

La teoría ondulatoria fue  desarrollada por Chistiaan Huygens, en ella se considera que la luz es una onda electromagnética, consistente en un campo eléctrico que varía en el tiempo generando a su vez un campo magnético y viceversa. La teoría corpuscular. La teoría corpuscular estudia la luz como si se tratase de un torrente de partículas sin carga y sin masa  llamadas fotones, capaces de transportar todas las formas de radiación electromagnética. Esta interpretación resurgió debido a que, la luz, en sus interacciones con la materia, intercambia energía sólo en cantidades discretas (múltiplos de un valor mínimo) de energía denominadas cuantos.  Este hecho es difícil de combinar con la idea de que la energía de la luz se emita en forma de ondas, pero es fácilmente visualizado en términos de corpúsculos de luz o fotones.

Existen tres efectos que demuestran el carácter corpuscular de la luz. Según el orden histórico, el primer efecto que no se pudo explicar por la concepción ondulatoria de la luz fue la radiación del cuerpo negro. Un cuerpo negro es un radiador teóricamente perfecto que absorbe toda la luz que incide en él y por eso, cuando se calienta se convierte en un emisor ideal de radiación térmica, que permite estudiar con claridad el proceso de intercambio de energía entre radiación y materia.

         Max Planck
Para poder explicarlo, Max Planck,  al comienzo del siglo XX, postuló que para ser descrita correctamente, se tenía que asumir que la luz de frecuencia ν es absorbida por múltiplos enteros de un cuanto de energía igual a , donde h es una constante física universal llamada constante de Planck: E = hv.
En 1905, Albert Einstein utilizó la teoría cuántica recién desarrollada por Planck para explicar otro fenómeno no comprendido por la física clásica: el Efecto fotoeléctrico. Este efecto consiste en que cuando un rayo monocromático de radiación electromagnética ilumina la superficie de un sólido (y, a veces, la de un líquido), se desprenden electrones en un fenómeno conocido como fotoemisión  o efecto fotoeléctrico externo.
Einstein demostró que el efecto fotoeléctrico podía ser explicado asumiendo que la luz incidente estaba formada de fotones de energía , parte de esta energía 0se utilizaba para romper las fuerzas que unían el electrón con la materia, el resto de la energía aparecía como la energía cinética de los electrones emitidos:
\frac{1}{2} m v_{max}^2 = h (\nu - \nu_0)

donde m es la masa del electrón, vmáx la velocidad máxima observada, ν es la frecuencia de la luz iluminante y ν0 es la frecuencia umbral característica del sólido emisor.

 

 

 

 

Diagrama de Feynman donde se muestra el intercambio de un fotón virtual (simbolizado por una línea ondulada y \gamma \,) entre un positrón y un electrón. La necesidad de reconciliar las ecuaciones de Maxwell del campo electromagnético, que describen el carácter ondulatorio electromagnético de la luz, con la naturaleza corpuscular de los fotones, ha hecho que aparezcan varías teorías que están aún lejos de dar un tratamiento unificado satisfactorio. Estas teorías incorporan por un lado, la teoría de la electrodinámica cuántica,  desarrollada a partir de los artículos de Dirac, Jordan, Hesinberg y Pauli, y por otro lado la mecánica cuántica de de Broglie, Heisenberg y Schrödinger.

Paul Dirac dio el primer paso con su ecuación de ondas (La ecuación de Dirac de ondas relativista de la mecánica cuántica fue formulada en 1928. Da una descripción de las partículas elementales  de espín ½, como el electrón,  y es completamente consistente con los principios de la mecánica cuántica la y de la teoría de la relatividad especial. Además de dar cuenta del espín, la ecuación predice la existencia de antipartículas de),  que aportó una síntesis de las teorías ondulatoria y corpuscular, ya que siendo una ecuación de ondas electromagnéticas su solución requería ondas cuantizadas, es decir, partículas.

 

 

 

Han logrado captar la imagen de un electrón saltando de un átomo a otro. Se publicó el 18 septiembre 2011. Un electrón tarda sólo millonésimas de una mil millonésima de un segundo para escapar de una molécula huésped. “Resulta que ahora tenemos las primeras fotos de lo que es el paso inicial en casi todas las reacciones químicas. Podemos ver no sólo los átomos y los núcleos en una reacción química. Ahora incluso podemos ver a los electrones. Esas fueron las declaraciones del físico Andreas Becker, de la Universidad de Colorado en Boulder.

 

Pero sigamos con la ecuación de Dirac que, para algunos, tiene tanto mérito como la ecuación de campo de Einstein de la relatividad general. Ya que la ecuación de Dirac fue originalmente formulada para describir el electrón, las referencias se harán respecto a “electrones”, aunque actualmente la ecuación se aplica a otros tipos de partículas elementales de espín ½, como los quarks. Una ecuación modificada de Dirac puede emplearse para describir de forma aproximada los protones y los neutrones (que son fermiones),  estos últimos formados por partículas más pequeñas llamadas quarks, y que por tanto no son partículas elementales. La ecuación de Dirac presenta la siguiente forma:

 

 

 \left(\alpha_0 mc^2 + \sum_{j = 1}^3 \alpha_j p_j \, c\right) \psi (\mathbf{x},t) = i
\hbar \frac{\partial\psi}{\partial t} (\mathbf{x},t)

 

siendo m la masa en reposo del electrón, c la velocidad de la luz,  p el operador de momento, \hbar la constante reducida de Planck,  x y t las coordenadas del espacio y el tiempo,  respectivamente; y ψ (x, t) una función de onda de cuatro componentes. La función de onda ha de ser formulada como un espinor  (objeto matemático similar a un vector que cambia de signo con una rotación de 2π descubierto por Pauli y Dirac) de cuatro componentes, y no como un simple escalar,  debido a los requerimientos de la relatividad especial. Los α son operadores lineales que gobiernan la función de onda, escritos como una matriz y son matrices de 4×4 conocidas como matrices de Dirac.

Es cierto que Paul Dirac dio el primer paso con su ecuación de ondas que aportó una síntesis de las teorías ondulatoria y corpuscular, ya que siendo una ecuación de ondas electromagnéticas su solución requería ondas cuantizadas, es decir, partículas. Sin embargo,  existen aún muchas dificultades teóricas sin resolverse, la incorporación de nuevas teorías procedentes de la experimentación con partículas elementales, así como de teorías sobre el comportamiento de los núcleos atómicos,  nos han permitido obtener una formulación adicional de gran ayuda.

 

 

Claro que, para conocer la luz fue necesario que muchas mentes intervinieran y aportaran sus pensamientos: Augustin Fresnel, Hippolite Fizeau, James Bradley, George Airy, Albert Michelson y Edward Morley y antes que ellos el mismo Newton y, por terminar no podemos dejar fuera a Einstein que marcó ese límite de velocidad en nuestro universo que está otorgado a la Luz. En 1905, Albert Eionstein dio una explicación satisfactoria con su teoría de la relatividad especial, en la que, en su segundo postulado propone que la velocidad de la luz es isótropa,  es decir, independiente del movimiento relativo del observador o de la fuente, y, marcó la imposibilidad de superar la velocidad de la luz en nuestro universo, toda vez que, a medida que un cuerpo se acerca a ese límite de 299.792.458 metros por segundo, va adquiendo masa que llegaría al infinito en el límite de esa velocidad, lo que hace imposible poder alcanzarla.

 

 

 

De la luz nos podríamos estar aquí hablando años y años sin llegar a saber lo que realmente es. Sabemos que está hecha de partículas que hemos denominado con el nombre de fotones. Decimos que un fotón es una partícula con masa en reposo nula consistente en un cuanto de radiación electromagnética y, como hemos dicho antes, es considerado como una unidad de energía  igual a  hf, donde h es la constante de Planck y f es la frecuencia de la radiación en hertzios. Sabemos que los fotones viajan a la velocidad de la luz y que son necesarios para explicar el efecto fotoeléctrico y otros fenómenos que requieren que la luz tenga carácter de partícula.

En mi ignorancia, no dejo de dar vueltas y preguntarme que, si el fotón no tiene masa pero sin embargo tiene energía… ¿No quedamos en que la energía es masa y la masa es energía (E = mc2)? ¿Cómo podemos explicar eso? Creo que no hemos caido en la cuenta del hecho cierto de que la luz, amigos míos, es el exponente más liviano de la materia pero, no por ello el más sencillo. La luz está presente en todo lo material y a veces, toma adopta formas inmateriales para poder llevar a cabo algunos fenómenos que aún no hemos sabido explicar como, por ejemplo, ¡los pensamientos! En nuestros cerebros también está presente la luz y, sin ella, no podríamos pensar.

emilio silvera

Diversas fuentes