domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El paso del Tiempo lo cambia todo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Starburst Cluster Shows Celestial Fireworks

                                                       Laboratorio estelar, la cuna de los mundos.

me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese éter que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y que, de momento, sólo sabemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.

Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro se tratara, y, objetos de enormes masas y densidades infinitas que no dejan escapar ni la luz que es atrapada por su fuerza de gravedad.

A String of 'Cosmic Pearls' Surrounds an Exploding Star

                                                              Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo

Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe también una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

Isaac Asimov en uno de sus libros nos explicó que,  los sólidos ordinarios, el denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho toneladas.

The Cat's Eye Nebula: Dying Star Creates Fantasy-like Sculpture of Gas and Dust

Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar el punto de desplazar todos los electrones y dejar a los núcleos atómicos en mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen seis. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene .

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!

Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se puede ver encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.

Poemos decir que objetos tan fascinantes como éstos (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).

Los rayos del Sol que envían al planeta Tierra su luz y su calor, también parte del Universo, al mismo tiempo que hace posible la vida en un planeta maravilloso que es el habitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar.

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene encuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

[Img #9400]

     Este podría ser nuestro Sol cuando en el pasado sólo era una protoestrella que se estaba formando

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra para unicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.

  Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá

Las estrellas, todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa,  las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.

Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo puede ser convertida en cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformadad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y menos energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo hasta el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua puede realizar un . El agua sobre una superficie horizontal no puede realizar trabajo, aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Esta imagen que lleva el nombre de “Noche cristalina” fue tomada en abril de 2008 en la mina de Río Tinto, en España. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Esta imagen que lleva el de “Noche cristalina” fue tomada en abril de 2008 en la mina de Río Tinto, en (Huelva) España. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un depósito de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 para representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es cada vez menor. Todo se deteriora con el paso del tiempo.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío hasta que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

      Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía desde puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el nombre de “termodinámica”, que en griego significa “movimiento de calor”.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. Esta regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía puede quedar congelada e inservisble. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no menos básica, y que denomina “segundo principio de la termodinámica.”

Según este segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.

¿Está degradándose el universo?

Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación:   S = k log W que, aunque pequeña y sencilla, es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación para el logaritmo es el siguiente: S es la entropía de un Sistema; W el número de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión entre el micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadistica.

Pero esa, es otra historia.

emilio silvera

 

  1. 1
    emilio silvera
    el 5 de febrero del 2014 a las 10:06

    Sí, el paso del Tiempo todo lo cambia y nada permanece estable con la misma configuración. Unas cosas son más duraderas que otras pero, al final del camino, nada lo finaliza siendo lo que fue. A nuestro alrededor tenemos las mejores referecnias de eso que digo. Las cosas cambias, nosotros nos hacemos mayores y desaparecemos y, hasta las ciudades que nos vieron nacer, con el paso del tiempo, llegan a ser diferentes de lo que fueron.


    Me maravillan los sucesos que ocurren en las Nebuloisas, en las explosiones supernovas, en el interior de las estrllas, en el centro de las galaxias. Grandes conglomeraciones de gas y polvo provenientes de una estrella que llegó al final de su vida, deja el espacio regado de ese material que ya es de segunda o tercera generación y, formando maravillosos y bellos conjuntos multicolores, lo que llamamos Nebulosas, con ayuda del tiempo y de la Gravedad, se disponen a construir a partir de lo destruido: De allí surgen nuevas estrellas y nuevos mundos.
    En el núcleo de las estrellas, durante miles de millones de años, se transmutan materiales sencillos en otros más complejos  que hacen posible que incluso, la vida, pueda aparecer en aquellos planetas que tengan la suerte de caer en el lazo habitable de su estrella y, pasando el tiempo, surgiran Civilizaciones que escribirán Historias como la nuestra o parecida, buscando esa verdad que la Naturaleza esconde y que la Ciencia persigue sin cesar para saber, no sólo ya de las transisiciones de fase que sufren las cosas con el paso del tiemnpo, sino de todas aquellas otras que están conectadas entre sí, y forman una dinámica universal que está regida por aquellas fuerzas de la Naturaleza que, sin lugar a ninguna duda, podríamos decir que llevan la Batuta de cómo tiene que funcionar el Universo, y, los “músicos de la orquesta” son las que llamamos Constantes Universales que están cumpliendo la misión de que las cosas sean como son y no de otra manera.
    El Universo es maravilloso, en él está presente todo lo que existe (lo conozcamos o no), y, nosotros, los Huamnos, simplemente somos un producto de ese milagro, pero un producto animado y consciente, es decir, sdomos la parte que piensa, la que observa, la que tiene la misión de tratar de saber y, si me apuráis, también tenemos la misión de buscar la manera de que (si la Naturaleza nos respeta como espcie), podamos encontrar la manera de escapar de este mundo primero cuando llegue esa hora funesta en la que el Tiempo de la Tierra se termine, y, si seguimos aquí, también tendremos que escapar de nuestra propia Galaxia y, finalmente, del Universo mismo que tampoco, como todo lo demás, tiene un Tiempo infinito.
    ¡El Universo!

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting