Feb
12
La era cuántica
por Emilio Silvera ~ Clasificado en Física ~ Comments (1)
Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, todos sabeis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y en el universo primitivo casi a todo lo largo del camino hasta el principio. Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-43 [s] después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.
Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza. Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta les ha sido prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad general de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.
Si hablamos de singularidades en agujeros negros, debemos dejar la R.G. y acudir a la M.C.
Si queremos cuantizar, es decir encontrar la versión cuántica, la gravedad escrita como RG lo que tenemos que hacer es encontrar la teoría cuántica para la métrica. Sin embargo, esto no conduce a una teoría apropiada, surgen muchos problemas para dar sentido a esta teoría, aparecen infinitos y peor que eso, muchos cálculos no tienen ni tan siquiera un sentido claro. Así que hay que buscar otra forma de intentar llegar a la teoría cuántica.
Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.
Los físicos especulan que el cosmos ha crecido a una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía de la que muchos millones de años más tarde, surgirían las primeras estrellas y galaxias.
Según los primeros trabajos sobre la teoría cuántica de la gravedad, el propio espaciotiempo varió en su topografía, dependiendo de las dimensiones del universo niño. Cuando el universo era del tamaño de un núcleo atómico (ver imagen de abajo), las eran relativamente lisas y uniformes; a los 10-30 cm (centro) es evidente una cierta granulidad; y a la llamada longitud de Planck, todavía unas 1.000 veces más pequeño (abajo), el espacio tiempo fluctúa violentamente.
Los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se deducir que los efectos de la teoría cuántica, habrían sido cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor. (El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.) Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las iniciales del universo.
El universo estaba a 3.000° K hace doce mil quinientos millones de años; a 10 mil millones de grados (1010° K) un millón de años , y, tal vez, a 1028° K un par de millones más temprano. Pero, y antes de ese tiempo ¿qué pasaba? Los fósiles no faltan, pero no sabemos interpretarlos. Mientras más elevada se va haciendo la temperatura del universo primigenio, la situación se va complicando los científicos. En la barrera fatídica de los 1033° K –la temperatura de Planck–, nada funciona. Nuestros actuales conocimientos de la física dejan de ser útiles. El comportamiento de la materia en estas tan extremas deja de estar a nuestro alcance de juicio. Peor aún, hasta nuestras nociones tradicionales pierden su valor. Es una barrera infranqueable para el saber de la física contemporánea. Por eso, lo que se suele decir cómo era el universo inicial en esos tempranos períodos, no deja de tener visos de especulación.
Los progresos que se han obtenido en física teórica se manifiestan a menudo en términos de síntesis de campos diferentes. Varios son los ejemplos que de ello encontramos en diversos estudios especializados, que hablan de la unificación de las fuerzas fundamentales de la naturaleza.
En física se cuentan con dos grandes teorías de éxito: la cuántica y la teoría de la relatividad general.
Cada una de ellas ha demostrado ser muy eficiente en aplicaciones dentro de los límites de su ámbito propio. La teoría cuántica ha otorgado resultados más que satisfactorios en el estudio de las radiaciones, de los átomos y de sus interacciones. La ciencia contemporánea se presenta como un conjunto de teorías de campos, aplicables a tres de las grandes interacciones: electromagnética, nuclear fuerte, nuclear débil. Su poder predictivo es bastante elocuente, pero no universal. Esta teoría es, por , incapaz de describir el comportamiento de partículas inmersas en un campo de gravedad intensa. Ahora, no sabemos si esos fallos se deben a un problema conceptual de fondo o falta de capacidad matemática para encontrar las ecuaciones precisas que permitan la estimación del comportamiento de las partículas en esos ambientes.
La teoría de la relatividad general, a la inversa, describe con gran precisión el efecto de los campos de gravedad sobre el comportamiento de la materia, pero no sabe explicar el ámbito de la mecánica cuántica. Ignora todo acerca de los campos y de la dualidad onda-partícula, y en ella el «vacío» es verdaderamente vacío, mientras que para la física cuántica hasta la «nada» es «algo»…
Nada está vacío, ya que, de donde surge es porque había
Claro está, que esas limitaciones representativas de ambas teorías no suelen tener mucha importancia práctica. Sin embargo, en algunos casos, esas limitantes se hacen sentir con agresividad frustrando a los físicos. Los primeros instantes del universo son el ejemplo más elocuente.
El científico investigador, al requerir estudiar la temperatura de Planck, se encuentra con un cuadro de densidades y gravedades extraordinariamente elevadas. ¿Cómo se comporta la materia en esas condiciones? Ambas teorías, no dicen mucho al respecto, y entran en serias contradicciones e incompatibilidades. De ahí la resistencia de estas dos teorías a unirse en una sólo teoría de Gravedad-Cuantíca, ya que, cada una de ellas reina en un universo diferente, el de lo muy grande y el de lo muy pequeño.
Todo se desenvuelve alrededor de la noción de localización. La teoría cuántica limita nuestra aptitud para asignar a los objetos una posición exacta. A cada partícula le impone un volumen mínimo de localización. La localización de un electrón, por ejemplo, sólo puede definirse alrededor de trescientos fermis (más o menos un centésimo de radio del átomo de hidrógeno). Ahora, si el objeto en cuestión es de una mayor contextura másica, más débiles son la dimensión de este volumen mínimo. Se puede localizar un protón en una esfera de un décimo de fermi, pero no mejor que eso. Para una pelota de ping-pong, la longitud correspondiente sería de unos 10-15 cm, o sea, bastante insignificante.La física cuántica, a toda partícula de masa m le asigna una longitud de onda Compton: lc = h / 2p mc
Por su parte, la relatividad general igualmente se focaliza en la problemática del lugar que ocupan los objetos. La gravedad que ejerce un cuerpo sobre sí mismo tiende a confinarlo en un espacio restringido. El caso límite es aquel del agujero negro, que posee un campo de gravedad tan intenso que, salvo la radiación térmica, nada, ni siquiera la luz, puede escapársele. La masa que lo constituye está, según teoría, irremediablemente confinada en su interior.
En lo que hemos inmediatamente descrito, es donde se visualizan las diferencias entre esos dos campos del conocimiento. Uno alocaliza, el otro localiza. En general, esta diferencia no presenta problemas: la física cuántica se interesa sobre todo en los microobjetos y la relatividad en los macroobjetos. Cada cual en su terreno.
Sin embargo, ambas teorías tienen una frontera común para entrar en dificultades. Se encuentran objetos teóricos de masa intermedia entre aquella de los microobjetos como los átomos y aquella de los macroobjetos como los astros: En las unidades de Planck, su masa es más o menos la de un grano de sal: 20 microgramos. Equivale a una energía de 1028 eV o, más aún, a una temperatura de 1033° K que es la «temperatura de Planck.
bien, si queremos estimar cuál debería ser el radio en que se debe confinar la masita de sal para que se vuelva un agujero negro, con la relatividad general la respuesta que se logra encontrar es de que sería de 10-33 cm, o sea ¡una cien mil millonésima de mil millonésima de la dimensión del protón! Esta dimensión lleva el de «radio de Planck». La densidad sería de ¡1094 g/cm3! De un objeto así, comprimido en un radio tan, pero tan diminuto, la relatividad general sólo nos señala que tampoco nada puede escapar de ahí. No es mucha la información.
Un grano de Sal puede ser un “mundo” si lo aumentamos miles de veces
Si recurrimos a la física cuántica estimar cuál sería el radio mínimo de localización para un objeto semejante al granito de sal, la respuesta que encontramos es de un radio de 10-33 cm. Según teoría, en una hipotética experiencia se lo encontrará frecuentemente fuera de ese volumen. ¡Ambos discursos no son coincidentes! Se trata de discrepancias que necesitan ser conciliadas para poder progresar en el conocimiento del universo. ¿Se trata de entrar en procesos de revisión de ambas teoría, o será necesaria una absolutamente nueva? Interrogantes que solamente el devenir de la evolución de la física teórica las podrá responder en el futuro.
De todas las maneras, en lo que se refiere a una Teoría cuántica de la Gravedad, tendremos que esperar a que se confirmen las teorías de supergravedad, supersimetría, cuerdas, la cuerda heterótica, supercuerdas y, la compendiada por Witten Teoría M. Aquí, en estas teorías (que dicen ser del futuro), sí que están apasiblemente unidas las dos irreconcialbles teorías: la cuántica y la relativista, no sólo no se rechazan ni emiten infinitos, sino que, se necesitan y complementan formar un todo armónico y unificador.
¡Si pudiéramos verificarla!
Pero, contar con la energía de Planck (1019 GeV), no parece que, al menos de momento, sea de este mundo. Ni todos los aceleradores de partículas del mundo unidos, podrían llegar a conformar una energía semejante.
emilio silvera
Feb
12
¡La necesidad1, que agudiza la imaginación
por Emilio Silvera ~ Clasificado en Física-química ~ Comments (0)
La fuerza nuclear débil nos habla de materiales que, de manera natural, emiten radiación y se desintegran. Al pensar en la desintegración me ha traído a la memoria aquellos libros de Asimov que nos explicaba cuestiones de ciencia y nos decía existen materiales que se desintegran de manera natural y que son materiales fértiles, o que sin serlo, se pueden transformar en otros que sí lo son.
Al hablar de material fértil me estoy refiriendo a núclidos que pueden absorber neutrones formar material fisible. El uranio-238, por ejemplo, absorbe un neutrón para formar uranio-239, que se desintegra en plutonio-239. Este es el de conversión que la imaginación del hombre hace que ocurra en un reactor reproductor.
Lo explicaré con más detalles: El Reactor Reproductor Rápido es un reactor de neutrones rápidos, diseñado producir combiustible generando más material fisible del que consume. El FBR es uno de los tipos posibles de reactores reproductores.
Veámos: El uranio-235 es un combustible práctico, es decir, los neutrones lentos son capaces de que el uranio-235 se fisione, o lo que es lo mismo, se rompan sus átomos en dos, produciendo neutrones lentos, que a su vez inducen otras fisiones atómicas. El uranio-233 y el plutonio-239 son también combustibles nucleares prácticos por las mismas razones.
Desgraciadamente, el uranio-233 y el plutonio-239 no existen en natural sino en trazas mínimas, y el uranio-235, aunque existe en cantidades apreciables, no deja de ser raro. En cualquier muestra de uranio natural, sólo siete de cada mil átomos son de uranio-235, el resto es uranio-238.
Uranio
El uranio natural extraído de las minas contiene un 99´3 % de U-238 y apenas el 0´7 % de U-235.
El uranio-238, la variedad común de uranio, no es un combustible nuclear práctico. Así que, el uranio que más abunda en la naturaleza no sirve combustible nuclear. Podemos conseguir que se fisione, pero sólo con neutrones rápidos. Los átomos de uranio-238 que se rompen en dos, producen neutrones lentos, que no bastan para producir o inducir nuevas fisiones. El uranio-238 cabría compararlo a la madera húmeda: es posible que arda, pero acabará por apagarse.
El uranio es un elemento químico metálico de color plateado-grisáceo de la serie de los actínidos, su símbolo químico es U y su número atómico es 92. Por ello posee 92 protonesy 92 electrones, con una valencia de 6. Su núcleo puede contener entre 142 y 146 neutrones, sus isótopos más abundantes son el 238U que posee 146 neutrones y el 235U con 143 neutrones. El uranio tiene el mayor peso atómico de entre todos los elementos que se encuentran en la naturaleza. El uranio es aproximadamente un 70% más denso que el plomo, aunque menos denso que el oro o el wolframio. Es levemente radiactivo. Fue descubierto como óxido en 1789 por M.H. Klaproth que lo llamó así en el honor del planeta Urano que acababa de ser descubierto en 1.781.
Supongamos, sin embargo, que se separa el uranio-235 del uranio-238 (trabajo más bien difícil) y que se utiliza aquel para hacer funcionar un reactor nuclear. Los átomos de uranio-235 que forman el combustible del reactor se fisionan y esparcen miríadas de neutrones lentos en todas direcciones. Si el reactor está rodeado por una capa de uranio ordinario (que en su mayor parte es uranio-238), los neutrones que van a parar allí son absorbidos por el uranio-238 y, aunque no pueden hacer que el uranio-238 se fisione, sí pueden provocar otros cambios que finalmente, producirán plutonio-239. Separando este plutonio-239 del uranio (tarea muy fácil), puede ser utilizado como combustible nuclear practico para la fisión.
De esta manera, el reactor nuclear genera combustible a partir de un material (uranio-238) que no lo es. Este es el motivo de que al reactor nuclear que hace posible la transformación se le llame “reactor generador”.
Un reactor generador bien diseñado puede producir más plutonio-239 que el uranio-234 consumido para ello. De este modo, las reservas totales de uranio de la Tierra (y no sólo las de uranio-235) se convierten en potenciales de combustible nuclear.
Torio
Carlo Rubbia, exdirector del CERN (los mismos que hicieron el Colisionador de Hadrones) y ganador del premio Nobel de física en 1984, ha trabajado buena de su carrera en el desarrollo de tecnologías para la producción de energía a partir de torio y calcula que con un reactor adecuado, este proceso de fisión podría generar a partir de 1 tonelada del elemento la misma cantidad de energía que 200 toneladas de uranio y 3.500.000 toneladas de carbón.
El torio, tal como se da en la naturaleza, consiste todo él en torio-232, que al igual que el uranio-238, no es un combustible nuclear práctico, porque requiere neutrones rápidos fisionarse. Pero si se coloca torio-232 alrededor de un reactor nuclear, sus átomos absorberán los neutrones y, sin experimentar fisión alguna, se convertirán en átomos de uranio-233. Como el uranio-233 es un combustible práctico que se separar fácilmente del torio, el resultado es otra variedad del reactor generador, que convierte las reservas de torio en un combustible nuclear en potencia.
que no se descubra otra manera de producir energía, el Uranio seguirá
La cantidad total de uranio y de torio que hay en la Tierra es unas 800 veces mayor que las reservas de uranio-235, lo que significa que el buen uso de los reactores generadores podría multiplicar por 800 la oferta potencial de energía extraída de plantas de fisión nuclear.
En este punto, sin dejar de elogiar la inteligencia del hombre que ha sabido encontrar la manera de transformar una materia inservible en otra practica, hay que decir que la energía de fisión nuclear genera también muchos problemas.
Como estará comprobando al lector de este , el autor ha querido esta vez diversificar los temas y plasmar una variedad múltiple que facilite el conocimiento de distintas cosas que ocurren en la naturaleza, o que la mano del hombre hace que ocurran, y todas estas cuestiones tratadas aquí van encaminadas a resolver preguntas que en alguna ocasión nos hemos podido , tales como:
¿Por qué al calentar un metal se pone primero rojo, luego naranja, después amarillo, pero a continuación blanco en lugar de seguir el espectro y ponerse verde?
¿Y el color en las estrellas?
Cuando un herrero está trabajando, el metal adquiere diferentes colores según recibe el calor de la fragua. Primero se mostrará de un rojo intenso, ir progresivamente adoptando tonos más claros, pasando del anaranjado al amarillo, y por fin al blanco.
Si se pudiera seguir calentando el hierro, éste adquiriría tonos azulados. Estos cambios en la coloración son una consecuencia directa del aumento de la temperatura, que permitirá mayor maleabilidad. El Cúmulo del Joyero (en la constelación de la Cruz del Sur), fotografiado arriba, muestra cómo ocurre lo mismo con las estrellas, de manera que encontraremos estrellas azules, las más calientes, blancas, amarillas, anaranjadas y rojas, las más “frías”. A veces, estos colores pueden percibirse a simple vista, Antares (Alpha Scorpii) que es de color rojo, o Rigel (Beta Orionis) blanco-azulada.
En la Naturaleza rigen las mismas leyes todos y, en todas partes se producen los mismos fenómenos debidos a las mismas causas, en este caso: ¡La Temperatura!
Cualquier objeto, a cualquier energía superior al cero absoluto, radia ondas electromagnéticas. Si su temperatura es muy baja, emite sólo ondas de radio largas, muy pobres en energías. Al aumentar la temperatura, radia una cantidad mayor de ondas, pero empieza a radiar ondas de radio más cortas (y más energéticas). Si la temperatura sigue subiendo, empiezan a radiarse microondas aún más energéticas y después radiaciones infrarrojas.
Esto no quiere decir que a una temperatura dada sólo se emitan ondas de radio largas, un poco más arriba sólo ondas de radio cortas, luego sólo microondas y después sólo infrarrojos. En realidad, se emite toda la gama de radiaciones, pero siempre hay una radiación máxima, es decir, una gama de longitudes de onda que son las más radiadas, flanqueadas por cantidades menores en el lado de las energías bajas y por cantidades todavía más pequeñas en el de las altas.
Cuando un objeto alcanza la temperatura del cuerpo humano (37°C), el máximo de radiación se encuentra en los infrarrojos largos. El cuerpo humano radia ondas de radio, pero las longitudes de ondas más cortas y más energéticas son siempre las más fáciles de detectar por ser los más potentes.
Cuando la temperatura alcanza aproximadamente los 600°C, el máximo de radiación se halla en el infrarrojo corto. Pero a estas alturas la pequeña cantidad de radiación que se halla en el lado de las energías altas adquiere una importancia especial, porque entra ya en la región de la luz visible roja. El objeto reluce entonces con un rojo intenso.
rojo constituye sólo un pequeño porcentaje de la radiación total, pero como da la casualidad de que nuestro ojo lo percibe, le otorgamos toda nuestra atención y decimos que el objeto está al “rojo vivo”.
Si la temperatura sigue subiendo, el máximo de radiación continúa desplazándose hacia las longitudes de ondas cortas y vez se emite más luz visible de longitudes cada vez menores. Aunque el objeto radia más luz roja, se van agregando poco a poco luz anaranjada y luz amarilla en cantidades menores pero significativas. Al llegar a los 1.000°C la mezcla de colores la percibimos como naranja, y a los 2.000°C como amarilla. Lo cual no significa que a los 1.000°C sólo se radie luz naranja y a los 2.000°C sólo se radie luz amarilla, porque si fuese así, habría efectivamente que esperar que lo siguiente fuese “color verde”. Lo que en realidad vemos son mezclas de colores.
Al llegar a los 6.000°C (la temperatura superficial del Sol), el máximo de radiación está en el amarillo visible y lo que llega a nuestros ojos son grandes cantidades de luz visible, el violeta hasta el rojo. La incidencia simultánea de toda la gama de luz visible sobre nuestra retina nos da la sensación de blanco, y de ahí el color del Sol.
Los objetos más calientes aún que el Sol radian todas las longitudes de ondas de luz visible y en cantidades todavía mayores, el máximo de radiación se desplaza al azul, de modo que la mezcla se desequilibra y el blanco adquiere un tinte azulado.
Toda esta travesía se produce para objetos calientes que emiten “espectros continuos”, es decir, que radian luz en la forma de una ancha banda de longitudes de ondas. Ciertas sustancias en adecuadas, radian sólo luz de determinadas longitudes de onda. El nitrato de bario radia luz verde cuando se calienta, y con ese fin se lo utiliza en los fuegos de artificio, “calor verde”, podríamos decir.
Nitrato de Bario que produce el color verde en los bonitos fuegos artificiales
¡Qué bonito es saber!
En alguna ocasión todos hemos oído mencionar la palabra “gases nobles”, y sin embargo no siempre sabemos lo que son y el por qué le llaman así. Los elementos que reaccionan difícilmente o que no reaccionan en absoluto con otros elementos se denominan “inertes”. El nitrógeno y el platino son ejemplos de elementos inertes.
En la última década del siglo pasado se descubrieron en la atmósfera una serie de gases que no parecían intervenir en ninguna reacción química. Estos nuevos gases (helio, neón, argón, kripton, xenón y radón) son más inertes que cualquier otro elemento y se agrupan bajo el de gases inertes.
Los elementos inertes reciben a veces el calificativo de “nobles” porque esa resistencia a reaccionar con otros elementos recordaba un poco a la altanería de la aristocracia. El oro y el platino son ejemplos de “metales nobles”, y por la misma razón se llaman a veces “gases nobles” a los gases inertes. Hasta 1.962, el más común era el de gases inertes, quizá porque lo de nobles parecía poco apropiados en sociedades democráticas.
Es apropiado incluir una descripción de este grupo de elementos conocido en un capítulo dedicado a los halógenos, porque el flúor es el único elemento conocido que entra en combinación química directa con los dos gases nobles más pesados, el xenón y el criptón, resultando en compuestos estables.
Los gases nobles surgen en la naturaleza como constituyentes menos abundantes de la atmósfera. La primera indicación de la existencia de los gases nobles fue divulgada por el químico ingles Cavendish, en 1784.
La razón de que los gases inertes sean inertes es que el conjunto de electrones de cada uno de sus átomos está distribuido en capas especialmente estables. La más exterior, en concreto, tiene 8 electrones. Así la distribución electrónica del neón es (2,8) y la del argón (2,8,8). Como la adición o sustracción de electrones rompe esta distribución estable, no pueden producirse cambios electrónicos. Lo cual significa que no pueden producirse reacciones químicas y que estos elementos son inertes.
bien, el grado de inercia depende de la fuerza con que el núcleo, cargado positivamente y situado en el centro del átomo sujeta a los 8 electrones de la capa exterior. Cuantas más capas electrónicas haya entre la exterior y el centro, más débil será la atracción del núcleo central sobre los electrones de esa última capa de electrones.
El Radón es un gas radiactivo de origen natural procedente de la desintegración radiactiva de pequeñas cantidades de uranio presentes en rocas y suelo, es el responsable de miles de muertes por en Europa cada año. El gas se filtra en los edificios a través del suelo y de los sótanos, puede acumularse llegando a niveles elevados, especialmente en espacios cerrados y poco ventilados.
Quiere esto decir que el gas inerte más complejo es también el menos inerte. El gas inerte de estructura atómica más complicada es el radón. Sus átomos tienen una distribución electrónica de (2,8,18,32,18,8). El radón, sin embargo está sólo constituido por isótopos radiactivos y es un elemento con el que difícilmente se pueden experimentos químicos. El siguiente en orden de complejidad es el xenón, que es estable. Sus átomos tienen una distribución electrónica de (2,8,18,18,8).
Se sabe desde hace décadas que la abundancia en la Tierra del xenón es menor de lo que debería ser según las proporciones observadas del resto de gases nobles. Las abundancias de estos gases se usan por los geoquímicos evaluar y datar los principales procesos terrestres, incluyendo la formación de la atmósfera. Para poder hacerlo parten de una hipótesis básica: que los gases nobles son inertes en toda circunstancia. Un realizado por Gary Schrobilgen y David Brock, de la Universidad McMaster (Canadá), cuyos resultados se publican en el Journal of the American Chemical Society explica la baja abundancia del xenón y pone en evidencia que el xenón no es tan noble como se suponía.
Los electrones más exteriores de los átomos de xenón y radón están bastante alejados del núcleo y, por consiguiente, muy sueltos. En presencia de átomos que tienen una gran apetencia de electrones, son cedidos rápidamente. El átomo con mayor apetencia de electrones es el flúor, y así fue como en 1.962 el químico canadiense Neil Bartlett consiguió formar compuestos de xenón y flúor.
Desde entonces se han conseguido formar también compuestos de radón y kriptón. Por eso los químicos rehúyen el de gases inertes, porque a fin de cuentas, esos gases no son completamente inertes. Hoy día se ha impuesto la denominación de “gases nobles”, y existe toda una rama de la química que se ocupa de los “compuestos de gases nobles”.
Naturalmente, cuanto más pequeño es el átomo de un gas noble, más inerte es, y no se ha encontrado nada que sea capaz de arrancarles algún electrón. El argón, cuya distribución electrónica es de 2,8,8 y el neón, con 2,8 electrones respectivamente, sigue siendo completamente inerte. Y el más inerte de todos es el helio, cuyos átomos contienen una sola capa electrónica con dos electrones (que es lo máximo que puede alojar primera capa) que al estar en la primera linea cerca del núcleo positivo, están fuertemente atraídos al tener su carga eléctrica el signo negativo.
Para finalizar diré que los gases nobles (gases inertes, gases raros) están clasificados en el grupo 18 (antiguamente 0) de la tabla periódica de dos elementos y se definen por símbolos que responden a: helio (He), neón (Ne), argón (Ar), kriptón (Kr), xenón (Xe) y radón (Rn).
Ya se dijo antes la configuración electrónica de uno de ellos y todas las capas internas están completamente ocupadas, lo que hace que estos elementos, por tanto, constituyan la terminación de un periodo y posean configuración de capa completa, por lo que sus energías de ionización son muy elevadas y su reactividad química escasa.
Como son monoatómicos, las moléculas de los gases nobles poseen simetría esférica, y las fuerzas intermoleculares son muy débiles, por lo que sus entalpías de vaporización son muy bajas.
Con todo lo anteriormente expuesto sobre los gases nobles, espero que el lector del aquí reflejado pueda tener una idea más amplia y un conocimiento más certero sobre lo que en realidad son los denominados como “gases nobles”.
En comparación con la inmensidad del universo, nos queda aún muchísimo que aprender. Si nos limitamos a nuestro entorno más cercano, la Tierra, ¿cómo hemos podido llegar tan lejos?
¡La curiosidad! y ¡La necesidad! ¡El Instinto! y ¡La Evolución! Todo ello, amigos míos, nos lleva a querer saber y, ello, debemos desvelar los secretos de la Naturaleza, como que, por cierto, no resulta nada fácil, llevamos miles de años intentando comprender y, de momento, sólo sabemos… ¡Algunas cosas!
emilio silvera
PD.
No podemos dejar de agradecer a Isaac Asimov sus muchos trabajos sobre temas de ciencia.
Feb
11
El panorama en España… ¡Es insoportable!
por Emilio Silvera ~ Clasificado en General ~ Comments (5)
Estamos perdiendo la dignidad. Una familia sin casa está desamparada y, llegar a esos extremos, cualquier Gobierno responsable tiene la obligación de evitarlo mediante los múltiples mecanismos que tiene a su alcance, dándo así, cumplimiento al art. 47 de la CE: “Todos los ciudadanos tirnen el derecho a disfrutar de una Vivienda digna…”
Es un bochorno para todos el contemplar como arrojan de sus casas a familias enteras que, al haberse quedado sin trabajo, no pueden hacer frente al recibo de la Hipoteca, y, la única solución que han encontrado es la de arrojarlos de sus casas. ¡Malditos hipócritas!
Los Bancos ven como la actual crisis les llena sus bolsillos de dinero, las ganancias son insultantes y, sus directivos (los que ordenan los desahucios), se llevan inmensas cantidades en función de resultados y, mientras tanto, padres de familia que llevan años en el paro, pasan literalmente hambre y ven, como su esposa e hijos no tienen ese mínimo sustento que les permita llevar una vida digna dentro de una Sociedad justa. Ha desaparecido la moral y muchos valores que nuestros ancestros nos inculcaron. Ahora, desgraciadamente, prevalecen los intereses particulares caiga quien caiga y a costa de lo que sea. Nunca pudimos caer más bajos.
La única sensación que percibe el ciudadano corriente es la de que, el Gobierno, trabaja a favor de los Bancos, y, procura éstos de mantengan a costa de lo que sea: Subvenciones y ayudas de todo tipo. En Bankia tenemnos un buen ejemplo. Además se han permitido operaciones que son verdaderas “estafas” a las que el Gobierno en lugar de poner trabas, ayudó a imponer aunque los ahorradores perdieran “su vida” en ello. Cláusulas de suelo irregulares que sólo están a favor de una de las partes que firman la Hipoteca y que, nos llevan a soportar una gran injusticia a favor del más poderoso. Bancos que nadaban en la abundancia y fueron obligados a recoger a cajas arruinadas para después, tener que ser el Gobierno el que las capitalizara, y, tal comportamiento nos lleva a todos los ciudadanos a ser los que pagamos todas esas barbaridades.
Algunas veces se nos quiere hacer creer que las cosas pueden cambiar pero, a poco que mirémos y profundicemos en cómo se desarrollan las cosas… ¡La ley no es igual para todos! Para algunos, es más igual que para otros que, a pesar de la Constitución, al no tener la posibilidad de pagar un buen Abogado, está perdido.
Aquella fantasía de la ¡Igualdad de opoetunidades! Ha quedado muy atrás, los hijos de los padres que no tienen ingresos o que sólo cuentan con el mísero sueldo que hoy pagan las empresas, ven como sus hijos no pueden ir a la Universidad, y, sin importar su valía, quedan postergados a ser peones o simples auxiliares en cualquier actividad aunque tengan capacidad para el estudio.
Solo se colocan aquellos que tienen buenos padrinos y, los demás, a pesar de que con gran esfuerzo de sus padres (que se tuvieron que sacrificar para pagar sus costosos estudios), y, del esfuerzo propio en terminar sus carreras de los hijos responsables, resulta que, el panorama que encuentran al salir de la Universidad con sus recientes títulos en la mano, es desalentador:
Rompen sus zapatos visitando mil empresas y haciendo entrevistas y, si al fín, alguna de ellas los contrata, a pesar de sus Licenciaturas, lo hacen como Becarios primero y a prueba después, los tienen enredados varios años con sueldos miserables y sin esperanzas de subir en el escalafón que, esos puestos, estarán reservados para inútiles hijos de consejeros o sus novias. Generalmente, se reparten entre unos pocos el beneficio mientras que, una reducida parte de los beneficios se destinan a los sueldos de miles de empleados eficientes pero que tienen trabajos precarios en los que tienen que demostrar su valía y trabajar 10/12 horas al día para no ser despedidos.
Sentados en cómodos despachos se reparten subvenciones que no se sabe a dónde van destinadas y, cuando nos llegamos a enterar… ¡Vaya robo! No siempre el destino del dinero que se otorga para un hecho concreto se destina a ese menester y, se malversan fondos para vergonzosos asuntos o, peror todavía, para uso particular de los que lo pueden manejar.
Aquí se pide mucho esfuerzo para todos y, en el mayor de los casos, “ese todos”, se reduce a los de siempre, a los que trabajan y a los pequeños empresarios que todo lo aguantan, los sufridos ciudadanos de los que sólo se acuerdan cuando les quieren sacar el dinero que ellos derrochan a manos llenas.
Congresos y reuniones de los Partidos Políticos en los que los podemos ver felices y encantados de haberse conocido. Todos tienen su puesto seguro y sus ingresos blindados. Mientras que el resto de los mortales, precisamente aquellos que hace posible que vivan así, quedan marginados y postergados a unas migajas que, en realidad, les quita la dignidad de vida que merecen.
A tal punto hemos llegado que la gente, amparados en la oscuridad de la noche, cuando creen que nadie los ve, cogen comidas caducadas de los contenedores y utensilios que puedan aprovechar por no tener medios para comprarlos. Hasta aquí nos han traído esta panda de sinverguenzas que dicen trabajar por el bien general. Eso sí, ellos están todos bien abrigados y cubiertos con pagas que les asegura vivir de manera confortable el resto de sus vidas, mientras que muchos, pasan hambre por lo que hicieron.
En una película de Sidney Lumet, su título creo recordar que era Un mundo implacable, en el que uno de los protagonistas, Peter Finch, instaba a la gente a salir de sus casas y gritar: “¡Estoy más que harto y no quiero seguir soportándolo!”. De la misma manera, de seguir las cosas como van y si el Gobierno no lo remedia (que no tiene visos), llegará un momento en el que la buena genete no pueda más y, alguna solución habrá que buscar para este desatino.
¿Cómo nuestros dirigentes nos son conscientes de esta cruda realidad en la que estamos inmersos?
Si esta es la Sociedad que hemos construido, nos podríamos preguntar si, verdaderamente, ésto es una Sociedad propiamente dicha, toda vez que, cuando hablamos de Sociedad todos pensamos en una estructura dinámica en la que todos, sin excepción, tienen su función y dentro de esa dinámica, todos también reciben la recompensa de su trabajo para vivir con cierta dignidad.
Llegar a los extremos de desigualdad a los que estamos llegando, sobrepasa el límite de lo que pudiera considerar admisible. Quiero para mis hijos lo mismo que tienen los hijos de los ex Presidentes y demás políticos, los hijos de los Banqueros y los hijos de todos aquellos que medran (a costa de lo que sea) por tener más que los demás y, lo triste es que lo consiguen en detrimento de la Justicia y de la igualdad de oportunidades que sólo es una palabra sin sentido como tantas otras.
No nos equivoquemos, si hablamos de esclavitud todos pensamos en el Tercer Mundo, pero la realidad es que la tenemos aquí, con nosotros mismos en las grandes ciudades, donde las grandes Empresas, con sueldos miserables, amasan los millones de beneficios mientras que gente joven y licenciada hacen un inmenso trabajo que nunca le es recompensado y, con sueldos de miseria, por el temor a perder el trabajo, siguen aguantando esa “moderna esclavitud” que nadie, ni Gobiernos, ni Inspección de Trabajo, ni Sindicatos (que miran para otro lado), quieren remediar y, ¡así nos va!
Si las cosas no fueran tan serias como son, algunos de los escenarios que podemos ver y nos enseñan los medios, son de una desverguenza tal que, no sabemos si reir o llorar cuando vemos, como políticos y sindicalistas, se han confabulado para “robar” dinero de los parados en eso que llaman “Eres” y de los que todos cobran comisiones, o se incluyen a gente que nunca trabajó. ¿Cómo puede estar ocurriendo ésto? Y, ¿pagarán los culpables por sus comportamientos fuera de la Ley?
La Humanidad está perdiendo el rumbo. Mientras muchas familias están sin hogar o no tienen ni luz para poder vivir decentemente o calentarse de los rigores del invierno. Los Gobiernos construyen inmensos campos de Futbol para celebraciones que no quitarán el hambre del Pueblo menos favorecido. Estamos todos tan contentos de que futbolistas de este o aquel equipo, sea fichado por decenas de millones de euros y, aunque ellos no tengan la culpa de que eso sea así, no por ello, deja de ser inmoral si pensamos en lo que ahora mismo está pasando.
Seguuir hablando de lo que estamos pasando, hacer un reflejo de la Sociedad de hoy, nos llevaría mucho tiempo y, a pesar de ello, nunca podríamos reflejar la realidad de lo que está pasando. No son pocos que, con piel de cordero, medran en toda esta vorágine del mal, sin levantar un dedo por arreglar lo que ellos mismos contribuyeron a construir.
¿Hasta cuando estaremos así? ¿Podremos aguantar tal situación?
emilio silvera
Feb
11
¿El futuro? Siempre será algo incierto para nosotros, pero…
por Emilio Silvera ~ Clasificado en El Futuro incierto ~ Comments (0)
A mí, particularmente, me da mucho miedo un futuro en el que las máquinas sean imprescindibles. En mismo momento ya casi lo son. ¿Qué haríamos sin ordenadores que mediante sus programas dirigen fábricas, llevan todo el movimiento de las Bolsas del mundo y de los bancos, dirigen los satélites del espacio, llevan a cabo complicadas operaciones quirúrgicas y montan y ensamblan elaborados mecanismos industriales? El mundo quedaría paralizado. Sin embargo, no nos engañemos, nada de eso está hecho por ordenadores o por robots más o menos avanzados, detrás de todo ese fantástico mundo, ¡está ma Mente Humana! que, si somos realistas, será difícil de superar por las máquinas que ha podido inventar para que hagan, lo que nosotros no podemos.
Pienso en un mundo mucho más avanzado, dentro de 500 – 1.000 años. ¿Qué habrá pasado con los robots?, máquinas vez más perfectas que llegaron a autofabricarse y repararse. ¿Cómo evolucionarán a partir de esos procesadores inteligentes de la nanotecnología? ¿Llegarán algún día a pensar por sí mismos? Ahí puede estar uno de los grandes peligros de la Humanidad. Lo cierto es que no será nada fácil conseguir que los robots lleguen a generar sus propias ideas o que incluso, puedan llegar a tener sentimientos.
La invención del robot (del checo, robota, ) se debe al esfuerzo de las sociedades humanas por liberarse de las labores más ingratas y penosas a que se ven obligados algunos de sus individuos. En un principio, la apariencia de los robots sólo atendía a las razones prácticas de las funciones que cada modelo tenía que desempeñar, o sea, su morfología estaba aconsejada por criterios funcionales y prácticos.
Una vez superada la primera fase, el hombre trata de fabricar robots que cada vez sean más semejantes a su creador, y aunque las primeras figuras han sido algo groseras y poco hábiles en sus movimientos, poco a poco se va perfeccionando la imitación de los humanos. Claro que, sólo es una simple apariencia, ¿cómo podrían los técnicos en robótica suplantar al cerebro humano?
Un robot se diferencia fundamentalmente de una máquina por su capacidad para funcionar de modo automático sin la acción permanente del hombre. Los primeros robots se mostraron especialmente válidos para llevar a cabo aquellos trabajos sencillos y repetitivos que resultaban tediosos y pesados al hombre (el Ser Humano mejor). También son ideales para el en el que se está expuesto a cierto peligro o se trabaja con materiales peligrosos en lugares nocivos para los seres vivos. Sin embargo, todo eso que en ellos podemos ver, simplemente se trata de cómo responden a un programa que la mente humana ha ideado para ellos, en cada circunstancia dada.
Nuevas generaciones de robots que…, ¿comienzan a ser peligrosos?
Las máquinas del futuro nos pueden superar. Hemos comenzado a inventar robots que, cada vez son más sofisticados y tienen más prestaciones y, de seguir por ese camino, de no poner unas reglas claras, precisas y rígidas sobre el límite…las cosas podrían salir mal. Claro que me estoy adelantando en el tiempo. Es impensable que los robots, en un futuro cercano puedan suponer ninguna clase de peligro. Todo reside en nuestro cerebro que… ¡es imposible de imitar! Una cosa es fantasear con todo eso y, otra muy distinta, llevarlo a la práctica.
Una de las esenciales que debe tener una máquina-robot para ser considerada como tal es la posibilidad de ser programada para hacer tareas diversas según las necesidades y la acción que de ellos se requieran en cada situación. Y, si llegan a poseer la potestad de pensar por sí mismas, de repentizar soluciones no programadas, de sentir y ser conscientes…¡malo! Pero eso, no parece que sea factible en los próximos siglos.
Para algunas cosas sí son muy necesarios los robots. Dentro de algunas decenas de años, por ejemplo, no será preciso que ningún astronauta salga al espacio exterior para reparar estaciones espaciales o telescopios como hacen (con riesgo de sus vidas), con el Hubble. Tampoco tendrán que ser ellos, los seres vivos de nuestra especie los que tengan que salir al espacio exterior para abrir caminos nuevos a la Humanidad. De momento sólo un ingenio espacial mecánico ha salido del Sistema solar pero, pasando el tiempo, serán navez muy sofisticadas y comandadas por robots las que exploren el espacio para que nosotros sepamos lo que nos espera lejos de la seguridad de nuestro pequeño entorno del Sistema solar. Alguna vez será necesario que salgamos de aquí para instalarnos en otros mundos y, para eso, los robots serán muy necesarios.
Ellos, los robots, serán los que corran los riesgos por nosotros
El miedo a los robots del futuro que antes citaba está relacionado con el hecho de que la robótica es el estudio de los problemas relacionados con el diseño, aplicación, control y sistemas sensoriales de los robots. No niego que algún día, dado que el avance científico es exponencial, se puedan construir robots con cerebros espintrónicos o positrónicos que serán “copias” avanzadas de los humanos en lo que se refiere a fortaleza física exenta de enfermedades pero… De ahí a que puedan ser semejantes a nosotros… ¡Va un largo trecho, difícil de recorrer! Los pensamientos, el generar ideas, el sentir humano… ¡Qué lejos están de las máquinas!
Supermáquinas que pueden desarrollar trabajos imposibles
Las necesidades de la industria aeronáutica, poco a poco, han ido exigiendo sistemas de mayor precisión, capaces de tomar decisiones adecuadas en un entorno predefinido en función de las particulares de un momento dado. Estos ingenios, llamados de segunda generación, poseen instrumentos propios y programación informática dotada de medios de autocorrección frente a estímulos externos variables.
Los sensores utilizados por los sistemas de robótica de segunda generación son, con frecuencia, equipos de cámaras electrónicas digitales que convierten la imagen luminosa recibida el exterior en impulsos eléctricos que se comparan con patrones almacenados en un pequeño núcleo de memoria informática. Así mismo, disponen de instrumentos táctiles de alta sensibilidad y de detección de pesos y tensiones.
Incluso en otros planetas a millones de kilómetros de distancia de la Tierra, realizan los trabajos programados
Los robots de tercera generación emplean avanzados métodos informáticos, los llamados sistemas de inteligencia artificial, y procedimientos de percepción multisensorial (estoy leyendo una maravillosa tesis doctoral de un ingeniero de materiales – hijo de un buen amigo – que es fascinante, y me está abriendo la mente a nuevos campos y nuevos conceptos en el ámbito de la inteligencia artificial. Su nombre es Alcione Mora Fernández, y tiene la suerte de ser, además, un físico teórico matemático, con lo cual, según lo que puedo deducir de su , le espera grandes empresas y mi deseo personal es que triunfe en ese complejo mundo de fascinantes perspectivas al que pertenece).
Estos ingenios de tercera generación adoptan algunas características del comportamiento humano al contar con la capacidad para percibir la realidad del entorno varias perspectivas y utilizar programas que rigen su propia actuación de modo inteligente. Conscientes de su situación espacial, los robots de tercera generación comprenden directamente el lenguaje humano y lo utilizan para comunicarse con las personas. Sin embargo, hay que ser conscientes de que, de ninguna manera, se podría comparar un robot, por muy sofisticado que fuese su cerebro artificial, a las cien mil neuronas que trabajan en el nuestro. Para poder imitar lo que hace un cerebro humano, el volumen de chips, hilos y piezas, aunque se hicieran con las nuevas nanotecnologías, ocuparían un espacio impensable para un robot. Nada se puede igualar al cerebro humano que, siendo obra de la Naturaleza, es imposible de imitar de manera artificial. Sí, ya se que los adelantos son increíbles y que con el tiempo todo se podría alcanzar pero…
Los Androides del futuro. ¿Tendrán autonomía de pensamiento?
La ciencia robótica, basándose en avanzados principios de la electrónica y la mecánica, busca en la constitución y modo de funcionamiento del cuerpo y del cerebro humano los fundamentos con los que diseñar androides de posibilidades físicas e intelectivas semejantes a los del ser humano.
Nada de esto es ciencia ficción; es lo que hoy mismo ocurre en el campo de la robótica. Aún no podemos hablar de robots con cerebros positrónicos capaces de pensar por sí mismos y tomar decisiones que no le han sido implantados expresamente para responder a ciertas situaciones, pero ¿Y si llegaran a ser auténticas copias de nosotros, o, incluso nos superaran?. Ya tienen velocidad, flexibilidad, precisión y de grados de libertad. ¿Qué hasta donde llegarán? ¡Me da miedo pensar en ello! Aunque siempre pensaré que nunca podrán sentir y, ahí es, donde reside el peligro.
Pronto nos costará distinguirlos
Mecánicamente, el robot ya supera al ser humano; hace la misma tarea, con la misma velocidad y precisión o más que aquél, y tiene la ventaja de que no se cansa, puede indefinidamente desempeñando la tarea en lugares que para nosotros serían imposibles por sus condiciones extremas.
Menos mal que, de momento al menos, el cerebro del ser humano no puede ser superado por un robot, ¿pero será siempre así? Creo que el hombre es un ser que, llevado por sus ambiciones, es capaz de cometer actos que van encaminados a lograr la propia destrucción y, en el campo de la robótica, si no se tiene un exquisito cuidado y vigilancia extrema…, podríamos tener un ejemplo de fatales consecuencias!
Antes de dotar a estas máquinas de autonomía de obrar y de pensar, debemos sopesar las consecuencias y evitar, por todos los medios, que un robot pueda disponer como un ser humano del libre albedrío, como artificial que es, siempre debe estar limitado y tener barreras infranqueables que le impidan acciones contrarias al bienestar de sus creadores o del entorno.
Es muy importante que los sistemas sensoriales de los robots estén supeditados a los límites y reglas requeridas por los sistemas de control diseñados, precisamente, evitar problemas como los que antes mencionaba de robots tan avanzados y libre pensadores e inteligentes que, en un momento dado, puedan decidir suplantar a la Humanidad a la que, de seguir así, podrían llegar a superar.
simpática imagen ya ha sido superada
Pensemos en las ventajas que tendrían sobre los humanos una especie de robots tan inteligentes que ni sufrirían el paso del tiempo ni les afectaría estar en el vacío o espacio exterior, o podrían tranquilamente, al margen de las físicas y geológicas de un planeta, colonizarlo fácilmente, aunque no dispusiera de atmósfera, ya que ellos no la necesitarían y, sin embargo, podrían instalarse y explotar los recursos de cualquier mundo sin excepción. ¡Menuda ventaja nos llevarían! Además, lo mismo que nosotros nos reproducimos, los robots se fabricarán unos a otros. Ni las famosas tres leyes de Asimos me tranquilizan… ¿Las recuerdan?
- Ningún robot puede dañar a un ser humano,
- ni permitir con su inacción que un ser humano sufra daño…
Pero, ¿quién puede asegurar que con los complejos y sofisticados sensores y elementos tecnológicos avanzados con los que serán dotados los robots del futuro, éstos no pensarán y decidirán por su ? ¡Creo que nadie está en situación de asegurar nada! La amenaza está ahí, en el futuro, y el evitarla sólo depende de nosotros, los creadores. ¡Es tanta nuestra ignorancia!
Ciertamente hemos imaginado mundos futuros en los que, no parece que las tres leyes de la robótica puedan preservar la integridad física de los humanos. Si los robots alcanzan ese nivel autónomo de pensamiento… Sería, ¡la rebelión de las máquinas! tantas veces vista en la ficción del cine.
¿Que impedir que en el futuro los robots tengan conciencia de ser, o, incluso, sentimientos? Espero que eso nunca llegue a ser realidad.
Parece mentira que, alguna vez, lleguen a sentir…llorar o reir
Mirando a mi alrededor, de manera clara y precisa, puedo comprobar que el mundo biológico está compuesto por una variedad de seres que, siendo iguales en su origen, son totalmente distintos en sus formas y en sus mentes, y, de la misma manera, al igual que en nuestro planeta Tierra, pasará en otros situados en regiones remotas del espacio. Y, pensando en nuestras vidas, podemos llegar a preguntarnos si todo ésto tiene algún sentido. ¿Para qué tanto esfuerzo y ? ¿No será que estamos preparando el terreno para “seres” artificiales que, mejor dotados que nosotros para salir al espacio exterior, serán los que suplanten a la Humanidad y cumplan finalmente los sueños de ésta tenía y que harán suyos?.
¡Qué lastima! Si ese fuera nuestro destino. ¡Fabricar a una especie artificial para que cumpliera nuestros deseos! Lo cierto es que, nosotros los humanos, no estamos físicamente preparados para a las estrellas, y, de hacerlo, necesitaríamos dotarnos de tanta seguridad que, los costes, serían impensables. Naves como ciudades que nos transportaran muy lejos, y, pensando en que estamos supeditamos a la velocidad de la luz, estas naves-ciudades estarían preparadas para mantener a generaciones.
Ciudades que surcan el hiperespacio
Nuestro futuro es muy incierto, y, como podemos ver día, estamos supeditados a los caprichos de la Naturaleza. Conceptualmente, la biología generalmente va a la saga de la física. Si bien es cierto que las ideas de Darwin sobre la evolución han desplazado la concesión trasnochada y, ¿por qué no?, anti-ilustrada de la creación espacial, pero es cierto que bien entrado el siglo XX, muchos biólogos todavía pensaban instintivamente que los seres humanos representaban la culminación de la evolución, y que nuestra especie no era simplemente el centro del desarrollo evolutivo sino, en realidad, su razón de ser. Y, tales pensamientos, nos pueden dar una idea muy clara del nivel de sabiduría del que podemos presumir.
Ahora sabemos que nuestra contribución al árbol genealógico de la vida es tan periférica y minúscula como la de la Tierra en el Universo. El árbol, tal como lo podemos ver hoy, es realmente frondoso. que surgió la vida en la Tierra, probablemente haya producido cientos de miles de millones, quizás billones, de ramitas, donde cada ramita representa una especie, y Homo sapiens es sólo una más entre ellas. En pocas palabras, nuestra especie ha sido tan cabalmente “periferalizada” por la biología como lo ha sido por la cosmología. Sólo somos una de las formas de vida que habita el Universo y, no es seguro que seámos la más inteligente.
El Universo es muy grande, un sin fin de mundos están presentes en cientos de miles de galaxias y, ¿qué pasa con la vida? ¿Quién puede decir que la única vida que existe es la que podemos contemplar en nuestro pequeño planeta que, al fin y al cabo es, como un grano de arena perdido en la inmensidad del espacio “infinito”? ¿Cuántas especies inteligentes podrían estar preguntándose lo mismo que nosotros?
Una vez que hemos comprendido que no somos “los elegidos” y que, estamos en este Mundo, una infinitesimal fracción de una Galaxia de cientos de miles de millones de ellas, podemos ser conscientes de que, la humildad será nuestra mejor elección para no equivocarnos y llevarnos decepciones que, en otro caso, serían de consecuencias muy graves. Muchas pueden ser las criaturas que, habitantes de otros mundos, nos pueden superar en inteligencia y conocimientos y, seguramente por eso, porque en nuestro fuero interno algo nos dice que es así, nos estamos preparando para ese futuro que irremediablemente llegará, y, lo único que podemos hacer es crear réplicas de nosotros mismos que, aunque artificiales, puedan representarnos de alguna manera en ese futuro incierto.
No podemos saber lo que vendrá. ¡Es tan grande el Universo!
Ese encuentro maravilloso que tantas veces hemos imaginado, es posible que no lo sea tanto. No podemos saber las criaturas que pueden estar presentes en otros mundos y con qué medios puedan contar. Siempre se me hizo cuesta arriba el hecho de que, algún día del futuro, los robots fabricados por nosotros, podrían adquirir la supremacía del planeta. Sin embargo, alguna vez he pensado también que, quizás, sea la única manera de poder frente a lo que vendrá.
Hemos oído en no pocas ocasiones que la realidad supera a la imaginación, y, luego, simplemente con ver todo lo que existe en el Universo, podemos dar fe de tal afirmación. ¿Quién iba a pensar hace 150 años en la existencia de Agujeros Negros o Estrellas de Neutrones? Y, de la misma manera que aquí en la Tierra surgieron cientos de miles de especies y formas de vida a lo largo de su historia, ¿qué prohíbe que en otros mundos surgieran también especies de vida que ni podemos imaginar? ¿Y, la Naturaleza? En Japón hemos visto estos días de lo que es capaz y, desde luego nada puede ser descartado.
Cualquier cosa ser posible, ¡es tan frágil la línea que nos separa del Caos!
Es cierto, nuestras limitaciones son enormes, enorme es también nuestra ignorancia y, si somos conscientes de ello, habremos dado un gran paso para frente a lo que pueda venir. Al menos no nos cogerá desprevenido y, el suceso es menos doloroso cuando se espera.
Sí, es verdad, que a veces, confundimos la ilusión y la euforia del momento con la realidad. Sin embargo, nada más lejos de ser cierto. Vivimos en una falsa seguridad cotidiana que nos hace no pensar en lo que llegar: Un accidente, una enfermedad, un meteorito caído del cielo, un terremoto, o, incluso una estrella enana marrón que choque con la Luna y dé al traste con nuestra tranquila vida en este planeta.
El destino, ¡tiene tántas bifurcaciones! Parece un laberinto de espejos que lo hace incierto.
Así que, ilusos y tranquilos -de otra manera sería horrible la vida-, en estos últimos años hemos sido capaces de determinar los genes responsables de las más variadas manifestaciones de nuestra existencia: susceptibilidad a la obesidad, diferentes tipos de tumores, esquizofrenia, depresión o la mayor o menor capacidad para danza y ritmo. Y, con sorpresa para algunos, se ha podido saber que nuestra secuencia genética sólo difiere un 0’5% de nuestros parientes cercanos neandertales o que tampoco estamos muy lejos, genéticamente hablando, de algunos equinodermos que divergieron de nuestra rama evolutiva hace 500 millones de años.
Algún día sí que podremos viajar a las estrellas y, para cuando eso pase, es posible, que podamos ser dueños de nuestro destino.
También, al mismo tiempo, hemos construido ingenios que enviados a otros mundos, situados a millones de kilómetros del nuestro, nos mandan imágenes que podemos contemplar tranquilamente sentados en el salón de nuestras casas. Y, paralelamente, se trabaja en cerebros artificiales espintrónicos y, más adelante, positrónicos que ocuparan cuerpos perfectos de robots que, aunque artificiales, algún día llegarán a pensar y sentir. ¿Serán nuestros sucesores? ¿Serán los que finalmente realizarán nuestros sueños de a las estrellas?
Sin embargo, y a pesar de tantas proezas, si en algo sigue la ciencia gateando en la oscuridad, es precisamente en el total desconocimiento de la parte más compleja y delicada de nuestro cuerpo: ¡el Cerebro! ¡Si tuviéramos tiempo!
emilio silvera
Feb
10
¿Cómo se formaron las galaxias?
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (1)
Todavía, en pleno comienzo del siglo XXI, los cosmólogos no saben dar una explicación convincente de cómo se pudieron formar las galaxias.
Lo cierto es que las galaxias no han tenido tiempo para formar cúmulos. Es posible que no consigamos llegar al entendimiento de cómo se pudieron formar las galaxias porque lo estamos mirando desde una perspectiva, o, desde un punto de vista muy estrecho. Es posible que el problema resida en que deberíamos mirar las cosas desde una escala mayor para así, poder entender cómo pudieron duceder las cosas, cómo se formaron los grandes cúmulos de galaxias.
La génesis de las galaxias individuales se podría resolver por sí misma si pudiéramos entender bien la formación de los cúmulos. La idea nos conduce naturalmente a la cuestión de cómo se pueden haber formado concentraciones tan grandes de masa al comienzo de la vida del universo. Una de las ideas más sencillas sobre cómo puede haber sido el universo cuando los átomos se estaban formando es que, no importa lo que estuviese pasando, la temperatura era la misma en todas partes. Este se llama “Modelo Isotérmico”. Corresponde a la suposición de que la radiación en los comienzos del universo estaba diseminada iniformemente, estuviera o no agrupada la materia.
La formación de galaxias es una de las áreas de investigación más activas de la astrofísica, y en cierto sentido, esto también se aplica a la evolución de las galaxias. Sin embargo, hay algunas ideas que ya están ampliamente aceptadas. Actualmente, se piensa que la formación de galaxias procede directamente de las teorías de formación de estructuras, formadas como resultado de las débiles fluctuaciones cuánticas en el despertar del Big Bang. Las simulaciones de N-cuerpos también han podido conjeturar sobre los tipos de estructuras, las morfologías y la distribución de galaxias que observamos hoy en nuestro Universo actual y, examinando las galaxias distantes, en el Universo primigenio. Nuestra Galaxia, la Vía Láctea puede contener algo más de cien mil millones de estrellas, otras más pequelas sólo tienen mil millones y, algunas macrogalaxias pueden llegar a tener 600.000 mil millones de estrellas. Lo cierto es que hemos podido localizar galaxias situadas a más de 11.000 años-luz de la Tierra.
En ese (para nosotros) tan inconmensurable espacio de tiempo, las galaxias han tenido mucho tiempo para evolucionar y, gracias a nuestros modernos ingenios, las hemos podido localizar de todo tipo y en algunas de sus más extrañas configuraciones al fusionarse unas con otras por efecto de la Gravedad que, segú todos los indicios, es el destino que el Universo tiene adjudicado para Andrómeda y la Vía Láctea dentro de algunos miles de millones de años.
Si desarrollamos las consecuencias matemáticas del Modelo Isotérmico, podremos encontrar que los tipos de concentreaciones de masa se podrían haber formado en la infancia del universo y que, de esa manera, son muy fáciles de describir. Con la misma temperatura en todas partes, las fluctuaciones aleatorias ordinarias producirían concentraciones de masa de todos los tamaños, si quisieran encontrar una concentración del tamaño de un planeta, la habría. Lo mismo sucedería con concentraciones de masa del tamaño de estrellas y de galaxias, cúmulos, etc. En la jerga del astrofísico, las concentraciones de masa aparecerían a todas las escalas.
Así, de esa manera, la materia esparcida por todo el espacio y situada a lo largo y lo ancho de él, pudieron formar toda clase de objetos grabdes y pequeños configurando galaxias que, como pequeños universos, lo contenían todo y, eran como universos en miniatura con sus mundos y estrellas y sustancia primigenia dispuesta para interaccionar con la radiación, el electromagnetismo y la Gravedad que serían responsables de la formación de nuevas estrellas y nuevas galaxias.
Claro que, el modelo isotérmico sólo podemos encontrar una solución particularmente simple del problema de las galaxias, porque las concentraciones de masa más pequeñas crecen más rápido que las más grandes. Los primeros objetos que aumentarían serían cosas relativamente pequeñas llamadas protogalaxias, que contendrían quizá un millón de estrellas cada una. Estas protogalaxias se agruparían luego bajo influencias de la Gravedad para formar galaxias con todas las de la ley, que se reunirían a su vez para formar cúmulos y supercúmulos. el universo en este modelo se construiría “desde abajo”
Este cúmulo de galaxias es uno de los objetos más masivos del Universo visible. En esta fotogrrafía de la cámara avanzada para sondeos del Telescopio Espacial Hubble, se ve como Abell 1.689 curva el espacio tal como predijo la teoría de la gravedad de Einstein (las galaxias que hay detrás del cúmulo desvían la luz y producen múltiples imágenes curvadas).
Claro que, en todo esto nos encontramos con un gran inconveniente: ¡No ha habido tiempo para que ese placentero agrupamiento bajo la influencia de la Gravedad haya podido tener lugar lugar desde el momento de la creación, es decir, desde lo que entendemos por Big Bang! Sin embargo y a pesar de ello, ahí las tenemos y podemos contemplarlas en toda su belleza y esplendor pero, ¿cómo pudieron llegar aquí? En realidad, nadie lo sabe.
Hay algunas colecciones de galaxias muy grandes y complejas en el cielo. Nos vemos forzados a concluir que el universo no puede haber tenido una temperatura constante durante el desparejamiento. Es decir, no quiero decir nada contra la existencia de las galaxias, simplemente hago notar que las galaxias no pueden existir si suponemos que la radiación estaba unida y uniformemente distribuida en la infancia del universo. Claro que:
¡Si la radiación marcha junto con la materia y la materia con las galaxias, la radiación de microondas cósmica sería contradictoria!
Si la radiación no se hubiera dispersado uniformemente, con independencia de la materia del universo, ¿?dónde hubiera estado? Siguiendo el procedimiento normal de la física teórica, consideraremos a continuación la tesis opuesta. Suponemos que en el comienzo del Universo la materia y la radiación estaban unidas. Si era así, allí donde se encontrara una concentyración de masa, también habría una concentración de radiación. En la jerga de la física se dice que esta situación es “adiabática”. Aparece siempre que tienen lugar en las distribuciones del gas cambios tan rápidos que la energía no puede transferirse fácilmente de un punto al siguiente.
En esta imagen obtenida con el Hubble, se observa una lejana proto-galaxia. Una proto-galaxia, es un objeto que dará una galaxia como resultado de su evolución; una galaxia naciente o en formación. Una galaxia muy lejana, es vista muy joven ya que su luz tarda en llegar a nosotros, por eso se dice que “vemos el pasado”. MACS0647-JD, es una galaxia hecha y derecha, pero tan lejana que la vemos como era hace mucho tiempo atrás. Está a 13 mil millones de años luz de casa. Como ese es el tiempo que tarda su luz en llegar a nosotros, la vemos como era hace ese tiempo atrás. Si tenemos en que el Universo se formó hace casi unos 14 mil millones de años (aproximadamente), eso convierte a este objeto en una galaxia de las primeras en formarse. Al verla como un agalaxia naciente, debería estar llena de estrellas brillantes y calientes.
Sabemos que, para hacer galaxias, la materia del universo tuvo que estar muy bien distribuida en agregados cuando se formaron los átomos. Llamaremos a esto “darle un empukon al proceso”. Un corolario necesario es que en condiciones adiabáticas, la radiación debe de haber comenzado siendo agrupada también.
Aquí se pretende representar el pasado y el futuro del universo que, se expandió primero de manera muy rápida, después más lenta, y de nuevo la velocidad aumentó, de manera tal que el recorrido represrenta una especie de S que nos habla del pasado y del futuro.
Entre los otros muchos procesos en marcha en aquellos primeros momentos del nacimiento del universo, en aquel tiempo, uno de los principales parámetros a tener en es el de la rápida expansión, ese proceso que ha venido a ser conocido como inflación. Es la presencia de la inflación la que nos conduce a la predicción de que el universo tiene que ser plano.
Se pudieron formar los núcleos y los átomos de la materia
El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; todos hemos podido ver una botella de líquido explotar si alcanzanda la congelación, el contenido se expande y el recipiente no puede contenerlo. No debería sert demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.
Claro que no es fácil explicar cómo a medida que el espacio crece debido a esa expansión, se hace más y más voluminoso cada vez y también, cada vez menos denso y más frío. Lo que realmente sorprende es la inmensa magnitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1060 longitudes de Planck. Acordáos de aquellos números que en aquel que titulé, ¿Es viejo el Universo?, os dejaba allí expuestos unos interesantes sobre nuestro universo. Volvamos a verlos:
– La edad actual del universo visible ≈ 1060 tiempos de Planck
– Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
– La masa actual del Universo visible ≈ 1060 masas de Planck
– Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:
– Densidad actual del universo visible ≈10-120 de la densidad de Planck
– Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto
– Temperatura actual del Universo visible ≈ 10-30 de la Planck
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción. Lo cierto es que, son tan grandes y tan pequeñas esos números y fracciones que, para nosotros, no tienen significación consciente, no las podemos asimilar al tratarse, como se dice más arriba, de medidas sobrehumanas. Si un átomo aumentara en esa proporción de 1060 no tendría canbida en el Universo, el átomo sería mayor.
Decíamos que en 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una naranja. No debe sorprendernos pués, que el inflación esté ligado a este proceso. Es cierto que cuando oímos por primera vez este proceso inflacionista, podamos tener alguna dificultad con el índice de inflación que se expone sucedió en el pasado. Nos puede llevar, en un primer momento, a la idea equivocada de que se han violado, con un crecimiento tan rápido, las reglas de Einstein que impiden viajar más veloz que la luz, y, si un cuerpo material viajó la línea de partida que señalan los 10-35 segundos aquella otra que marca la dimensión de una naranja…¡su velocidad excedió a la de la luz!
Claro que la respuesta a que algo sobrepasara la velocidad de la luz, c, es sencilla: NO, nada ha sido en nuestro universo más rápido que la luz viajando, y la explicación está en el hecho cierto de que no se trata de algo pudiera ir tan rápido, sino que, por el contrario, en lugar de que un objeto matrerial vciajara por el espacio, lo que ocurrió es que fue el espacio mismo el que se infló -acordáos de la masa de pan que crece llevando las pasas como adorno-, y, , esa expansión hace que las galaxias -las pasas de la masa-, se alejen cada vez más las unas de las otras, haciendo el universo más grande y frío cada vez.
Así que, con la expansión o inflación, ningún cuerpo material se movió a grandes velocidades en el espacio, ya que, fue el espacio mismo el que creció y, de alguna manera, su tremenda expansión, incidió sobre los objetos que contenía que, de esa manera, pasaron de estar muy juntos a estar muy separados. Las reglas contra el viaje a velocidades superiores a la de la luz sólo se aplican al movimiento al movimiento dentro del espacio, no al movimiento del espacio. Así no hay contradicción, aunque a primera vista pudiera parecerlo.
Empleamos todos los medios a nuestro alcance e ideamos nuevos ingenios para poder asomarnos a las escalas más extremas del universo, con los telescopios queremos llegar las primeras gaalxias y, con los aceleradores de partículas nos queremos asomar a ese momento primero en el que se formó la materia.
A los cien millones de años el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces. Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.
A la edad de mil millones de años, el Universo tiene un aspecto muy diferente. El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro billa un quásar blancoazulado. El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.
Nuestras galaxias vecinas del supercúmulo de Virgo están relativamente cerca; la expansión del Universo aún no ha tenido tiempo de alejarlas a las distancias-unas decenas de millones de años-luz a las que las encontraremos . El Universo es aún altamente radiactivo. Torrentes de rayos cósmicos llueven a través de nosotros en cada milisegundo, y si hay vida en ese tiempo, probablemente está en rápida mutación.
Hay algo que es conocido por el término técnico de desacoplamiento de fotones, en ese momento, la oscuridad es reemplazada por una deslumbrante luz blanca, se cree que ocurrió cuando el Universo tenía un millón de años. El ubicuo gas cósmico en aquel momento se había enrarecido los suficientes como permitir que partículas ligeras –los fotones– atraviesen distancias grandes sin chocar con partículas de materia y ser reabsorbidas.
(Hay gran cantidad de fotones en reserva, porque el Universo es rico en partículas cargadas eléctricamente, que generan energía electromagnética, cuyo cuanto es el fotón.) Es esa gran efusión de luz, muy corrida al rojo y enrarecida por la expansión del Universo, la que los seres humanos, miles de millones de años después, detectaran con radiotelescopios y la llamaran la radiación cósmica de fondo de microondas. Esta época de “sea la luz” tiene un importante efecto sobre la estructura de la materia. Los electrones, aliviados del constante acoso de los fotones, son libres de establecerse en órbita alrededor de los núcleos, formando átomos de hidrógeno y de helio.
Sí, de todo eso hemos podido saber pero, ¿cómo se pudieron formar las galaxias a pesar de la expansión del universo? ¿por qué la matería se pudo agrupar y no salió despedida y se dispersó impidiendo esa formación? Lo cierto es que nadie sabe contestar esa pregunta y, se estima, se cree, se piensa que, allí podría haber estado presente una especie de “materia” o “sustancia” cósmica que no emitía radiación y que, generando gravedad, podría haber retenido la materia de manera suficiente para que se pudieran formar las galaxias.
¡Es todo tan complejo!
emilio silvera