Mar
17
¡Materia – Antimateria! ¿Habrá universos de antimateria?
por Emilio Silvera ~ Clasificado en Antimateria ~ Comments (1)
Acelerador de antiprotones del CERN
Allá por el año 2011, los medios publicaron la noticia: “El experimento Alpha del Laboratorio Europeo de Física de Partículas (CERN) ha conseguido atrapar átomos de antimateria durante más de 1.000 segundos, unos 16 minutos, lo que les permitirá a estudiar sus propiedades en detalle, según explica un artículo publicado en ‘Nature Physics’.”
Para hablar de antimateria lo tenemos que hacerlo de antipartículas, es decir, partículas subatómicas que tienen la misma masa que otras partículas y valores iguales pero opuestos de otra propiedad o propiedades. Por ejemplo, la antipartícula del electrón es el positrón, que tiene una carga positiva igual en módulo a la carga negativa del electrón. El antiprotón tiene una carga negativa igual en módulo a la carga positiva del protón. El neutrón y el antineutrón tienen momentos magnéticos con signos opuestos en con sus espines.
Paul Adrien Maurice Dirac, considerado uno de los padres de la mecánica cuántica, a la que dio una formulación elegante y precisa, hasta tal punto que su texto es aún utilizado hoy en día. Él predijo la existencia del Positrón, la antipartícula del Electrón. Le concedieron el Premio Nobel de Física en 1933 (compartido con su colega Erwing Schrödinger.
La existencia de antipartículas es predicha por la mecánica cuántica relativista. Cuando una partícula y su correspondiente antipartícula colisionan ocurre la aniquilación. La antimateria consiste en materia hecha de antipartículas.
Por ejemplo, el antihidrógeno consiste en un antiprotón con un antielectrón (positrón) orbitando. El antihidrógeno ha sido creado artificialmente en el laboratorio. El espectro del antihidrógeno no debería ser idéntico al del hidrógeno. Parece que el Universo está formado mayoritariamente por materia (ordinaria) y la explicación de la usencia de grandes cantidades de antimateria debe ser incorporada en cosmológicos que requieren el uso de teorías de gran unificación de partículas elementales.
Los físicos del CERN han obligado a los átomos de antihidrógeno a quedarse, lo que potencialmente nos ofrecen una mejor visión de cómo se comporta la antimateria. Primeramente, los investigadores informaron de la captura de anti-hidrógeno, el de antimateria más simple. Pero su acptura en ese momento se limitaba a menos de dos décimas de segundo. Ese intervalo se ha ampliado en más de 5.000 veces. En un estudio publicado el 5 de junio de 2011 en Nature Physics por este grupo de investigadores (ALFA) se informa de este mismo logro pero por un tiempo de 16 minutos y 40 segundos.
Las partículas subatómicas de materia, protones, neutrones y electrones tienen particulas homólogas de antimateria. Cuando la materia y la antimateria se juntan se aniquilan en una explosión de energía. como el átomo de hidrógeno se compone de un solo protón unido a un electrón, un átomo de antihidrógeno contiene un antiprotón y un positrón.
La Materia, aunque estamos en vías de adquirir profundos conocimientos de sus secretos, a pesar de eso, nos es aún (en ciertos aspectos) una gran desconocida, ya que, se habla de materia extraña, materia oscura o materia fértil y, desde luego, habrá clases de materia que ni podemos suponer, como por ejemplo, ¿qué de materia será, la que se crea cuando al morir una estrella masiva se forma un agujero negro que, por medio de la Gravedad, comprime la materia común hasta límites tan extremos y desconocidos que desaparece de este mundo nuestro y sólo deja sentir la enorme fuerza de gravedad que genera, de tal manera que en ese lugar, dejan de existir el tiempo y el ?
Es tanta la ignorancia que atesoramos sobre la materia que, para tapar huecos que para nosotros no tienen explicación, hablamos de cosas extrañas como la “materia oscura” que, finalmente, podría estar representada por una de Ylem (la sustancia cósmica de los griegos clásicos), algo que no sabemos lo que es ni de qué puede estar compuesta, no emite radiación y resulta invisible, y, al parecer, según nos dicen, lo único que deja “ver” o “sentir” es la Gravedad que genera y que incide en el devenir del Universo.
En realidad, aún no tenemos claro ni cómo pudieron formarse las galaxias a pesar de la expansión de Hubble
Claro que, el comportamiento de la materia es así por el simple hecho de que está conformada por minúsculas partículas (unas más elementales que otras) que, se rigen por el principio de la Mecánica cuántica, y, allí, amigos míos, nada de lo que ocurre está asociado a lo que nos dicta el sentido común. El micro de las partículas subatómicas es extraño y, en él se pueden dar fenómenos que no podemos llegar a comprender, o, que nos cuesta comprender. No obstante, algunos de esos fenómenos sí que han sido descubiertos por los físicos y, de esa manera, han ayudado a que conozcamos mejor el mundo en el que vivímos.
Conensado de Bose-Einstein
Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene no sólo a los electrones, sino también a los fermiones; pero no a los bosones.
La radiación sincrotrón es la que produce una partícula cargada; por ejemplo, un electrón, cuando gira en un magnético. En función de la energía del electrón, los fotones emitidos pueden tener energías de radio, de rayos X o mayores.
La observación de este fenómeno ha sido posible gracias al satélite Fermi, especializado en rayos gamma, que cuenta con un gran telescopio conocido como LAT (Large Area Telescope, por sus siglas en inglés). Desde su puesta en órbita, en junio de 2008, el LAT ha monitoreado la nebulosa del Cangrejo.
Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma un magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.
Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es: ¡materia! La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas (aunque a veces no podamos verla).
Sea como fuere, la rotación del neutrón nos da la a esas preguntas
¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo , está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos. Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.
La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más .”
¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza? Podemos recordar (aunque ha pasado mucho tiempo) lo que hizo Rutherford para identificar la primera partícula nuclear (la partícula Alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyen para conseguir llegar al conocimiento del átomo y del núcleo ; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los fluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.
¡Hablamos de tántas cosas! desde fluctuaciones de hasta partículas de Higgs dadoras de masa que dicen haber encontrado en el LHC
Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de alguna actividad inusual que delate interacciones materia-antimateria.
El 22 marzo de 2011 se produjo la creación de 18 núcleos de antihelio-4, lo que fue un hito en la física de alta energía. Una de las grandes cuestiones que crean problemas a los cosmólogos y físicos de partículas es la distribución de materia y antimateria en el universo. Ciertamente parece que la materia predomina en el cosmos, pero las apariencias pueden engañar. Puede que simplemente vivamos en un rincón del universo que parece estar dominado por la materia. Con logros como este, algunos hablan ya de galaxias de antimateria. Lo cierto es que, hoy, encontramos que hay un poco de antimateria extra en nuestro rincón gracias al de la colaboración STAR en el RHIC del Laboratorio Nacional Brookhaven en los Estados Unidos.
En fin amigos, que como siempre estamos diciendo, nos queda mucho por saber sobre el comportamiento de la materia y, hasta donde ésta puede llegar con la evolución a la que está abocada por el transcurso del tiempo, las energías y el ritmo del Universo que, como sabemos, es un ritmo en el que el Tiempo, tiene un papel estelar.
Si tuviéramos delante de nuestros ojos átomos de materia-antimateria aumentados millones de veces, no sabríamos distinguir cuál es uno y otro, nos parecerían exactamente iguales y, sólo al juntarse y destruirse mutuamente, podríamos estar seguros de que eran dos clases de materia distintas en sus cargas e iguales, en todo lo demás.
La Materia, en cada momento, está conformada en el nivel que las muchas transiciones de fase ha producido en ella mediante los mecanismos que la Naturaleza tiene para ello, y, desde luego, una porción de ella puede estar hoy formando el lecho de un rumoroso río, y, “”, podría estar formando parte de un fértil árbol que proporciona una sabrosa fruta, o, ¿por qué no? Podría estar formando parte de un exótico agujero negro. Cualquier cosa que podamos pensar sobre la materia, en realidad es posible. Sólo se necesita tiempo para que el cambio, finalmente, se pueda producir.
¿Qué seremos nosotros dentro de 10 millones de Años? ¿Estaremos aquí? ¿En qué forma? ¿Qué cambios se habrán producido en nosotros? Y, si hemos conseguido vencer ese período de tiempo, lo que de verdad espero es que la Humanidad o lo que pueda ser en lo que se convierta la , si tiene consciencia de SER, que al menos, con los cambios y mutaciones, no pierda ese bien tan preciado que llamamos SENTIMIENTOS aunque, para entonces, estén hechos o generados por antimateria. ¡Es todo tan complejo!
emilio silvera
el 17 de marzo del 2014 a las 10:50
La antimateria ha dado mucho de que hablar y, desde experimentos múltiples hasta proyectos específicos para encontrarla en el Universo, a libros y miles de artículos sobre ella, podemos decir que la materia ha sido una de las protagonistas del Universo, a pesar, de no haberlo podido encontrar nunca en su estado natural. Aunque, eso sí, lo hemos intentado. La materia, como tengo dicho en muchos de mis escritos… ¡Esconde muchos secretos!
En un estudio reciente, publicado en el último by Savings Addon” href=”../../../../2013/07/28/%C2%BFque-hay-el-nucleo-de-un-pulsar-%C2%BFexisten-estrellas-de-quarks-gluones/”>número de Nature Physics, aparecen los resultados de la investigación, basada en simulaciones por ordenador de la evolución del campo magnético de los púlsares, que aborda este misterio. La idea fundamental es que el campo magnético no permanece constante, sino que se disipa muy rápidamente debido a la alta resistividad eléctrica de una capa de la corteza interna, donde las corrientes eléctricas que soportan el campo magnético ultraintenso de las estrellas de neutrones tienden a a desplazarse. Lo localización de dicha capa resistiva coincide con las predicción de un by Savings Addon” href=”../../../../2013/07/28/%C2%BFque-hay-el-nucleo-de-un-pulsar-%C2%BFexisten-estrellas-de-quarks-gluones/”>nuevo estado de la materia nuclear, llamado “pasta nuclear”.
La pasta nuclear, llamada así por similitud con la pasta italiana, sucede cuando la combinación de la fuerza nuclear y electromágnetica, a densidades cercanas a la de los núcleos atómicos, favorece el ordenamiento de los nucleones (protones y neutrones) en formas geométricas no esféricas, como láminas o filamentos (lasaña o espagueti).
Esta puede ser la primera evidencia observacional de la existencia de la fase de “pasta nuclear” en el interior de estrellas de neutrones, lo cual puede permitir que futuras misiones de observatorios de rayos X puedan usarse para aclarar aspectos de cómo funciona la interacción nuclear que aún no están del todo claros. Es una by Savings Addon” href=”../../../../2013/07/28/%C2%BFque-hay-el-nucleo-de-un-pulsar-%C2%BFexisten-estrellas-de-quarks-gluones/”>oportunidad única, ya que probablmente no hay otro lugar en el Universo, aparte de las estrellas de neutrones, donde podamos encontrar las by Savings Addon” href=”../../../../2013/07/28/%C2%BFque-hay-el-nucleo-de-un-pulsar-%C2%BFexisten-estrellas-de-quarks-gluones/”>condiciones necesarias para que se forme la “pasta nuclear”.
Después de leer el artículo del profesor Pons, se me ocurre que la materia, en realidad, es una gran desconocida y guarda secretos que debemos desvelar para poder obtener de ella todo lo que nos ofrece que es mucho y que no hemos sabido aprovechar por el momento en toda su extensión y sus muchas posibilidades que nos llevarán hacia otra by Savings Addon” href=”../../../../2013/07/28/%C2%BFque-hay-el-nucleo-de-un-pulsar-%C2%BFexisten-estrellas-de-quarks-gluones/”>forma de ver el universo.
En otra ocasión os hablé aquí de la posibilidad (nunca podemos negar nada que nuestra imaginación pueda idear), de que existieran estrellas hechas de materia extraña, es decir de una especie de pasta densa compuesta de Quarks-Gluones y que estaría en la escala intermedia by Savings Addon” href=”../../../../2013/07/28/%C2%BFque-hay-el-nucleo-de-un-pulsar-%C2%BFexisten-estrellas-de-quarks-gluones/”>entre las estrellas de neutrones y los agujeros negros.
Así, podríamos continuar imaginando de cuántas maneras podría estar presente la materia en nuestro Universo sin que nosotros la conozcamos y, convencidos de “saber” lo que la materia es, nos centramos en los Quarks que conforman los nucleones de los átomos y en los electrones que circunda ese núcleo atómico en el que reside el 99% de la materia a pesar de ser solo el 1/100 000 del átomo.
¡Necesitamos más tiempo para saber, lo que la materia es!