miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Conocer la Naturaleza! Hoy sólo un sueño ¿Realidad mañana?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios


A partir de sus principios en Sumeria (actualmente en Irak) alrededor del 3500 a. C., en Mesopotamia, los pueblos del norte comenzaron a intentar la observación del mundo con cuantitativos y numéricos sumamente cuidados. Pero sus observaciones y medidas aparentemente fueron tomadas con otros propósitos más que la ley científica. Un caso concreto es el del teorema de Pitágoras, que fue registrado, aparentemente en el siglo XVIII a. C.: la tabla mesopotámica Plimpton 322 registra un de trillizos pitagóricos (3,4,5) (5,12,13)…., datado en el 1900 a. C., posiblemente milenios antes de Pitágoras,1 pero no era una formulación abstracta del teorema de Pitágoras.

Los avances significativos en el Antiguo Egipto son referentes a la astronomía, a las matemáticas y a la .2 Su geometría era una consecuencia necesaria de la topografía, con el fin de intentar conservar la disposición y la propiedad de las tierras de labranza, que fueron inundadas cada año por el Nilo. La regla del triángulo rectángulo y otras reglas básicas sirvieron para representar estructuras rectilíneas, el pilar de la arquitectura dintelada egipcia. Egipto era también el centro de la química y la investigación para la mayor parte del Mediterráneo.

Nuevas paradigmas en la Física Moderna

Isabel Pérez Arellano y Róbinson Torres Villa, publicaron un artículo en 2009, sobre la física moderna y sus paradigmas y, comenzaban diciendo:


“Desde siempre el hombre ha intentado dar a los interrogantes más profundos que lo inquietan; preguntas

que van desde ¿Quién soy?, ¿de dónde vengo? ¿y hacia dónde voy?, hasta los intentos por explicar el origen y final universo en qué vive. Muchas son las prepuestas que se han dado a esos interrogantes, dependiendo de la corriente de pensamiento seguida por quien aborda esas preguntas; es así como se ven aproximaciones místicas, esotéricas, religiosas y científicas entre otras; pero todas con el objetivo de dilucidar alguna respuesta a esas preguntas fundamentales.

Desde el punto de vista científico y concretamente de la física moderna, se han planteado algunas explicaciones del universo en el que vivimos que algunas veces rozan con lo fantástico, dado el nivel de abstracción o especulación que llevan implícito, todo obviamente avalado por sofisticados matemáticos que al parecer soportan las hipótesis planteadas.”

 

 

 

 

Si repasamos la de la ciencia, seguramente encontraremos muchos motivos para el optimismo. Por mencionar a un científico de nuestro tiempo, escojamos a E. Witten que está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck. Como ya he contado en otras ocasiones, él dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles. En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible. Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas… La teoría cuántica de es tan difícil que nadie la creyó completamente durante 25 años.”

En su opinión, las buenas ideas siempre se verifican. Los ejemplos son innumerables: la gravedad de Newton, el eléctrico de Faraday y el electromagnetismo de Maxwell, la teoría de la relatividad de Einstein en sus dos versiones y su demostración del efecto fotoeléctrico, la teoría del electrón de Paul Dirac, el principio de incertidumbre de Heisenberg, la función de ondas de Schrödinger, y tantos otros. Algunos de los físicos teóricos más famosos, sin embargo, protestaban de tanto empeño en la experimentación.

El astrónomo arthur Eddington se cuestionaba incluso si los científicos no estaban forzando las cosas cuando insistían en que todo debería ser verificado. El premio Nobel Paul dirac incluso llegó a de forma más categórica: “Es más tener belleza en las ecuaciones que tener experimentos que se ajusten a ellas“, o en palabras del físico John Ellis del CERN, “Como decía en una envoltura de caramelos que abrí hace algunos años, «Es sólo el optimista el que consigue algo en este mundo».

Yo, como todos ustedes, un hombre normal y corriente de la , escucho a unos y a otros, después pienso en lo que dicen y en los argumentos y motivaciones que les han llevado a sus respectivos convencimientos, y finalmente, también decido según mis propios criterios y emito mi opinión de cómo es el mundo que, no obligatoriamente, coincidirá con alguna de esas opiniones, y que en algún caso, hasta difieren radicalmente.

Suponiendo que algún físico brillante nos resuelva la teoría de de cuerdas y derive las propiedades conocidas de nuestro universo, con un poco de suerte, podría ocurrir en este mismo siglo, lo que no estaría nada mal considerando las dificultades de la empresa. El problema fundamental es que estamos obligando a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando su “ámbito natural” está en la energía de Planck. Esta fabulosa energía fue liberada sólo en el propio instante de la creación, lo que quiere decir que la teoría de supercuerdas tiene su explicación allí, en aquel lugar y tiempo donde se produjeron las mayores energías conocidas en Universo y que, nosotros, no podemos alcanzar -de momento-.

Fuimos capaces de predecir que el Big Bang produjo un “eco” cósmico reverberando en el universo y que ser mesurable por los instrumentos adecuados. De hecho, Arno Penzias y Robert Wilson de los Bell Telephone Laboratories ganaron el premio Nobel en 1.978 por detectar este eco del Big Bang, una radiación de microondas que impregna el universo conocido.

                    Como una onda, podemos detectar el eco del big bang (es curioso que cuando escribí ésto, no pensaba que tan pronto sería realidad, las últimas noticias publicadas sobre el tema así lo han confirmado, han sido detectadas: ¡Ondas gravitacionales procedentes del Big Bang!

El que el eco del Big Bang debería estar circulando por el universo miles de millones de años después del suceso fue predicho por primera vez por George Gamow y sus discípulos Ralpher y Robert Herman, pero nadie les tomó en serio. La propia idea de medir el eco de la creación parecía extravagante cuando la propusieron por primera vez poco después de la segunda guerra mundial. Su lógica, sin embargo, era aplastante. Cualquier objeto, cuando se calienta, emite radiación de forma gradual. Ésta es la razón de que el hierro se ponga al rojo vivo cuando se calienta en un , y cuanto más se calienta, mayor es la frecuencia de radiación que emite. Una fórmula matemática exacta, la ley de Stefan-Boltzmann, relaciona la frecuencia de la luz (o el color en este caso) con la temperatura. De hecho, así es como los científicos determinan la temperatura de la superficie de una estrella lejana; examinando su color. Esta radiación se denomina radiación de cuerpo negro.

US_ARMY
captada a través de un visor nocturno. En ella se muestra a un soldado estadounidense equipado con unas gafas de visión nocturna. / US Army

Esta radiación, ¡cómo no!, ha sido aprovechada por los ejércitos, que mediante visores nocturnos pueden operar en la oscuridad. De noche, los objetos relativamente calientes, tales como soldados enemigos o los carros de combate, pueden estar ocultos en la oscuridad, pero continúan emitiendo radiación de cuerpo negro invisible en forma de radiación infrarroja, que puede ser captada por gafas especiales de infrarrojo. Ésta es también la razón de que nuestros automóviles cerrados se calientes en verano, ya que la luz del Sol atraviesa los cristales del coche y calienta el interior. A medida que se calienta, empieza a emitir radiación de cuerpo negro en forma de radiación infrarroja. Sin embargo, esta de radiación no atraviesa muy bien el vidrio, y por lo tanto queda atrapada en el interior del automóvil, incrementando espectacularmente la temperatura y, cuando regresamos para proseguir el camino… ¿quién es el guapo que entra?

Reacción química con CO2

Análogamente, la radiación de cuerpo negro produce el efecto invernadero. Al igual que el vidrio, los altos niveles de dióxido de carbono en la atmósfera, causados por la combustión sin de combustibles fósiles, pueden atrapar la radiación de cuerpo negro infrarroja en la Tierra, y de

este modo calentar gradualmente el planeta.

Gamow razonó que el Big Bang era inicialmente muy caliente, y que por lo tanto sería un cuerpo negro ideal emisor de radiación. Aunque la tecnología de los años cuarenta era demasiado primitiva para captar esta débil señal de la creación, Gamow pudo calcular la temperatura de dicha radiación y predecir con fiabilidad que un día nuestros instrumentos serían lo suficientemente sensibles como para detectar esta radiación “fósil”.

La lógica que había detrás de su razonamiento era la siguiente: alrededor de 300.000 años después del Big Bang, el universo se enfrió hasta el punto en el que los átomos pudieron a componerse; los electrones, entonces,  pudieron a rodear a los protones y neutrones formando átomos estables, que ya no serían destruidos por la intensa radiación que estaba impregnando todo el universo. Antes de este momento, el universo estaba tan caliente que los átomos eran inmediatamente descompuestos por esa radiación tan potente en el mismo acto de su . Esto significa que el universo era opaco, como una niebla espesa absorbente e impenetrable.

Pasados 300.000 años, la radiación no era tan potente; se había enfriado y por lo tanto la luz podía atravesar grades distancias sin ser dispersada. En otras palabras, el universo se hizo repentinamente negro y transparente.

Así se hizo la luz en el Universo

Terminaré esta parte comentando que un auténtico cuerpo negro es un concepto imaginario; un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica. La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la disminución de energías sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumentar las temperaturas*.

Hablar, sin más especificaciones, de radiación, es refiriéndonos a una energía que viaja en forma de ondas electromagnéticas o fotones por el universo. También nos podríamos estar refiriendo a un chorro de partículas, especialmente partículas alfa o beta de una fuente radiactiva o neutrones de un reactor nuclear.

       Radiación y magnetismo presentes en todas

La radiación actínida es la electromagnética que es capaz de una reacción química. El término es usado especialmente para la radiación ultravioleta que emiten las estrellas jóvenes y azuladas en las bellas nebulosas en las que podemos contemplar regiones azuladas que producen esta radiación tan potente al contactar con el gas y el polvo interestelar que ioniza.

Muchos son los tipos conocidos: Radiación blanda, radiación cósmica, radiación de calor, radiación de , de fondo de microondas, radiación dura, electromagnética, radiación gamma, infrarroja, ionizante, monocromática, policromática, de sincrotón, ultravioleta, de la teoría cuántica, de radiactividad… y, como se puede ver, la radiación en sus diversas formas es un universo en sí misma.

El físico alemán Max Planck (1.858 – 1.947), responsable entre otros muchos logros de la ley de radiación de Planck, que da la distribución de energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la de la teoría cuántica.

Einstein se inspiró en este para a su vez presentar el suyo propio sobre el efecto fotoeléctrico, donde la energía máxima cinética del fotoelectrón, Em, está dada por la ecuación que lleva su nombre: Em = hf – Φ.

Planck publicó en 1.900 un artículo sobre la radiación de cuerpo negro que sentó las bases para la teoría de la mecánica cuántica que más tarde desarrollaron otros, como el mismo Einstein, Heisenberg, Schrödinger, Dirac, Feymann, etc. Todos los físicos son conocedores de la enorme contribución que Max Planck hizo en física: la constante de Planck, radiación de Planck, longitud de Planck, unidades de Planck, etc. Es posible que sea el físico de la historia que más veces ha dado su nombre a conceptos de física. Pongamos un par te ejemplos de su ingenio:

1.  Esta escala de longitud ( 10-35 m ) veinte órdenes de magnitud menor que el tamaño del protón, de 10-15 m, es a la que la descripción clásica de gravedad cesa de ser válida y debe ser tenida en la mecánica cuántica. En la fórmula que la describe, G es la constante gravitacional, ħ es la constante de Planck racionalizada y c en la velocidad de la luz.

2.    Es la masa de una partícula cuya longitud de onda Compton es igual a la longitud de Planck. En la ecuación, ħ es la constante de Planck racionalizada, c es la velocidad de la luz y G es la constante gravitacional.

La descripción de una partícula elemental de esta masa, o partículas que interaccionan con energías por partículas equivalentes a ellas (a través de E = mc2), requiere de una teoría cuántica de la gravedad. Como la masa de Planck es del de 10-8 Kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del orden de 10-27 Kg y las mayores energías alcanzables en los aceleradores de partículas actuales son del de 14 TeV, los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas.

 

                                                                         Las primeras colisiones a 7 TeV en los detectores CMS y ATLAS del LHC (CERN)

Únicamente en un laboratorio aparecieron partículas que tenían energías del de la masa de Planck: en el universo primitivo, de acuerdo con la teoría del Big Bang, motivo éste por el que es necesaria una teoría cuántica de la gravedad para estudiar aquellas . Esta energía de la que estamos hablando, del orden de 1019 GeV (inalcanzable para nosotros), es la que necesitamos para verificar la teoría de supercuerdas.

Siempre, desde que puedo recordar, me llamó la atención los misterios y secretos encerrados en la naturaleza, y la innegable batalla mantenida a lo largo de la por los científicos para descubrirlos.

emilio silvera

 

  1. 1
    Emilio Silvera
    el 18 de marzo del 2014 a las 11:21

    Tratar de hacer un recorrido por la Historia de la Ciencia, siempre sería incompleto. Muchos hechos y personajes quedarían inéditos y nunca podríamos conformar una Historia coherente y acorde a la realidad. Aquellos primeros pueblos, pudieron construir Civilizaciones que llegaron, sin más herramientas que la de sus propias ideas, a imaginar lo que podría ser la Naturaleza y trataron de observar los fenómenos que en ella se producían, los cambios y todas aquellas transformaciones que observaban a su alrededor.

     

    Mucho hemos podido avanzar el campo científico desde nuestra especie construyó las primeras ciudades y, con ellas, comenzó una especie de Sociedad más cerrada y comunicativa entre sus miembros en los que, cada cual, quería mostrar al otro lo que sabía hacer, lo que habñia descubierto, lo que presentía que debería hacer.

    Así, la Ciencia se convirtió con el Tiempo en una disciplina tanto Empírica como Teórica y, entre ambas ramas, trataron de desvelar todos esos misterios que la Naturealeza encierraq y que necesitamos conocer para despejar el horizonte de nuestro futuro. Claro que el origen de la Cienta está disperso por todo lo ancho del mundo y del Tiempo. Solo con mirar en cualquie parte nos lo dirán:

     

     

    “Su origen viene de los esfuerzos para sistematizar el conocimiento y se remonta a los tiempos prehistóricos, como atestiguan los dibujos que los pueblos del paleolítico pintaban en las paredes de las cuevas, los datos numéricos grabados en hueso o piedra o los objetos fabricados por las civilizaciones del neolítico. El objetivo primario de la ciencia es aun debatido por varios, sin embargo, dentro de los principales objetivos actuales se encuentran: 1) El mejor conocimiento de la naturaleza, 2) el mejor conocimiento de nosotros mismos, y 3) mejorar la calidad de vida de los miembros de nuestra especie.”

     

    Está claro que es Ciencia son muchas cosas y, desde que Arquímedes inventó su tornillo, desde que aquellos antepasados miraban al cielo y estudiaron los movimientos de los planetas, desde que se buscó el por qué de las mareas… ¡Todo y mucho más es la Ciencia!

     

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting