Mar
24
Lo cierto es que…, nunca dejáremos de hacernos preguntas.
por Emilio Silvera ~ Clasificado en Cosas curiosas ~ Comments (6)
Aunque es cierto que “sobre gustos no hay nada escrito”, los humanos nos sentimos más a gusto con las caras más simétricas. En la cultura popular, y salvo alguna rara excepción, las caras asimétricas están relacionadas con la maldad. Los biólogos encontraron rápidamente una explicación evolutiva: los individuos más evolucionados pueden mantener sus formas simétricas inclusive cuando están expuestos al estrés y las enfermedades. Es decir, cuando las partes del cuerpo que tienden a la simetría no lo son, costará más pasar esos genes porque será rechazado por potenciales parejas. De esta manera la evolución distingue a la simetría como una característica valiosa.
David (1501-1504), de Miguel Ángel, Galería de la Academia de Florencia.
El desnudo de una figura presenta una simetría bilateral casi perfecta. Ciertamente, parte del atractivo del mismo, tanto en la realidad como en el arte, reside en la identificación de los lados derecho e izquierdo del cuerpo mediante mediante una simetría especular. La figura femenina raramente presenta asimetrías. La asimetría de un varón se rompe solamente por la curiosa circunstancia de que su testículo izquierdo cuelga más bajo que el derecho.
(1532), de Lucas Cranach el Viejo, Städelsches Kunstinstitut, Fráncfort del Meno, censurada por el Metro de Londres en 2008.
Evidentemente, cada cuerpo, considerado de forma individual, puede otras desviaciones menores de su simetría: un hombro más alto que otro, un pecho mayor que su pareja, una ligera desviación de la columna, una peca o un antojo en un costado…, pero tales anomalías, en su mayor parte, pueden encontrarse tanto a un lado como al otro.
La simetría bilateral se mantiene en el interior del cuerpo, en en los músculos y en el esqueleto, pero queda rota por la disposición fuertemente asimétrica de algunos órganos. El corazón, el estómago y el páncreas están desviados hacia la izquierda; el hígado y el apéndice, hacia la derecha. El pulmón derecho es mayor que el izquierdo. Los retorcimientos y vueltas de los intestinos son completamente asimétricos. El cordón umbilical humano, una magnifica hélice triple formada por dos arterias y una vena, puede enrollarse en cualquiera de los dos sentidos.
Los mellizos que se desarrollan por la fecundación simultánea de dos óvulos separados, pueden tener detalles asimétricos en un sentido en uno de ellos, y en el contrario en el otro, pero esto no ocurre con mayor frecuencia que la que cabría esperar como fruto del azar. Es una creencia generalizada que los gemelos (formados a partir de un único óvulo, que se divide inmediatamente después de la fecundación) tiene una marcada tendencia a aparentar especulares recíprocas. Por desgracia, las estadísticas al respecto son confusas y muchos expertos creen que los gemelos idénticos no se presentan como imágenes especulares uno de otro en mayor medida que cualquier otro tipo de hermanos.
En el caso de gemelos siameses (gemelos idénticos, unidos uno a otro a causa de un a partición tardía e incompleta del óvulo), el tema no ofrece duda alguna. Son exactamente enantiomorfos en casi todos los detalles: si uno es diestro, el otro es zurdo; si uno tiene el remolino del pelo que va en el sentido de las agujas del reloj, el de su hermano/hermana irá en el sentido contrario. Diferencias en los oídos, los dientes…, aparecen en ambos como especulares unas respecto de otras (hasta en eso es perfecta la Naturaleza). Las huellas dactilares o de la palma de la mano derecha de uno serán muy parecidas a las correspondientes a la mano izquierda del otro.
Todavía más: un gemelo siamés tendrá “vísceras transpuestas”; sus órganos internos estarán colocados de manera inversa, el corazón a la derecha, el hígado a la izquierda. Esta transposición de órganos, o inverse situs, como se denomina a veces, se da siempre en cualquier par de gemelos siameses, pero puede aparecer también en no incluidas en estas circunstancias.
Merece la pena hacer notar que Lewis Carroll, en A través del espejo (Alianza Editorial, 1990), pretende tomar los gemelos idénticos Tararí y Tarará como imágenes especulares uno de otro. Cuando los hermanos Tara ofrecen enlazar sus manos con Alicia, uno de ellos alarga su derecha; el otro la izquierda. Si observamos detenidamente las ilustraciones de Tenniel, especialmente la que muestra los dos gemelos uno frente a otro, para la batalla, veremos que los ha dibujado como si fueran enantiomorfos.
Claro que, algunos son completos
En el comportamiento y los hábitos de los seres humanos hay muchos ejemplos de marcada asimetría; los más evidentes son consecuencia de que la mayoría de las personas son diestras. La mano derecha está controlada por la parte izquierda del cerebro, y la parte derecha de éste controla la mano izquierda, por lo que la condición de diestro es, en realidad, un fenómeno de lateralidad izquierda del cerebro. Hubo un tiempo en el que se creía que los bebés nacían sin tendencia alguna de tipo genético que favoreciera el uso de una mano concreta, que la lateralidad de un niño era exclusivamente el resultado de las enseñanzas de sus padres. Platón era un notable defensor de esta opinión.
“En el uso de las manos estamos, y estábamos, viciados por las manías de nuestras intitutrices y madres -escribe Platón en sus Leyes-, pues aunque nuestros miembros están compensados por naturaleza, creamos una diferencia entre ellos como consecuencia de un mal hábito.”
Sabemos hoy en día que Platón estaba equivocado. Como hace notar Aristóteles con buen criterio. De todas las maneras, la tendencia innata para muchas personas de usar preferentemente la mano derecha es común desde que la puede constatarlo de manera evidente.
Losantropólogs culturales no han encontrado todavía ni una sola sociedad, o incluso una tribu , en la que la norma sea la lateralidad izquierda: los esquimos, los indios americanos, los maoríes y los africanos son todos diestros. Los antiguos egipcios, griegos y romanos eran diestros. Naturalmente, si retrocemos todavía más en la Historia, la evidencia de la lateralidad diestra es ya escasa e indirecta y hay que dilucidarla a partir del estudio de la forma de sus utensilios y armas, así como de las pinturas que muestran los hombres trabajando o en la batalla.
Las propias palabras que se usan en muchas lenguas para designar la izquierda y la derecha dan testimonio de un sesgo universal hacia el lado derecho. En , ir a derechas es hacer las cosas correctamente, mientras que no dar una a derechas, es sinónimo de hacerlo todo mal.
Ser diestro en algo es lo mismo que poseer una habilidad especial para ello, mientras que una cosa siniestra (del latín sinester, izquierda) es una cosa hecha con mala intención. En otras lenguas el significado viene a ser más o menos el mismo. Los italianos, tan suyos ellos, llaman a la mano izquierda stanca, fatigada, o manca, la que no se tiene. Lo cierto es que, por lo , los zurdos son ambidiestros.
Para tener una buena visión histórica de mlos prejuicios virulentos contra los zurdos en cualquier parte del mundo, veáse el séptimo capítulo de The Dragons of Eden, de Carl Sagan (Random House, 1977), y el delicioso de Jack Fincher, Sinister People (Putnam, 1977). Este último da una lista de más de cien personajes famosos que fueron zurdos.
Por lo , y hasta donde sabemos, la especie humana tiene la tendencia a utilizar la mano derecha. Claro que no sabemos. La mayoría de los mamíferos subhumanos son ambidiestros y, ¿cómo serán las especies que viven en otros mundos? El personaje de arriba, al menos, parece que es zurdo.
Lo cierto es que, poco importa si somos zurdos o no, la igualdad en lo esencial es casi idéntica. La verdadera diferencia está en el cerebro, en la manera de ver las cosas, en cómo cada cual enfoca los problemas y qué soluciones aplica a cada situación, en que perspectiva podamos tener de nuestra Sociedad, de nuestras leyes, de nuestros derechos, de la moral y la ética… Todo lo demás, son circunstancias anecdóticas que poco influyen en el devenir del mundo.
emilio silvera
Mar
23
LA MÍTICA TIERRA DE TARTESSOS
por Emilio Silvera ~ Clasificado en Rumores del Saber ~ Comments (2)
LA LEYENDA DE TARTESSOS EN LA ANTIGÜEDAD
Casi todas las noticias documentales que se tienen de Tartessos se deben a antiguos autores griegos. En ellas se confunden con frecuencia lo histórico con lo mítico o semimítico, con reyes Gerión, Habis, Nórax y Argantonio. Asimismo ha sido frecuente la identificación de laAtlántida descrita por Platón en sus diálogos Timeo y Critias con la capital o ciudad de Tartessos.
La idea de la tierra occidental de Tartessos aparece en uno de los mitos helénicos más extendidos. El geógrafo Estrabón (escritor romano de la época de Augusto) relata la historia del viaje de Hércules al lejano oeste, donde llevó a cabo su décimo . En esta región de Tartessos construyó Hércules dos columnas como monumento a su arduo viaje; y en la isla de Eritia, situada en aguas costeras, se le pidió que vigilase el ganado de Gerión (Estrabón 3, 5, 4; 3, 2, 11).
El mito de Tartessos se consideraba paradigma del avance de la humanidad hacia una civilizada de vivir. Hay una historia interesante en el Epitome del historiador romano Justino (que en el siglo IV d.C. resumió la extensa Historiae Philippicae de Pompeyo Trogo). En el bosque de los tartesios, donde abundaba el ganado vacuno, había una vez un rey llamado Gárgoris que fue la primera persona que supo cómo se recogía la miel. Tenía un hijo ilegítimo, llamado Habis, que enseñó a su pueblo (los tartesios) a utilizar el arado; impidió que se convirtieran en esclavos y los dividió en siete tribus (o siete ciudades) (Justino 44, 1, 14).
“…son considerados los más cultos de los iberos, ya que conocen la escritura y, según sus tradiciones ancestrales, incluso tienen crónicas históricas, poemas y leyes en verso que ellos dicen de seis mil de antigüedad.
Argantonio (?, h. 670 a. C. – ?, h. 550 a. C.) fue el último rey tartésico, único del que se tienen referencias históricas. Debido a su longevidad, hay historiadores que piensan que podría tratarse no de un rey sino de una dinastía ya que se le atribuyen tesoros con unos 300 años de diferencia. Aparece en fuentes griegas por su relación militar y comercial con Focea (colonia de los griegos en Asia Menor).
El oscurísimo mito de Tartessos fue absorbido por la poesía helénica: por poner un ejemplo sacado de la literatura clásica, « Tartessos era conocida de oídas [ en tiempos de Homero ] como “ la más lejana en el oeste ”, donde, como dice el propio poeta [ Homero ] , cae en el Océano, “ la brillante luz del sol, tendiendo la negra noche sobre la tierra, el que da grano ” » (Estrabón 3, 2, 12). También se refiere a su propia fuente, Estesícoro de Himera (poeta griego de Sicilia que vivió en los tiempos de los viajes helénicos a los mares occidentales) instaurar la tradición, cuyas raíces son muy profundas, del “reino” de Tartessos; y aquí el mito de Gerión y su ganado en Tartessos se vuelve más pertinente:
Parece que los antiguos llamaron al río Baetis « Tartessos »; y que llamaron a Gades y a la isla contigua « Eritia »; y se supone que es la razón por la cual Estesícoro habló de aquel modo del vaquero [pastor de ganado vacuno] de Gerión, a saber, que nació más o menos enfrente de la famosa Eritia, junto a las ilimitadas fuentes con raíces de plata del río Tartessos, en una caverna de un precipicio (Estrabón 3, 2, 11).
Lugares como éste de vestigios del pasado, son abundantes en muchas zonas de Huelva.
nos enteramos de que en Tartessos se exhibían grandes cantidades de plata. Sin embargo, si le dejamos que hable, Estrabón nos asegurará que Tartessos estaba situada más allá de un remoto paso en el sur de la Península Ibérica, y nos advertirá que en la Antigüedad no había unanimidad acerca de los límites geográficos de Tartessos. Y tampoco había opiniones no discutidas acerca de su asociación con un río, con una ciudad, o con ambas cosas, cada una de las cuales, según se consideraba, ofrecía una provisión igualmente favorable de buena suerte y prosperidad:
Dado que el río tenía dos bocas, se dice que en tiempos antiguos se proyectó una ciudad en el territorio intermedio, una ciudad a la que llamaron « Tartessos », por el nombre del río; y al país, que está ocupado por túrdulos, lo llamaron « Tartéside » … A Erastótenes le contradice Artemidoro, que dice que esta es otra afirmación falsa de Erastótenes …y, en realidad, todas las demás afirmaciones que ha hecho confiando en Piteas el navegante-aventurero, debido a las falsas pretensiones de éste ( Estrabón 3, 2, 11 ).
Bronce tartésico conocido como “Bronce carriazo” “, que representa a la diosa fenecia Astarté como diosa de las marismas y los esteros que en la costa de Huelva son abundantes y su riqueza atrae a las ánades y variopintas familias de bonitos seres voladores. El objeto se encuentra en el Museo Arqueológico de Sevilla y es una de las obras tartésicas más conocidas.
La tierra de Tartessos se mencionaba en acontecimientos históricos documentados. Herodoto, historiador griego del siglo V a.C., tomó nota de más detalles del reino de Tartessos. Era gobernada por una rey en la época en que los coceos navegaron el Mediterráneo occidental (c. 630-590 a.C.). El siguiente extracto de Herodoto se refiere a la muralla de Focea:
Cuando [los coceos] llegaron a Tartessos se hicieron amigos del rey de los tartesios, que se llamaba Argantonio; gobernó Tartessos durante ochenta años y vivió ciento veinte. Los coceos se granjearon tanto la amistad de este hombre, que primero éste les instó a irse de Jonia e instalarse en su país donde quisieran; y luego, al ver que no podía persuadirles y enterarse por ellos de que el poderío de los medos iba en aumento, les dio dinero que con él construyesen una muralla alrededor de su ciudad. Sin escatimar se lo dio; porque el circuito de la muralla mide muchos estadios, y todo esto está hecho con grandes piedras bien ensambladas (Herodoto 1, 163).
El mito de la rica tierra de Tartessos fue transmitiéndose a lo largo de los siglos. Estrabón recuerda el pasaje en que Herodoto habla de la abundancia en la Península Ibérica. Dice Estrabón:
Y cabría suponer que fue por su gran prosperidad que la gente de allí recibió el complementario de « Macraeones » [gente de larga vida] y en particular los jefes; y por esto Anacreonte dijo lo siguiente: « Yo, por mi parte, no debería ni desear el cuerno de Amaltea, ni ser el rey de Tartessos durante ciento cincuenta años »; y por esto Herodoto tomó nota incluso del nombre del rey, a quien llamó Argantonio (Estrabón 3, 2. 13-14).
Es incrible como la orografía del terreno cambia con el transcurrir de los años. Sin embargo, todavía hoy, si te das una vuelta por Palos de la Frontera, podrás ver esa vieja fuente en la que los barcos se surtían de agua potable y la mujer, lava su ropa. Parece que el tiempo no ha pasado y allí sigue. Sin embargo, otras cosas han cambiado o desaparecido. El cuadro quiere significar la partida del puerto de Palos en 1492, pintura de Evaristo Domínguez, en el ayuntamiento de Palos de la Frontera (Huelva).
Las limitaciones de espacio nos impiden presentar otras citas y comentarios sobre Tartessos que se encuentran en la literatura clásica. Los que hemos dado son sólo algunos de los ejemplos más conocidos, los más valiosos para ayudarnos a comprender el concepto de Tartessos en la Antigüedad. Como mínimo, sirven para relatar las características principales de Tartessos. Aparte de estar situada vagamente en el remoto oeste —« la más lejana en el oeste »—, la mítica Tartessos transmitía, de abstracta, las siguientes percepciones. Era una región, accesible desde Gades, que asombraba a viajeros y extranjeros debido a su abundancia de metales. Era una tierra ocupada por una raza de gente con una identidad conocida y orígenes reconocibles, y resultó beneficiosa para los extranjeros en lo que se refiere al comercio.
EVALUACIÓN DE TARTESSOS EB TÉRMINOS ARQUEOLÓGICOS:
Amalgamar la importancia de los mitos antiguos con arqueológicos verificables con el fin de construir una crónica digna de confianza es un objetivo muy convincente, pero representa una tarea difícil que requiere mucho cuidado. El mito de Tartessos es un paradigma de esa forma de erudición histórica. Se ha hecho uso de comentarios que aparecen en los textos antiguos, del análisis meticuloso de hallazgos prehistóricos y de informes procedentes de ambos campos de estudio. Se han hecho esfuerzos intensos por descubrir la verdad sobre Tartessos. Se ha dedicado mucho trabajo a identificar el río Tartessos (por no hablar del emplazamiento de la ciudad de Tartessos), por describir el gran “reino” de Tartessos y por comprender el régimen bajo el cual vivían los tartesios. Dada la naturaleza ambigua de la información que contienen las fuentes antiguas, es comprensible que no sea fácil alcanzar tales objetivos. En una etapa la fascinación que ejercía el mito lo hizo confundir con la realidad: Tartessos, según se ha dicho, «…no fue un mito. Los mercaderes coceos lo verificaron ». El problema no se ha resuelto todavía, pero ahora se le ha dado un tratamiento más pragmático y equilibrado. En la actualidad, un equipo está, desde hace dos años, indagando sobre Tartessos en la región de Doñana y, según parece, algo han encontrado.
Conocida como Mina del Rey Salomón, donde según la Leyenda sacaban el Oro para su Palacio
Región de Rio Tinto en la que, los antiguos fenecios y Griegos obtenían oro y cobre. Mas recientemente, la NASA aha hecho investigaciones de estas aguas que podeis ver y que tienen un PH imposible que no impide la presencia de vida. Se cree que en Marte, se pueden dar condcionones parecidas.
Si hemos de dar crédito del mito erudito de Tartessos, debemos decidir si Tartessos es una ciudad, un río, un reino, un concepto geográfico o todas estas cosas a la vez. En el valle del Bajo Guadalquivir se han identificado más de 300 asentamientos que cronológicamente pueden incluirse en el período tartesio, pero ninguno de ellos reúne para haber sido emplazamiento real de Tartessos: hasta ahora la búsqueda de la ciudad ha sido infructuosa. Cádiz, que a menudo se confunde con Tartessos en la época romana y que probablemente es la más importante de las ciudades del Mediterráneo occidental del siglo VI a.C., es indiscutiblemente la ciudad fenicia de Occidente. Igualmente difícil es determinar a que río deberíamos llamar Tartessos: algunos lectores de Estrabón escogerían el río Betis (Guadalquivir), mientras que algunos lectores de Avieno (poeta romano del siglo IV d.C. que escribió un largo poema titulado Ora marítima, siguiendo el texto de un antiguo itinerario geográfico datado generalmente en c. 600 a.C.) optarían por el río Tinto, en Huelva. De modo parecido, no es fácil definir un reino de Tartessos, ya sea basándonos en los escritos de los historiadores antiguos o en términos arqueológicos, Es probable que el concepto de un rey de los tartesios esté relacionado con un relato ficticio que era popular entre los filósofos y poetas helenísticos y trataba del origen y la evolución de la raza humana.
El río Odiel (antiguo río Tartesso) baja la Sierra de Huelva hasta la Capital, donde es navegable y desemboco en el Atlántico
Si esto es así, entonces Gerión, Gárgoris y Habis son personajes sin ninguna base histórica real. Mantener ganado vacuno, recoger miel y avanzar hacia una de vida más civilizada son rasgos de la conducta humana que muchas leyendas tienen en común. Toda pretensión de que Argantonio era descendiente de los antiguos “reyes” también debe tratarse con escepticismo. Por tanto, probablemente es más apropiado usar la expresión « el reino de Tartessos » como concepto geográfico abstracto que puede abarcar un orden social de carácter totalmente distinto del de una monarquía.
En una etapa de las investigaciones existía la creencia de que Tartessos se ajustaba a una « cultura arqueológica » que demostraba la influencia que los colonizadores orientales ejercieron sobre la población autóctona del sur de la Península Ibérica. El mito de Tartessos se veía entonces, en términos arqueológicos, como el resultado final de un proceso de « cultural ». Podría, pues considerarse que valiosos objetos funerarios (tales como jarros de bronce, peines de marfil y cerámica fina) y joyas espectaculares halladas en depósitos demuestran no sólo la participación de los tartesios en costumbres y rituales orientales, sino también la riqueza de algunos miembros de esta sociedad. Se pensaba que esta opulencia percibida del período tartessico encajaba bien en el mito de Tartessos: dicho de otro modo, podría ser que la aportación decisiva de los colonizadores fenicios diera vida al mito de Tartessos y lo hiciese verosímil.
Esta explicación resultaba muy justificable y, de hecho, era muy respetada en aquel tiempo. El período tartessico se asoció de manera provisional con el período de influencia oriental en la Península Ibérica. Sin embargo, esta opinión no era del todo concluyente. No guarda una correlación plena con las fuentes escritas, que describen un “reino” con una larga historia autónoma: y tampoco se corresponde con los descubrimientos arqueológicos, que han sacado a la luz un intenso período de habitación en el suroeste de España antes de los primeros vestigios de actividad comercial de los fenicios en Tartessos (c.750 a.C.). La teoría de una Tartessos sometida a una influencia oriental se ha ajustado de acuerdo con ello: se conciben dos fases del período tartessico: la prefenicia y la posfenicia, o la de preorientalización (o protoorientalización) y la de postorientalización.
Los vestigios de las culturas Fenicia y Griega en Huelva, son claros y así lo demuestra la arqueología
En años recientes, se ha quitado gradualmente importancia a los componentes « orientales » del concepto de Tartessos y en su lugar se ha sancionado un concepto local. Ahora se piensa que los tartesios originales eran comunidades que precedieron a los fenicios, y la búsqueda de la auténtica Tartessos se ha centrado en los asentamientos del Bronce Final en la región de Cádiz, la provincia de Huelva y el valle del Bajo Guadalquivir. Como cabía esperar, antes se tenía entendido que los nativos se habían adaptado a las circunstancias nuevas que impusieron los colonizadores. Sin embargo, aunque estos postulados parecían razonables, un examen minucioso reveló sus defectos. La división cronológica entre los tartesios y los anteriores grupos de principios de la Edad del Bronce en el suroeste no es clara. Algunos de los rasgos fundamentales de la antigua (prefenicia) sociedad tartésica no serían desplazados apresuradamente: por ejemplo, en algunas partes de la sociedad es probable que los rituales funerarios y las unidades domésticas no experimentasen ningún cambio durante cierto tiempo. Por desgracia, existe sólo una comprensión rudimentaria de estos problemas pendientes de resolución en el período prefenicio del Bronce Final. Además, la región tartésica es un territorio inmenso y es difícil concebir que fuese unificado por una pauta uniforme de civilización. En teoría, se extiende desde el centro del suroeste de España hasta la llamada « periferia »: las regiones de Extremadura y del valle del Alto Guadalquivir. Los guerreros que aparecen en las estelas bien podrían tomarse por tartesios. Hubo, de hecho, cambios sin precedentes en la región de Tartessos una vez los colonizadores llegaron a ella: un aumento del de asentamientos; una notable exhibición de artefactos exóticos en las tumbas; un incremento de la producción de minerales; etc. Estos hallazgos han planteado una serie de problemas sociales y económicos: la aceleración del comercio; las consecuencias técnicas, comerciales y sociológicas de la producción de metal: la aparición de una clase dirigente; y otras nuevas cuestiones « tartésicas ». Actualmente existe un Equipo de especialistas que investigan en la Zona de Doñana y, al parecer, sus hallazgos pueden clarificar el panorama de la realidad de Tartessos.
Fenicios y Griegos venían por el Mediterráneo hasta pasar Las Columnas de Hércules hacia el Atlántico
EL MITO Y LA REALIDAD DEL BRONCE FINAL
Afortunadamente, hay cierta veracidad en el mito de Tartessos. Se consideraba que era una región que ofrecía ricos minerales metalíferos, en especial de plata, y se suponía que los tartesios habían creado una fuerte tradición cultural: estas circunstancias se dan en el sur de la Península Ibérica. Los estuarios de los ríos Guadalquivir, Guadiana, Tinto y Odiel cuadran bien con las descripciones que hicieron los geógrafos antiguos (tales como Estrabón y Avieno) de una serie de ríos que pasan por el territorio de Tartessos, Es casi seguro que el renombrado lacus ligustinus guarda correlación con las marismas del estuario del río Guadalquivir. Los numerosos yacimientos que recientemente se han descubierto en región, y que se han reconocido como « tartésicos », estarían ubicados cerca de esta masa de agua en la Antigüedad.
San Bartolomé de Almonte- aquí hay un error, se refieren a Tharsis, una cuenca minera cerca de San Bartolomé y Alosno- en la provincia de Huelva, era un asentamiento metalúrgico prefenicio. Los rudimentarios para la combustión de minerales, los vasos perforados que se usan para la copelación y los desechos de ésta que se encontraron en este pequeño pueblo de chozas son testimonio de que los nativos poseían la capacidad de aprovechar las menas de cobre, plata y oro de la región durante el siglo VIII a.C. En otros pueblos parecidos del Bronce Final (tales como Quebrantahuesos, Chinflón y Niebla), es probable que las técnicas metalúrgicas se estuvieran perfeccionando desde el Calcolítico. Es muy posible que en las laderas de las colinas de la propia Huelva ya en el siglo XI a.c. encontrase sustento una población dotada de técnicas metalúrgicas. Los minerales se transportaban desde la sierra de Aznalcóllar hasta Almonte, y desde Riotinto, Tharsis y las otras minas hasta los asentamientos metalúrgicos de Huelva. Los fenicios aprovecharían plenamente los recursos locales: se mantendrían ambas rutas, aunque se producirían cambios significativos en la pauta de la habitación. Se fundarían nuevos asentamientos (por ejemplo, Tejada la Vieja) como centros de distribución de mineral; y desaparecerían algunos de los antiguos (tales como San Bartolomé de Almonte), mientras otros (Huelva o Niebla, por ejemplo) formarían el núcleo de la expansión urbanística. Los minerales metalíferos servirían a los intereses de los explotadores, lo que, como es natural, haría que los tartesios se enriquecieran. Al ver cómo cristaliza una nueva serie de circunstancias económicas como esta, Tartessos ya no es una tierra « remota » en el oeste, y tampoco es un territorio puramente aborigen: de un modo u otro pierde su intrínseca naturaleza mítica.
Las comunidades del Bronce Final en la región de Tartessos eran consumadas productoras de cerámica bruñida de gran calidad. Platos y cuencos a menudo muestran la característica decoración de líneas en ambos lados. Esta cerámica unifica a las primeras comunidades tartésicas y da a entender que existían niveles de vida parecidos. Otro de cerámica « tartésica » — la cerámica pintada de estilo « Carambolo »— revela la existencia de comunidades que poseían gran habilidad pero seguían viéndose limitadas a una simple economía de subsistencia. Ni siquiera los logros que hemos señalado indican que hubiera individuos ricos en la primitiva sociedad de Tartessos, Las comunidades vivían en chozas redondas construidas con zarzo y adobe, y, al parecer, dependían del cultivo de cosechas y de la ganadería. En comparación con los logros de los primitivos metalúrgicos del sureste, los restos de los metalúrgicos del bronce en el período prefenicio siguen siendo muy limitados. Por esto, el concepto de una Tartessos rica parece mucho más aplicable al período posfenicio, en el que la sociedad mostraba verdaderas señales de riqueza. El mito de una Tartessos opulenta se deriva probablemente de historias sobre sus fértiles tierras y de especulaciones en torno a los ingresos que producían sus minas.
Son muchos los indicios que nos inducen a pensar que, el antoguo Tartessos está aquí, cerca de mi casa en Huelva, y, si finalmente se descubren sus ruínas, tendremos la oportunidad de exponer aquí un buen reportaje de todo lo que se pueda averiguar.
Arriba os he dejado una reseña de la Prehistoria de mi Región que abarca, no sólo Huelva, sino los terrenos de Cádiz y Sevilla con parte del Algarve Portugués que era la zona que dominaba el reino de Argantonio, aquel rey legendario.
emilio silvera
Mar
22
¡La Vida! Ese misterio que tratamos de desvelar.
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (0)
Está bien asentado hoy el conocimiento de que, la Tierra y la Luna, al igual que el resto del Sistema solar, se formó hace ahora unos cuatro mil quinientos millones de años. En algún momento de los primeros mil millones de años de la existencia de la Tierra, la vida hizo su aparición sobre la superficie de nuestro planeta. La Ciencia no ha podido saber nunca cómo sucedió porque hemos perdido el de aquellos primeros años. Muchas de las rocas más viejas de la Tierra han sido eliminadas por los vientos y las aguas y empujadas por las corrienteías de las intensas lluvias hacia los océanos. Por otra parte, la lava de las frecuentes erupciones volcánicas cubrieron la mayor parte de las evidencias de vida en el pasado. Sobre la Tierra no quedan vestigios de esos mil primeros millones de años de su historia. Aquel período mágico en el que pudo surgir la vida que, no fue, precisamente de manera expontánea, sino que, se debió a complejos procesos bioquímicos que dieron lugar a una especie de protoplasma de la vida, a partir del cual, surgieron las primeras células vivas replicantes.
La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.
¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se pensar en ella como un sistema que contiene información1. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo – nos preguntamos-la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.
La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Sin embargo, la vida es distinta porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un pepel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida. A grandes rasgos entendemos cómo pueden haber evolucionado las moléculas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de tan compleja.
Según todos los indicios, en los primeros años del planeta, los continentes que hoy conocemos estaban todos unidos formando la denominada Pangea. El movimiento de las placas tectónicas terrestres logró que estos se separaran y, con el transcurso de millones de años, llegaron a adquirir la moderna forma que hoy conocemos. En todo ese transcurrir y, mientras tanto, una serie de nuevas aparecieron para hacer posible el surgir de la vida.
Microfósiles de sedimentos marinos. “Microfósil” es un término descriptivo que se aplica al hablar de plantas o animales fosilizados cuyo tamaño es menor de aquel que puede llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos diferenciar microfósiles de eucariotas y procariotas.
A partir de todos los fragmentos que la ciencia ha podido ir acumulando, ¿qué de planeta podemos recomponer y qué porcesos tuvieron que darse para que, la vida, tal como la conocemos pudiera surgir? Sin temor a equivocarnos podemos afirmar que, cuando se formó el mar de Warrawoona la Tierra ya era un planeta biológico. Además, las mediciones de isótopos de carbono indican que ya podía haber comenzado la gran liberación ecológica de la fotosíntesis. No podemos tener la certeza si entre los microorganismos de aquel entonces había cianobacterias reproductoras de oxígeno, pero la presencia de cualquier tipo de organismo fotosintético en el océano de Warrawoona es de por sí muy informativa, pues nos permite colocar un punto de calibración en el árbol de la vida.
Los estromatolitos forman del registro fósil
Son la evidencia de vida más antigua que se conoce en la Tierra. Las rocas ígneas más antiguas de la Tierra están en Groenlandia y tienen 3800 millones de . Los estromatolitos más antiguos son de Warrawoona, Australia y tienen unos 3500 millones de años (Precámbricos – Arqueanos). La edad de la Tierra como planeta acrecionado se calcula en 4500 millones de años. La teoría dice que, dadas las condiciones en esa época, los primeros habitantes de la Tierra debieron ser organismos unicelulares, procariontes, y anaerobios. Por tanto, los estromatolitos forman parte del fósil más importante de la vida microbiológica temprana. Pero además, vida microscópica fototrófica.
En la nueva concepción de la evolución microbiana que simboliza el árbol, los organismos fotosintéticos aparecen relativamente tarde y se diversifican mucho después del origen de la vida y de la divergencia de los principales dominios de la biología. Si la materia orgánica de Warrawoona es producto de la fotosíntesis, hay que concluir que entonces la evolución de la vida ya debía llevar en marcha un buen tiempo.
Las observaciones geológicas indican que hace tres mil quinientos millones de años la atmósfera de la Tierra contenía nitrógeno, dióxido de carbono y vapor de agua, pero muy poco oxígeno libre. La mayoría de las inferencias acerca de ambientes antiguos se realizan a partir de pistas sutiles que nos proporcionan la geoquímica; la signatura sedimentaria del oxígeno, sin embargo, es muy llamativa: bandas de color rojo vivo en rocas con silex ricos en hermatita (Fe2 O3), un mineral de óxido de hierro.
En esta imagen que nos enseña un paisaje que me es muy familiar, podemos ver una excavación al aire libre, en las Minas de Rio Tinto (Huelva) nos deja al descubierto los estratos en distintas capas a lo largo de miles de millones de años. El mineral de óxido de hierro está presente formando el llamado hierro en bandas (FHB) no se forman en los acéanos actuales. De hecho, salvo una importante excepción, no se acumulan hace 1.850 millones de años. Durante la primera mitad de la historia de la Tierra, en cambio, las FHB fueron un componente común en los sedimentos marinos..
La razón por la cual las FHB no se forman en la actualidad es que el hierro que llega a los océanos se encuentra de inmediato con el oxígeno y precipita en de óxido de hierro; en consecuencia, la concentración de hierro en el agua de mar de los océanos actuales es extraordinariamente baja. En los mares del eón Arcaico, las FHB de las sucesiones sedimentarias debieron formarse por reacción del hierro con el oxígeno, ayudadas quizá por bacterias. Alternativamente, es posible que el hierro fuese oxidado por la radiación ultravioleta ya que ésta, al no existir un escudo de ozono eficaz, penetraba hasta la superficie del océano. Todo esto nos lleva a saber que, en el pasado, la atmósfera y los océanos contenían mucho menos oxígeno que en la actualidad.
Todavía los expertos de la NASA, se preguntan como pudieron hallar múltiples formas de vida en estas aguas de Rio Tinto, cargadas de elementos pesados con un PH imposible la vida, y, sin embargo, ahí están. Ricamente instaladas en un entorno imposible que nada le tiene que envidiar a cualquier paraje marciano.
En la actualidad, nuestros conocimientos de la vida y ambientes arcaicos son a un tiempo frustrantes y emocionantes: frustrantes por las pocas certezas que tenemos y, sólo muchas hipótesis a partir de los datos dispersos que se van obteniendo, emocionante porque sabemos algo, por poco que esto pueda ser, es estimulante contar con un punto de partida que nos permita en el estudio y la observación, seguir experimentando para que, algún día, sepamos a ciencia cierta, de donde pudo venir la vida.
Es verdad que las rocas más antiguas que podemos identificar nos indican la presencia de organismos complejos ¿qué clase de células vivían en aquellos tiempos aún más lejanos? En última instancia, ¡cuál será el verdadero origen de la vida?
La Tierra es el tercer planeta del Sistema Solar. Esta situación orbital y sus características de masa la convierten en un planeta privilegiado, con una temperatura media de unos 15º C, agua en líquida y una atmósfera densa que pudo evolucionar, con oxígeno y otros ingredientes, imprescindibles para el desarrollo de la vida.
La creencia general es que hace unos 4.600 millones de años la corteza de la Tierra comenzó a consolidarse y las erupciones de los volcanes empezaron a formar la atmósfera, el vapor de agua y los océanos. El progresivo enfriamiento del agua y de la atmósfera permitió el nacimiento de la vida, iniciada en el mar en forma de bacterias y algas, de las que derivamos todos los seres vivos que habitamos hoy nuestro planeta tras un largo proceso de evolución biólogica.
Aun los organismos más simples son máquinas moleculares extraordinariamente sofisticadas. Las primeras formas de vida tenían que ser muchísimo más sencillas. Nedcesitamos encontrar una familia de moléculas lo bastante simples como para formarse por procesos químicos y lo bastante complejas como para servir de cimiento a la evolución de las células vivas. Una molécula capaz de contener información y estructura suficientes como para replicarse a sí mismas y, al cabo, para dirigir la síntesis de otros componentes que puedan canalizar la replicación con una eficiencia cada vez mayor.
ESTRUCTURA DE LA CELULA BACTERIANA
Unas moléculas, en fin, que pudieran una trayectoria evolutiva que permitiera a la vida emanciparse de los procesos físicos que le dieron nacimiento, sintetizando las moléculas necesarias para el crecimiento en lugar de incorporarlas de su entorno y captando energía química o solar para alimentar el funcionamiento de la célula.
El descubrimiento de las enzimas de ARN, o ribosomas, realizado de independiente y aproximadamente al mismo tiempo por el bioquímico de Yale Sidney Altman, tuvo un efecto catalítico sobre el pensamiento acerca del origen de la vida.
Los enzimas de ARN (llamadas “ribozimas” o “aptazimas”) son moléculas de ARN capaces de autorreplicarse a temperatura constante en ausencia de proteínas. Utilizan la llamada replicación cruzada, en la que dos enzimas se catalizan el uno al otro de mutua. Este proceso permite entender cómo surgió la vida, pero los biotecnólogos las usan para algo mucho más prosaico. Estos enzimas de ARN pueden ser utilizados para detectar una gran variedad de compuestos, incluyendo muchos relevantes en diagnóstico médico. El compuesto orgánico se liga al aptazima, que se replica exponencialmente, amplificando exponencialmente la concentración del compuesto hasta permitir que sea fácilmente detectado.
En palabras del filósofo de la biología Iris Fry, esta extraordinaria molécula se alzó como “el huevo y la gallina al mismo tiempo” en el rompecabezas del orgien de la vida. La vida, esa misteriosa complejidad que surgió a partir de la “materia inerte” que, bajo ciertas y complejas , dio lugar a que lo sencillo se conviertiera en complejo, a que lo inerte pudiera despertar hasta los pensamientos.
Sabemos que, en ciertas condiciones prebióticas, los aminoácidos se forman fácilmente, así quedó demostrado por Stanley Miller en su gamoso experimento. Como los ácidos nucléicos, pueden para formar péptidos, las cadenas de aminoácidos que se pliegan para formar proteínas funcionales.
Hay teorías todos los gustos, y, el afamado Freeman Dyson, un renombrado físico que ha pensado profundamente sobre el origen de la vida, sugiere que en realidad la vida comenzó en dos ocasiones, una por la vía del ARN y otra vez por vía de las proteínas. Las células con proteínas y ácidos nucleicos interactivos habrían surgido más tarde en función protobiológica. Y, está claro que, la innovación por alianzas es uno de los principales temas de la evolución.
En el árbol de la vida, nosotros (tan importantes), sólo somos una pequeña ramita.
Hay muchos procesos que son de una importancia extrema en la vida de nuestro planeta y, dado que los organismos fotosintéticos (o quimiosinteéticos) no pueden fraccionar isótopos de carbono en más de unas treinta por 1.000, necesitamos invocar la participación de otros metabolismos para poder explicar los resultados de las mediciones que se han realizado. Los candidatos más probables son bacterias que se alimentan de metano en los sedimentos. Estas bacterias obtienen tanto el carbono como la energía del gas natural (CH4) y, al igual que los organismos fotosintéticos, son selectivos con los isótopos. A causa de su preferencia química por el 12CH4 frente al 13CH4, los microbios que se alimentan de metano fraccionan los isótopos de carbono en unas veinte o veijnticinco partes por 1.000 en los ambientes donde el metano es abundante. ¿Habeis pensado en la posibilidad de que esos organismos fotosintéticos estén presentes en Titán? ¡El fetín está servido!
La fotosíntesis anoxigénica se da en los organismos que utiliza la energía de la luz del sol, dióxido de carbono (sustrato a reducir) y sulfuro de hidrógeno (en lugar del agua) dador de electrones que se oxida, se fabrican glúcidos y se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria.
Otra característica es que los organismos fotosinteticos anoxigénicos contienen bacterioclorofila, un tipo de clorofila exclusiva de los foto-organotrofos, usan longitudes de onda de luz que no son absorbidas por las plantas. Estas bacterias contienen también carotenoides, pigmentos encargados de la absorción de la energía de la luz y posterior transmisión a la bacterioclorofila. El color de estos pigmentos dan el a estas bacterias: bacterias púrpuras del azufre y bacterias verdes del azufre. En las cianobacterias los pigmentos captadores de luz son las ficobilinas, por lo tanto se les nombra, bacterias azules.
Cualquiera de estas imágenes de arriba nos una larga y compleja historia de cómo, se pudieron formar cada uno de los ahí representados, y, en cualquiera de sus fases, formas y colores, es toda una gran obra de la Ingenieria de la naturaleza que, al fin y al cabo, es la única fuente de la que debemos beber para saciar nuestra ser de ignorancia.
No pocas veces he dejado aquí constancia de que, el Universo, en todas sus regiones, por muy alejadas que estén, se rige por unas leyes que están presentes en todas por igual, y, así lo confirman mil observaciones y mil proyectos que a tal efecto se han llevado a buen término. Por ejemplo, mediaciones precisas de isótopos de azufre en muestras de Marte traídas a la Tierra por meteoritos demuestran que muy pronto en la historia del planeta vecino el ciclo del azufre estaba dominado por procesos atmosféricos que producían un fraccionamiento independiente de la masa.
Valles en Marte. (ESA) La región de Valles Marineris, que una longitud de 4.000 kilómetros y una anchura de 600 kilómetros, es el sistema de cañones más grande conocido en el sistema solar, con profundidades que llegan a los diez kilómetros.
Basándose es ente descubrimiento del fraccionamiento independiente de la masa, se dirigió la atención sobre las rocas terrestres más antiguas. sorpresas de muchos geoquímicos, lo que se hayó fue que el yeso y la pirita de las sucesiones sedimentarias más antiguas de la Tierra también en Marte, han dejado constancias del fraccionamiento independiente de la masa de los isótopos de azufre. Al igual que en Marte, en la Tierra primitiva la química del azufre se encontraba al parecer influenciada por procesos fotoquímicos que sólo pueden producirse en una atmósfera pobre en oxígeno. La etapa del oxígeno comenzó en nuestra atmósfera a comienzos del eón Ptoterozoico. En suma, todos los caminos de la biogeoquímica llevan al mismo sitio, es decir, lo que pasa aquí pudo pasar allí y, al decir allí, quiero decir en cualquier planeta de cualquier galaxia. Las leyes fundamentales de la Naturaleza son, las mismas en todas partes. No existen sitios privilegiados.
Es difícil imaginarse hoy una Tierra sin oxígeno
Dos equipos independientes de investigadores descubrieron que el oxígeno gaseoso apareció en la atmósfera terrestre unos 100 millones de años del evento de la gran oxidación de hace 2400 millones de años. Es decir, cuando cambió la antigua atmósfera y el planeta se equipo con la que hoy conocemos.
El oxígeno es un gas muy reactivo, no existe de manera libre durante un largo período de tiempo, pues óxidos o reacciona con otras sustancias de manera rápida. Si está presente en la atmósfera es porque las plantas lo reponen continuamente. Antes de la invención de la fotosíntesis y durante muchos cientos de millones de años no había oxígeno libre en la Tierra.
En los estratos geológicos se pueden encontrar pruebas de la existencia de un momento en el que se produjo una gran oxidación mineral, prueba de que el oxígeno se encontraba ya libre en la atmósfera terrestre por primera vez y en gran cantidad. A este hecho se le ha denominado evento de gran oxidación, o GOE en sus siglas en inglés, y fue un hecho dramático en la historia de la Tierra. Este oxígeno permitió más tarde la aparición de vida animal compleja. Los geólogos creían que durante el GOE los niveles de oxígeno subieron rápidamente niveles prácticamente despreciables.
El mundo bacteriano es fascinante
Con estas bacterias es posible obtener dos tipos de celdas microbianas o baterías. Unas llamadas celdas de sedimento emplean el lodo donde habitan estos microorganismos; ahí, se produce energía simplemente conectando un electrodo en la donde, a cierta profundidad, no hay oxígeno, con otro electrodo que se encuentre en presencia de oxígeno.
¿Cómo respondió la vida a la revolución del oxígeno? Podemos imaginar, un “holocausto de oxígeno” que habría llevado a la muerte y la extinción a innumerables linajes de microorganismos anaeróbicos. Pero hace dos mil doscientos millones de los ambientes anóxicos no desaparecieron; simplemente, quedaron relegados bajo una capa oxigenada de agua y sedimentos superficiales.
Aquello permitió a la Tierra dar cobijo a una diversidad biológica sin precedentes. Los microorganismos anaeróbicos mantuvieron un papel esencial en el funcionamiento de los ecosistemas, igual que en la actualidad.
En la primera fase de cualquier ejercicio aeróbico, el oxígeno se combina con la glucosa procedente del glucógeno. Al cabo de unos minutos, cuando el cuerpo nota que escasea el azúcar, empieza a descomponer las grasas. Entonces disminuye un poco el rendimiento, mientras el cuerpo se adapta al cambio de origen de su energía. Superado punto, se vuelve a los niveles y sensaciones normales, pero se queman grasas en lugar de glucosa.
De otro lado, los organismos que utilizan, o al menos toleran el oxígeno se expandieron enormemente. La respiración aeróbica se convirtió en una de las formas principales de metabolismo en las bacterias, y las bacteria quimiosintéticas que obtienen energía de la reacción entre oxígeno e hidrógeno o iones metálicos se diversificaron a lo largo de la frontera entre ambientes ricos en oxígeno y ambientes pobres en oxígeno. ese momento, la Tierra comenzó a convertirse en nuestro mundo.
Nuestro mundo, rico en agua líquida que cubre el 71% de la superficie del planeta, y, su atmósfera con un 78% (en volumen) de Nitrógeno, un 21 de Oxígeno y un 0,9 de Argón, además de dióxido de carbono, hidrógeno y otros gases en cantidades mucho menores que, permiten que nuestros organismos encuentren el medio indóneo poder vivir. Otros muchos factores presentes en la Tierra contribuyen a que nuestra presencia aquí sea posible.
Las algas verdeazuladas también son llamadas bacterias verdeazuladas porque carecen de membrana nuclear las bacterias. Sólo existe un equivalente del núcleo, el centroplasma, que está rodeado sin límite preciso por el cromatoplasma periférico coloreado. El hecho de que éstas se clasifiquen como algas en vez de bacterias es porque liberan oxígeno realizando una fotosíntesis similar a la de las plantas superiores. Ciertas formas tienen vida independiente, pero la mayoría se agrega en colonias o filamentos. Su color varía desde verdeazulado hasta rojo o púrpura dependiendo de la proporción de dos pigmentos fotosintéticos especiales: la ficocianina (azul) y la ficoeritrina (rojo), que ocultan el color verde de la clorofila.
Mientras que las plantas superiores presentan dos clases de clorofila llamadas A y B, las algas verdeazuladas contienen sólo la de A, pero ésta no se encuentra en los cloroplastos, sino que se distribuye por toda la célula. Se reproducen por esporas o por fragmentación de los filamentos pluricelulares. Las algas verdeazuladas se encuentran en hábitats diversos de todo el mundo. Abundan en la corteza de los árboles, rocas y suelos húmedos donde realizan la fijación de nitrógeno. Algunas coexisten en simbiosis con hongos para formar líquenes. Cuando hace calor, algunas especies forman extensas y, a veces, tóxicas floraciones en la superficie de charcas y en las costas. En aguas tropicales poco profundas, las matas de algas llegan a constituir unas formaciones curvadas llamadas estromatolitos, cuyos fósiles se han encontrado en rocas formadas durante el precámbrico, hace más de 3.000 millones de años. Esto sugiere el papel tan importante que desempeñaron estos organismos cambiando la atmósfera primitiva, rica en dióxido de carbono, por la mezcla oxigenada que existe actualmente. Ciertas especies viven en la superficie de los estanques formando las “flores de agua”.
Sin descanso se habla de quer nosotros, con nuestro comportamiento estamos cambiando la atmósfera de la Tierra, que contaminamos y que, de seguir así, podemos acabar con la vida placentera en el planeta. Tal exageración queda anulada por la realidad de los hechos.
Gigantescas ciudades son una buena muestra de nuestra presencia aquí, y, ¿qué duda nos puede caber? Nuestro morfología nos ha convertido en el ser vivo dominante en el planeta. Sin embargo, no somos los que más hemos incidido en sus . Si se estudia la larga historia de la vida en la Tierra, podremos ver que una inmensa cantidad de especies han interactuado con la biosfera para modificar, en mayor o menor medida los ecosistemas del mundo. En realidad, la especie que cambió el planeta de manera radical, la que en verdad modificó la Tierra hasta traerla a lo que hoy es, creando una biosfera nueva a la que todas las especies se tuvieron que adaptar (también nosotros), esa especie que, aunque diminuta en su individualidad forma un gigantesco grupo, no son otras que las cianobacterias.
De esa manera, si el oxígeno trajo consigo un cambio revolucionario, las heroínas de la revolución fueron las cianobacterias. Fósiles extraordinarimente bien conservados en síles de Siberia de mil quinientos millones de años de edad demuestran que las bacterias verdeazuladas se diversificaron tempranamente y se han mantenido hasta la actualidad sin alterar de manera sustancial su . La capacidad de cambiar con rapidez, pero persistir indefinidamente, compendia la evolución bacteriana.
Las cianobacterias comparten con algunas otras bacterias la habilidad de tomar el N2 del aire, donde es el gas más abundante, y reducirlo a amonio (NH4), una que todas las células pueden aprovechar. Los autótrofos que no pueden fijar el N2, tienen que tomar nitrato (NO3-), que es una sustancia escasa. Esto les ocurre por ejemplo a las plantas. Algunas cianobacteria son simbiontes de plantas acuáticas, como los helechos del género Azolla, a las que suministran nitrógeno. Dada su abundancia en distintos ambientes las cianobacterias son importantes para la circulación de nutrientes, incorporando nitrógeno a la cadena alimentaria, en la que participan como productores primarios o como descomponedores.
La resistencia general de las bacterias a la extinción es bien conocida. Las bacterias poseen tamaños poblacionales inmensos y pueden reproducirse rápidamente: no importa que por la mañana nos lavemos los dientes meticulosamente; a media tarde, las bacterias que hayan sobrevivido al cepillo se habrán multiplicado hasta el extremo de recubrir nuevamente el interior de la boca. Además, las bacterias saben habérselas muy bien con medios cambiantes. El aire, por ejemplo, está lleno de bacterias; un plato de leche colocado en el alfeizar de la ventana no tarda en fermentar. Lo que es más, las bacterias son muy buenas a la hora de resistir perturbaciojnes ambientales. Aunque la mayoría crece especialmente bien dentro de unos márgenes ambientales estrechos, son capaces de tolerar extremas, al menos durante un tiempo.
Si miramos el tiempo que llevan aquí, como se pueden adaptar a que, ni en sueños podríamos hacerlo nosotros, y, sobre todo, si pensamos en la diversidad y en la inmensa cantidad y en que están ocupando (prácticamente) todas las reguiones del planeta, tendremos que convenir que, es necesario saber cuanto más mejor de ellas y, es necesario que nos sumerjamos en los reinos de las pequeñas criaturas que, de una u otra forma, serán nuestra salvación o, podrían provocar nuestra extinción.
Algunos creen que, también, en lugares como este, pueden estar presentes esos pequeños seres. En lugares donde abundan los mundos… ¿Qué seres habrá? Ahí, en la imagen de arriba, están presentes todos y cada uno de los elementos necesarios la vida, y, simplemente con que uno sólo de entre una infinidad de planetas se encuentre dentro de la zona habitable de su estrella, podría contener un sin fin de formas de vida que, como aquí en la Tierra, hayan evolucionado y, ¿quién sabe? hasta es posible que esa clase de vida, pueda haber logrado alcanzar los pensamientos, la imaginación, la facultad de ser conscientes.
De todas las maneras…, seguimos sin saber, a ciencia cierta, como pudo surgir las vida. Sólo tenemos vestigios que nos acercan a esa posible fuente, y, son muchas, las zonas oscuras que no dejan ver lo que allí ocurrió, lo que hizo la evolución o dejó de hacer y, las primigenias que posibilitaron que en este pequeño planeta rocoso, emergieran formas de vida que evolucionadas han podido salir al exterior para ver lo que hay fuera.
Esporas del espacio que pueden llevar la vida a diversos mundos
Acodémonos de la panspermia o llegada de vida fuera de la Tierra. La idea está muy extendida a pesar de que no existe la menor evidencia científica a su . Ni se ha encontrado vida fuera de nuestro planeta ni hay indicios de que alguno de los organismos de la Tierra procedan de otros mundos. Sin embargo… Como dirían aquellos simpáticosa gaditanos de la Chirigota: ¡Ahí queda eso!
emilio silvera
Mar
21
En la Red
por Emilio Silvera ~ Clasificado en Una pequeña entrevista ~ Comments (11)
Aunque no soy muy dado a figurar, cuando recibí la visita de una simpatica señorita de la TV Andaluza y me pido hacer un pequeño reportaje como Bloguero, no me pareció educado el negarme y, así quedó la cosa:
http://www.youtube.com/watch?
Ahora, aunque la cosa no ha dado para mucho, al menos me conoceréis mejor en lo personal y, de esa manera, se estrechan lazos con los visitantes de este lugar.
Saludos cordiales amigos.
Mar
21
Nuevas maneras de mirar el Universo
por Emilio Silvera ~ Clasificado en Ondas gravitacionales ~ Comments (0)
Las últimas noticias que llegan sobre descubrimientos del Cosmos, han salido en todos los medios (Aquí El Pais)
“Un equipo internacional de científicos ha detectado los sutiles temblores del universo un instante después de su origen. Un telescopio estadounidense en el mismísimo polo Sur ha logrado captar esas huellas en el cielo que suponen un espaldarazo definitivo a la teoría que mejor explica los primeros momentos del cosmos, denominada inflación y propuesta hace más de tres décadas. Esa inflación fue un crecimiento enorme y muy rápido del espacio-tiempo inicial y, a partir de ese momento, el universo siguió expandiéndose pausadamente, hasta ahora, 13.800 millones de años después. Es la teoría del Big Bang, pero con un complemento fundamental al principio de todo. Como dice Alan Guth, el científico estadounidense que propuso, a principio de los ochenta, la inflación cósmica, “exploramos el bang del Big Bang”. “
El reportaje es bastante más extenso pero ya todos (supongo) lo habéis visto en los telediarios y demás noticias divulgadas en prensas y revistas. Hace algún tiempo ya que aquí mismo deje un trabajo publicado en la Revista de Física y que versaba sobre el mismo tema, por su actualidad hoy, aquí lo dejo de nuevo. Está referido a esas ondas gravitatorias que estamos buscando para tratar de leer los mensajes que nos envían. Muchos son los autores que nos han hablado de ellas y, por fín, parece que van siendo localizadas.
Ondas gravitatorias que salen de un agujero negro pulsante expandiéndose por el espacio a inconmensurables distancias, si de las ondas formadas en un tranquilo lago se tratara, las de gravedad, funcionan de forma similar.
Ondas gravitatorias de un Agujero Negro pulsante (que los hay)
Desde sus comienzos la Astronomía ha dominada por el uso de instrumentos que detectan luz, desde los primeros telescopios ópticos hasta los más modernos detectores de rayos X y gamma. Fruto de este desarrollo han sido grandes descubrimientos que han ido configurando nuestra de comprender el Universo. Durante el siglo pasado se han empezado a desarrollar nuevas formas de Astronomía basadas en mensajeros diferentes a la luz: detectores de rayos cósmicos, de neutrinos y de ondas gravitacionales. Las ondas gravitacionales son una consecuencia de la Teoría General de la Relatividad de Einstein y corresponden a oscilaciones de la geometría del espacio-tiempo que se propagan de similar a las ondas electromagnéticas.
Tenemos que buscar la manera de “ver” y “detectar” las ondas gravitacionales
La debilidad de la fuerza gravitatoria hace que la detección de estas ondas suponga un gran reto tecnológico. Sin embargo, desde el punto de vista científico son una gran , ya que transportan información prácticamente incorrupta de las fuentes que la generaron, la cual en muchos de los casos es difícil o imposible de obtener por otros medios. Este artículo es una introducción a la Astronomía de Ondas Gravitatorias, a sus métodos, a su estado actual y sobre todo a las grandes perspectivas que ofrece con la apertura de una nueva ventana a la exploración del Universo que tendrá un gran impacto tanto en Astrofísica como en Cosmología e incluso en Física Fundamental.
Dentro del marco de la Física Teórica, la gravedad aparece una de las cuatro interacciones fundamentales, siendo las otras tres la electromagnética y las interacciones nucleares débil y fuerte. Electromagnetismo y gravitación son las dos únicas interacciones de largo rango de acción (en principio ilimitado), en contraposición a las dos interacciones nucleares, cuyo rango de acción está limitado esencialmente a regiones cuyo tamaño es del orden de un núcleo atómico o inferior. Una consecuencia directa de esto es que las interacciones nucleares no pueden transportar información a distancias macroscópicas y por lo tanto no son de utilidad la Astronomía. Las otras dos, electromagnetismo y gravedad, se propagan a través del espacio a la velocidad de la luz, tal y como nos indican las teorías de Maxwell y Einstein respectivamente, y tal como comprobamos en diferentes observaciones y experimentos.
Muchos son los fenómenos que no sabemos entender
Lo que determina la fuerza que estas interacciones producen son su intensidad y las correspondientes susceptibilidades de la materia a ellas, lo que denominamos cargas, la carga eléctrica en el caso electromagnético y la masa en el caso gravitatorio. En la naturaleza observamos que la interacción electromagnética produce fuerzas que son muchos órdenes de magnitud superiores a la de la gravitatoria, que es la más débil de todas las interacciones. Por lo tanto, no es de extrañar que la Astronomía haya dominada completamente por detectores de ondas electromagnéticas y fotones (las partículas cuánticas asociadas a campos electromagnéticos), telescopios ópticos hasta detectores de rayos X y gamma, incluyendo antenas de radio. Gracias a estos instrumentos la Astronomía ha producido grandes revoluciones que han cambiado nuestra percepción del Universo: la Copernicana, que comenzó en el siglo XVI, hasta los descubrimientos en cosmología, que comenzaron en el siglo XX y continúan hoy día.
Vistas como esta son posibles gracias a la luz y a los telescopios
Pero no todo lo que se mide u observa en astronomía es luz, hay otros mensajeros que nos informan sobre lo que sucede en diferentes lugares de nuestro Universo: meteoritos, neutrinos, rayos cósmicos (protones, electrones, etc.), ondas gravitatorias. Los meteoritos nos dan información de nuestro entorno local, principalmente del Sistema Solar. Los neutrinos y rayos cósmicos pueden provenir nuestro entorno local hasta galaxias muy distantes. La detección de estas partículas, mediante técnicas similares a las empleadas en aceleradores de partículas, ha dado lugar a una nueva área de investigación muy activa denominada Astropartículas. El mensajero del que trata este artículo son las ondas gravitatorias y su para la investigación astronómica constituye lo que denominamos Astronomía de Ondas Gravitatorias.
Las ondas gravitatorias son una predicción de la Teoría General de la Relatividad (conocida comúnmente como Relatividad General) propuesta por Albert Einstein (1915) para incluir la gravitación en la estructura espacio-temporal propuesta por él mismo en su Teoría Especial de la Relatividad (1905). Uno de los aspectos más destacados de esta teoría es que el espacio deja de ser un simple contenedor de los fenómenos físicos para convertirse en un objeto dinámico, en el sentido que su geometría cambia conforme a los movimientos y distribuciones de masas y energía. No solo eso, al tiempo físico le sucede algo similar, de que su transcurso también depende de la distribución de masa y energía. En la Teoría de la Relatividad espacio y tiempo aparecen como una única estructura que denominamos espacio-tiempo, cuya geometría está determinada por la distribución de masa y energía, y a su vez, la geometría determina el movimiento de la materia y de la energía.
La geometría del espaciotiempo que nos da toda la sensación de estar determinada por la presencia de grandes masas de materia que curvan el espacio y distorsionan el tiempo a su alrededor, El Agujero negro es el exponente más claro de esto.
De esta , la gravedad aparece como una manifestación de la geometría espacio-tiempo, una elegante implementación del principio Galileano de que todos los objetos, independientemente de su masa y composición, caen con la misma aceleración. Una consecuencia del carácter dinámico del espacio-tiempo en la Relatividad General es que las oscilaciones de su geometría se propagan como ondas con una velocidad, medida localmente, exactamente igual a la velocidad de la luz. Las ondas gravitatorias, al cambiar la geometría local de las regiones que atraviesan, cambian la distancia física objetos, siendo dicho cambio proporcional a la distancia misma y a la amplitud de ondas. Como en el caso electromagmético este es un efecto transverso, es decir, los cambios en la distancia se producen en el plano perpendicular a la dirección de propagación de la onda gravitatoria. Además, tanto ondas electromagnéticas como gravitatorias tienen dos estados de polarización independientes, aunque en teorías de la gravedad alternativas a la Relatividad General puede haber hasta seis polarizaciones independientes.
Una diferencia importante ondas electromagnéticas y gravitatorias tiene que ver con su generación. En el contexto astronómico, las ondas electromagnéticas se generan por cargas aceleradas (emisión predominantemente dipolar), como por ejemplo electrones, cuyo tamaño es muy inferior al de los objetos de los que forman y como consecuencia, pueden emitir luz en una longitud de onda suficientemente pequeña como para realizar imágenes de objetos astronómicos. En contraste, las ondas gravitatorias se generan por cambios temporales de la distribución de masa-energía de un objeto (radiación predominantemente cuadrupolar), y por este motivo sus longitudes de onda suelen ser del orden del tamaño del objeto que las genera o mayores, con lo cual no es posible en general realizar imágenes. En ese sentido se podría decir que la Astronomía de Ondas Gravitatorias está más cercana a la Acústica que a la Óptica.
Es previsible que, dos objetos masivos (estrellas de neutrones, por ejmplo) se encuentran y giran el uno alrededor del otro, deben desprender una serie de ondas gravitacionales que, captadas a cientos o miles de años-luz de la fuente, deben contar el suceso al científico experto.
La relativa debilidad de la gravedad es la causa de que las ondas gravitatorias tengan una amplitud relativamente pequeña y que su detección sea una empresa extremadamente complicada. Ondas gravitatorias producidas por fuentes galácticas, la colisión de dos estrellas de neutrones, inducen desplazamientos del orden del tamaño de un núcleo atómico o inferiores en un detector terrestre de un kilómetro de tamaño. La gran ventaja que proporcionan las ondas gravitatorias es que por su débil interacción con la materia transportan información prácticamente incorrupta de las fuentes astronómicas que las generaron.
La construcción de un detector de ondas gravitatorias supone un gran reto tecnológico, y tal empresa no comenzó hasta los años sesenta, con el pionero de Joseph Weber en detectores resonantes. El principio de funcionamiento de estos detectores de basa en que una onda gravitatoria que atraviese un sólido cambiará su tamaño de forma oscilatoria, excitando de esta forma sus modos propios de oscilación. La idea por lo tanto es crear un dispositivo que sea sensible a las oscilaciones del sólido y nos permita extraer la señal gravitatoria que las ha producido. Varios detectores de este tipo, la mayoría con forma cilíndrica, se han construido en varias partes del mundo y, contrariamente a las aseveraciones de detección de Weber en los años 70, no han conseguido hasta la fecha detectar ondas gravitatorias. De hecho, ningún tipo de detector las ha detectado. Entonces, ¿estamos seguros de que las ondas gravitatorias existen? ¿Tenemos alguna evidencia de su existencia?
No por falta de empeño y proyectos , todavía no se han observado (directamente) las ondas gravitatorias predichas por la teoría de la relatividad de Einstein, aunque hay importantes evidencias (indirectas) sobre su existencia. Son extremadamente débiles, por lo que observarlas es extremedamente difícil.
La respuesta a estas preguntas es que sí, y el principal argumento nos lo proporcionó el descubrimiento en 1974 del primer pulsar binario, PSR B1913+16, por Russell Hulse y Joseph Taylor, lo que les valió el premio Nobel de Física en el año 1993. Los púlsares son estrellas de neutrones dotadas de un enorme campo magnético que acelera partículas cargadas produciendo la emisión de un haz de radiación electromagnética en la dirección del eje magnético. Como el eje magnético no suele estar alineado con el eje de rotación, emisión electromagnética describe un cono, convirtiendo los púlsares en faros cósmicos. Si nuestro planeta se encuentra en la dirección del cono de emisión del púlsar observaremos una serie de pulsos de radio, que en caso de los púlsares con rotación más rápida se dan con un ritmo tan uniforme que los convierte en relojes de precisión comparable a los relojes atómicos (¡el púlsar más rápido conocido completa más de 700 revoluciones por segundo! El de Hulse y Taylor!).
El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.
Otro púlsar binario destacable es PSR 1957 + 20, llamado en ocasiones púlsar de la viuda negra, en el que la intensa radiación procedente del pulsar está evaporando su pequeña estrella compañera. Algunos púlsares binarios se saben que son púlsares reciclados que han adquirido altas velocidades de rotación debido a la acreción de gas procedente del compañero.
Escenas como son corrientes en las galaxias
Esto permite observaciones astronómicas de una precisión sin precedentes. El púlsar de Hulse y Taylor orbita alrededor de otra estrella de neutrones de que el tamaño de la órbita es suficientemente pequeño (la distancia mínima entre ellas es aproximadamente la mitad de la distancia de la Tierra al Sol) como para que estas estrellas tan compactas (tienen una masa un poco inferior a una vez y media la masa del Sol pero un radio de tan sólo unos diez kilómetros) se muevan de forma que los efectos relativistas importen para un descripción precisa de sistema. En concreto, el movimiento orbital periódico de tales masas con velocidades considerables (cientos de kilómetros por segundo respecto del centro de masas del sistema binario) produce cambios periódicos significativos en la geometría del espacio-tiempo de su entorno. Y estos cambios periódicos en la geometría no son más que ondas gravitatorias que se propagan en todas las direcciones llevándose consigo energía y momento angular del sistema.
emisión gravitatoria afecta a su vez al movimiento orbital, disminuyendo su tamaño y periodo orbital, tal y como se observa. También se pueden observar otros efectos relativistas como la precesión del periastro de la órbita. Los 35 años de observaciones del púlsar binario de Hulse y Taylor han permitido comprobar que la evolución de su órbita coincide con la predicha por el mecanismo de emisión de radiación gravitatoria de la Relatividad General con una precisión relativa del 0.2%. Actualmente se conocen otros púlsares binarios y algunos de ellos se encuentran en un régimen relativista. El denominado púlsar doble, PSR J0737-3039A/B, un sistema binario compuesto por dos púlsares, se ha convertido recientemente en el mejor test disponible de la Relatividad General, alcanzado precisiones relativas del 0.05%.
Uno de los dos detectores LIGO, situado en Livingston (Luisiana), con brazos de cuatro kilómetros de longitud.- LIGO/CALIFORNIA INSTITUTE OF TECHNOLOGY. Se han ideado para localizar las ondas gravitacionales que vienen del pasado salidas de sucesos como el big bang o agujeros negros que colisionan, estrellas de neutrones que se fusionan y otros eventos cosmológicos que nos pueden contar muchas cosas del Universo que ahora no conocemos.
Estos descubrimientos han contribuido a impulsar el desarrollo de detectores de ondas gravitatorias, y los que hoy en día han alcanzado una mayor sensibilidad son los llamados detectores interferométricos. Son básicamente interferómetros del tipo Michelson-Morley dispuestos en una de L y el concepto de funcionamiento es relativamente simple: cuando una onda gravitatoria incide perpendicularmente al plano del detector produce cambios en la longitud de los brazos del interferómetro, de forma que mientras uno se acorta el otro se alarga y viceversa. Estos cambios dan lugar a interferencias de las cuales se puede inferir el patrón de las ondas gravitatorias que han atravesado el detector. Actualmente hay varios detectores interferométricos terrestres en operación: LIGO en los Estados Unidos (dos de 4 km y uno de 2 km de brazo); VIRGO en Italia con participación de varios países europeos (3 km de brazo); GEO600 en Alemania con participación británica (600 m de brazo). Aparte hay varios proyectos en desarrollo en diversas partes del planeta, como por ejemplo el LCGT en Japón 83 km de brazo), un ambicioso proyecto recientemente aprobado que sustituye al anterior detector TAMA y al prototipo CLIO, y que se convertirá en el primer detector interferométrico de tipo criogénico. La banda de frecuencias a la que operan está contenida en el rango 10- 10000 Hz. A frecuencias más bajas están limitados por ruido sísmico y el gradiente gravitatorio, mientras que a frecuencias más altas están limitados por el ruido de los fotodetectores.
Pese a que no se han realizado aún detecciones, observaciones de LIGO han servido producir nueva ciencia mediante el análisis de las consecuencias de las no detecciones al nivel de sensibilidad actual. Se pueden destacar dos resultados: (1) En la constelación del Cangrejo hay un púlsar joven resultado de una supernova (explosión de una estrella). La frecuencia rotacional de púlsar disminuye con el tiempo. LIGO ha limitado a un 4% la contribución de una hipotética emisión de radiación gravitatoria, lo cual excluye diversos modelos astrofísicos que trataban de explicar fenómeno. (2) La teoría cosmológica de la gran explosión (Big Bang) requiere una fase primitiva de gran expansión del Universo que daría lugar, entre otras cosas, a un fondo de radiación gravitatoria. Las observaciones de LIGO han puesto límites a la densidad de energía almacenada en este fondo, mejorando los límites impuestos por la teoría de de elementos primordiales, parte a su vez del modelo estándar de la Cosmología. Durante el presente año, tanto LIGO como VIRGO pararán las operaciones para incorporar tecnología avanzada: mejora de los sistemas de vacío, láseres de precisión más potentes y mejoras de los sistemas ópticos y mecánicos. Con esto se logrará una mejora de un orden de magnitud en la sensibilidad, lo cual equivale a aumentar en tres órdenes de magnitud el volumen del cosmos que cubrirán. Al mismo tiempo se realizará la construcción del detector criogénico LCGT en la mina de Kamioka (Japón). Una vez estos modelos avanzados entren en operación se espera que realicen detecciones de radiación gravitatoria con un ritmo, de acuerdo con los pronósticos astrofísicos sobre la información de las fuentes de ondas gravitatorias relevantes, de 10-1000 eventos por año.
En lugares como este, la gravedad interviene formar estrella
Las principales fuentes astrofísicas y cosmológicas para estos detectores terrestres son: colisiones de sistemas binarios formados por agujeros negros estelares y/o estrellas de neutrones; oscilaciones de estrellas relativistas; supernovas; fondos cosmológicos de diverso origen. Estas observaciones revelarán información clave para entender la de objetos compactos estelares, la ecuación de estado de estrellas de neutrones, la validez de la Relatividad General, etc.
Por otra parte, la Agencia Europea del Espacio (ESA) y la Administración Nacional para el Espacio y la Aeronáutica norteamericana (NASA) colaboran en la construcción de un observatorio espacial de ondas gravitatorias, la Antena Espacial de Interferometría Láser (LISA), que se espera que se lance durante la década de 2020. Hay dos motivos de peso para construir un observatorio espacial. El primero es cubrir la banda de bajas frecuencias, en el rango 3x10⁻⁵ – 0.1 Hz, inaccesible a los detectores terrestres. El segundo es que banda de frecuencias da acceso a fuentes de ondas gravitatorias y a una ciencia completamente diferente, con muchas más implicaciones para el panorama de la Astrofísica y la Cosmología. LISA se compone de tres naves espaciales dispuestas en un triángulo equilátero, de 5 millones de kilómetros de lado, y que siguen una órbita alrededor del Sol. Para que la dinámica propia de cada nave preserve lo más posible la configuración triangular, esta ha de estar inclinada 60º respecto del plano de la eclíptica. De esta el triángulo gira sobre su baricentro una vez por año/órbita, lo cual introduce una modulación en las señales gravitatorias que es muy útil para localizar los objetos que las emitieron. LISA es una misión con una tecnología muy novedosa y exigente que una misión precursora de la ESA, LISA PathFinder, se encargará de demostrar. Nuestro grupo en el Instituto de Ciencias del Espacio (CSIC-IEEC) participa en el desarrollo de esta misión contribuyendo con algunos instrumentos fundamentales, como por ejemplo el ordenador que controlará el denominado LISA Technology Package, el conjunto de experimentos que LISA PathFinder realizará.
LISA hará sus observaciones en un intervalo de frecuencia bajo que no es posible con detectores basados en la Tierra. Estos detectores están afectados por el ruido ambiental de la Tierra, causado por los terremotos y otras vibraciones, y sólo pueden hacer observaciones a frecuencias mayores de 1 hertzio. Sin embargo, los detectores terrestres, tales como el Observatorio de Ondas Gravitacionales por Interferometría Láser (LIGO) o VIRGO, y LISA se complementarán. En el espacio, LISA “oirá” el ruido sordo largo y bajo de las ondulaciones del espacio-tiempo. En la Tierra, LIGO y otros sistemas “oirán” las ondulaciones del espacio-tiempo de frecuencia más alta. LISA observará los binarios miles de años antes de que éstos choquen. Los detectores terrestres observarán otros binarios justo antes de chocar, cuando sus velocidades orbitales son mucho más altas. Se necesitan ambos tipos de observatorios para oír el amplio espectro de ondulaciones en el espacio-tiempo.
Pasando a la científica de LISA, uno de los principales puntos a resaltar es el hecho de que actualmente LISA es el único proyecto de detector de radiación gravitatoria del que conocemos fuentes garantizadas. Se trata de sistemas binarios galácticos con periodos inferiores a 2 horas, conocidos como binarias de verificación ya que serán muy útiles para la calibración de LISA. Además, se espera que LISA observe principalmente las siguientes fuentes de ondas gravitatorias: Sistemas estelares binarios en nuestra galaxia y algunos extragalácticos. LISA detectará varios millones de estos sistemas, la mayor de los cuales formarán un fondo de radiación gravitatoria y los más brillantes podrán resolverse y separarse de este fondo. Caída orbital y colisión de agujeros negros supermasivos. Las observaciones astronómicas nos proporcionan evidencia de que prácticamente todas las galaxias contienen un agujero negro en su núcleo central y que estas, a lo largo de su historia, han sufrido varias colisiones con otras galaxias. Cuando dos galaxias colisionan para formar una nueva, sus respectivos agujeros negros migran hacia el nuevo núcleo debido a la fricción dinámica, donde forman un sistema binario cuya órbita, a partir de un determinado momento, se reducirá por emisión de radiación gravitatoria hasta la colisión final, que resultará en la de un único agujero negro.
Un equipo, con participación del Instituto de Astrofísica de Canarias (IAC), ha descubierto, por casualidad, una docena de sistemas estelares binarios con peculiaridades jamás vistas. Se trata de sistemas compuestos por pares de enanas blancas más ligeras de lo habitual y que, según sus cálculos, acabarán fusionándose en un único objeto.
LISA será capaz de detectar todas estas colisiones dentro de nuestro Universo observable. La captura y posterior caída orbital de objetos estelares compactos (enanas blancas, estrellas de neutrones, agujeros negros estelares) hacia agujeros negros supermasivos. En el núcleo galáctico, en torno a los agujeros negros supermasivos, hay una gran concentración de objetos estelares compactos. Eventualmente, y debido a interacciones gravitatorias entre ellos, uno de estos objetos estelares puede ser capturado por la gravedad del agujero negro supermasivo e una larga caída en espiral hacia este (debido a la emisión de radiación gravitatoria del sistema) hasta ser finalmente absorbido por él. Esta caída es lenta. De tal forma que LISA podrá detectar la radiación gravitatoria emitida durante cientos de miles de órbitas durante el último año de uno de estos sistemas, y esto supone que podremos extraer sus parámetros físicos co una gran precisión. Fondos de radiación gravitatoria de origen cosmológico. De acuerdo con esa mayoría de mecanismos teóricos que los predicen, el espectro de estos fondos es muy amplio (en algunos casos es plano o ligeramente inclinado) y pueden ser observados por detectores que operen en diferentes partes del espectro gravitatorio.
La detección de las fuentes descritas permitirá desarrollar una ciencia muy amplia y revolucionaria, que influenciará tanto la Astrofísica y la Cosmología como la Física Fundamental. Sobre la ciencia que se espera desarrollar con LISA podemos destacar: comprensión de la dinámica de los núcleos galácticos; comprobar la validez de diferentes modelos de de galaxias; comprobar si los agujeros negros son como los describe la Relatividad General (caracterizados únicamente por su masa y momento angular intrínseco); poner a prueba teorías alternativas a la Relatividad General; etc.
Aparte de los detectores de ondas gravitatorias descritos, se ha propuesto otra de detectar ondas gravitatorias basada en el ajuste temporal (timing) de un conjunto de púlsares con periodos del orden de milisegundos. Cuando una onda gravitatoria pasa a través de la región entre los púlsares y la Tierra produce cambios en los tiempos de llegada de los pulsos. Con una tecnología adecuada, un buen de púlsares (un par de decenas) y un tiempo de observación suficientemente largo (unos diez años), la presencia de ondas gravitatorias, en la banda ultra baja, entre 10⁻⁹ y 10⁻⁷ Hz, puede ser detectada. Las fuentes en banda incluyen los agujeros negros más masivos, con masas superiores a cientos de millones de veces la masa del Sol, y fondos de radiación gravitatoria de origen diverso.
La Astronomía de Ondas Gravitatorias se inició durante la segunda mitad del siglo pasado y ha de tener su época de esplendor a lo largo de la primera mitad del presente, con la puesta en funcionamiento de la segunda generación de detectores terrestres como LIGO, VIRGO, Y LCGT, con el futuro observatorio espacial LISA, con la observación de múltiples púlsares y con el desarrollo de proyectos de tercera generación que están siendo actualmente debatidos y diseñados. Cada vez que en Astronomía se ha abierto una nueva ventana a la exploración del Universo (infrarroja, radio, rayos X, rayos gamma, etc.) se han realizado grandes descubrimientos. Muchos de ellos han consistido en la aparición de nuevos objetos astronómicos y/o nuevos fenómenos físicos, la mayoría de veces de forma inesperada. La Astronomía de Ondas Gravitatorias abrirá una nueva ventana usando una nueva herramienta, un mensajero cósmico, la gravedad, y con ello nos esperan nuevas sorpresas y grandes descubrimientos que pueden cambiar nuestra forma de ver el Universo.
Excepto algunos adornos personales.
La Fuente: Revista de Física, volumen 25 nº 2/2011
Autores: Alberto Lobo y Carlos F. Sopuerta