Mar
10
¡Agún día sabremos!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
De alguna manera, llevamos dentro de nosotros aquel camino de Hoz. Pero será la Ciencia la que nos indique la manera de crear nuevos caminos que nos lleven hacia esa armonía que buscamos en un universo del que formamos parte y que no hemos llegado a comprender. Son muchas las cosas que no sabemos.
Desde que Einstein en 1.905 nos dijo que el Tiempo no es un reloj universal que marcha al mismo ritmo para todos, y que un gemelo que parte en un viaje al espacio a gran velocidad no envejerá tanto como el otro que se queda en casa, nada ha sido lo mismo. Esa paradoja la entendemos y nos parece escandalosamente increíble, y pese a todo es correcta. Cosas así despiertan la imaginación de las personas curiosas que, de alguna manera, acceden a la realidad, a otra realidad y constatan que sus conceptos del “mundo” estaban equivocados.
Vivímos en “nuestra realidad” la que nos deja “ver” nuestras mentes pero, ¿es esa la realidad?
Estar equivocados nos sorprende y, al mismo tiempo, nos enseña algo sobre nosotros mismos. No solo hay cosas que no sabemos, sino que las cosas que creemos saber pueden no ser ciertas. Como nos dice la filosofía, nada es como se ve a primera vista, todo depende bajo el punto de vista desde el que miremos las cosas y, si es el correcto, estaremos en esa verdad que incansables buscamos. Claro que, “nuestra realidad” está escenificada por los mensajes que los sentidos envían al cerebro y, el cerebro conforma el escenario de esa realidad según los datos proporcionados pero, nuestros sentidos no son perfectos, así que…
No resulta nada fácil descubrir los caminos por los que deambula la Naturaleza y las razones que ésta tiene para recorrerlos de la manera que lo hace y no de otra. Una cosa es cierta, la Naturaleza siempre trata de conseguir sus fines con el menor esfuerzo posible y, cuestiones que nos parece muy complicadas, cuando profundizamos en ellas como la ciencia nos exige, llegan a parecernos más sencillas y comprensibles. Todas las respuestas están ahí, en la Naturaleza. No pocas veces, lo que nos parecía muy complejo, al estudiarlo por partes y finalmente unirlas todas, nos parece más sencillo.
Alguna vez me he preguntado si el conocimiento nos puede traer alegría o incluso felicidad y, la respuesta, no es nada sencilla. Muchas veces he podido sentir cómo al adquirir un nuevo conocimiento he sentido dolor por comprender lo que hay detrás de ese conocimiento. Otras veces, el dolor lo he sentido al ver a tantas criaturas faltas de conocimiento, no le dieron ninguna oportunidad. ¿Otra paradoja? ¿Como se puede sentir una cosa y la contraria? Alegría del nuevo conocimiento adquirido y dolor al ser consciente de que pocos lo han podido tener y viven en “otro mundo” que, aunque dentro de este nuestro, no es el mismo ¡maldita desigualdad!
Algún pensador ha dicho:
“La paradoja de nuestro tiempo en la historia es que tenemos edificios más altos pero temperamentos más cortos, autopistas más anchas, pero puntos de vista más estrechos. Gastamos más pero tenemos menos, compramos más, pero gozamos menos. Tenemos casas más grandes y familias más pequeñas, más conveniencias, pero menos tiempo. Tenemos más grados y títulos pero menos sentido, más conocimiento, pero menos juicio, más expertos, sin embargo más problemas, más , pero menos . “
¿No será que no hemos aprendido a determinar lo que realmente tiene algún valor?
Bueno, para no variar comencé un hacia el “universo de Einstein” y llegué a un extraño mundo que no estaba en el de mis pensamientos primeros, así que regreso sobre mis pasos y retomo el sendero que dejé para continuar comentándoles a ustedes algunas cuestiones.
Como algunos recordaréis, Albert Einstein fue escogido por la Revista Time (el nombre resulta irónico en ese caso concreto por motivos obvios) como la personalidad del siglo XX. Precisamente comenzó ese siglo de manera impresionante en su año milagroso de 1.905. En ese año, inspirado en el de Planck de la radiación de cuerpo negro y el cuanto de acción, h, él fue un poco más allá, dio la demostración estadística de la naturaleza atómica de la materia y, con su explicación de los fotones que inciden en superficies metálicas, que le valió el Nobel de Física , ayudó a poner en marcha la revolución cuántica con la que nunca se sintió cómodo. Claro que, no fue aquello lo que le llevó a la popularidad. La fama de Einstein le vino de la mano de la “relatividad”, la teoría de la estructura del espacio-tiempo, la geometría del Universo.
El espacio-tiempo de Einstein situó al ser humano en lugar más cercano al Universo. Le hizo comprender que era una parte de la Naturaleza, la que piensa. Y, pensando, llegamos a lo que el espacio-tiempo es, que los átomos son demasiado pequeños, los fotones demasiado rápidos y que, en realidad, no podemos tener opiniones firmes sobre estas cosas que se mueven en un “mundo” extraño y muy diferente al nuestro cotidiano. Cuando recibimos noticias sobre la mecánica cuántica, las aceptamos como parte del progreso periódico y metódico de la ciencia. La materia está hecha (de tipos de) unidades que llamamos partículas; la luz tiene una naturaleza de onda y partícula a la vez. Quien no es científico no tiene pruebas para contradecir el primer enunciado y ninguna comprensión clara sobre lo que se entiende sobre el segundo. Pero en 1.905 Einstein nos dijo también que el Tiempo es distinto para cada uno de nosotros dependiendo de un ritmo que lo hace relativo.
La relatividad, o la física del espaciotiempo, con su aura de los agujeros negros y un universo en expansiòn, capta nuestra atención porque es la materia de la vida diaria – espacio y tiempo- hecha exótica, como si el Asesor Fiscal consujera un Ferrari con una túnica indonesia. Esto explica (de alguna mnanera) la constancia y fijación, la constante fascinación que ejerce sobre los legos con algunos conocimientos científicos.
También explica la importancia de la relatividad para aquellos con demasiada poca paciencia y quizá demasiado autoconfianza. Cualquier físico relativista ha pasado por la experiencia de recibir, varias veces al año, una nueva teoría de la relatividad remitida por un pensador no-tradicional con inclinaciones técnicas que no ha “leído todos los ” pero donde estaba equivocado Einstein.
Es curioso como otros (que sí han leído todos los libros) que trabajan cada día con los detalles finos de las matemáticas aplicadas, haciendo un honesto y dirigiendo todos los esfuerzos a lo que podría ocurrir en una colisión de dos agujeros negros masivos, el asombro que al principio pudiera sentir con los resultados, quedan diluidos con la familiariadad del cotidiano que nos lleva a entender aquellos “asombrosos” resultados como más cercanos y menos extraño. El conocimiento aleja el asombro.
Sí, desempolvaló y vuelve a mirar lo que en sus páginas te dicen para saber del mundo
Este pequeño librito es una buena introducción a la Relatividad Especial y el ideal para consultas, escrito por Edwon Taylor y Jhon Wheeler nos lleva a dar un paseo por las intrincadas carreteras del espacio-tiempo, por la verdadera naturaleza del espacio y el tiempo que no siempre podemos llegar a comprender. El espacio y el tiempo son tan viejos (más) como el pensamiento humano. Los pensadores clásicos ya tuvieron mucho que decir sobre el tema. Algo de ello parece ahora curiosamente ingenuo, y algo de ello sigue siendo impresionante profundo (fijaos en Zenón, ¿no os parece que ha sabido envejer de la manera más adecuada).
Claro que, las ideas modernas han necesitado miles de años para evolucionar y que encuentran su ubicación precisa en las matemáticas, el lenguaje del que finalmente, se vale la ciencia para explicar lo que las palabras no pueden. Por otra parte, es una sorpresa agradable que las claves de una discusión tan moderna de conceptos científicos incluídos en la relatividad, sean accesibles a quiénes no teniendo una matemática y física, asimile cuestiones algunas veces complejas pero, si se explican bien…
El libro de Taylor y Wheeler comienza con la historia de una persona que cruza un pequeño puenta que cruza un río recto y estrecho que corre por un paisaje llano. Aquella persona mira directamente río arriba y quiere dar una descripción cuantitativa de la localización de los lugares de , como el campanario de la Iglesia.
Podría hacerlo de muchas formas diferentes. Podría decir que el campario está a 24 metros de ella, y en una dirección a un ángulo de 30 grados a la izquierda. Alternativamwente podría advertir que la camapa está a 800 metros “hacia delante” (en dirección río arriba) y 462 metros “a la izquierda” (lo que signiofica 462 metros a la izquierda del río. Lo que es común a ambos métodos de descripción (y a cualquier otro método) es que debe especificar dos números. Por esa razón decimos que el conjunto de localizaciones en el paisaje es un mundo bidemensional. En física se suele decir que las medidas están hechas por un “observador” y el método de localizar puntos en un “ de referencia” asociado al observador. Los números concretos a los que llega el observador (tales como 800 metros y 462 metros) se denominan “coordenadas” de una localización.
La existencia y la importancia de estos términos especiales sugiere correctamente que puede haber otros observadores y otros sistemas de referencia. De hecho, de esto es de lo que trata la relatividad: de relación entre medidas (es decir, coordenadas) en diferentes sistemas de referencia. Es crucial, entonces, que tengamos otro observador y que nuestros observadores discrepen en las medidas.
Provistos de una jerga bastante especial podemos ahora meter la punta del lápiz en el espaciotiempo. (Igual que las localizaciones son los lugares de un paisaje, los “sucesos” son los lugares en el espaciotiempo. Un suceso en cierto lugar o cierto tiempo. Es una posición en el tiempo tanto como en el espacio. Evidentemente el mundo de tales sucesos -el mundo que llamaremos espaciotiempo- es tetradimensional. Se necesitan tres coordenadas para especificar el “donde” de un suceso, y una coordenada para especificar el “cuando”.
En eso de que todo es relativo, acordaos de aquel Jefe de Estación que miraba pasar el tren y veía, como desde una de las ventanillas, un niño arrojaba una pelota de goma a una velocidad de 20 Km/h. El tren marchaba a 100 Km/h. Resulta que el padre del niño, sentado junto a él, llevaba una máquina que media la velocidad a la que corria la pelota y, el Jefe de Estación, parado en el Anden, tenía otra igual que también la media. El resultado de ambas mediciones era discrepante. Al padre del niño le daba una medida de 20 Km/h, mientras que al Jede de Estación le dió una medida de 120 IKm/h. ¿cómo podía ser eso? Lo cierto es que, el padre del miño que portaba la máquina, también estaba en movimiento a 100 Km/h que la máquina no media, dado que ella, también se movía y sólo media la velocidad de la pelotita. El Jefe de Estación parado en el Anden, midió que la pelota corria hacia adelante a 120 Km/h,. es decir, la máquina había sumado los 20 Km/h con los que el niño impulso a la pelota más los 100 Km/h a los que marchaba el tren.
Así, el mismo suceso, medido por dos observadores diferentes y con sistemas de referencias diferentes, no podían dar, el mismo resultado. Claro que, ejemplos de la realltividad especial podríamos dar muchos que han sido confirmados y que, al no estar familiarizadoas con ellos, nos llevarían hacia el asombro que todo ignorante siente ante hechos incomprensibles pero, maravillosos.
La relatividad tanto especial como general, nos trajeron muchas cosas y, sobre todo, muchas promesas que no todas se han cumplido (aún). En relación a una de ellas, alguien ha pronosticó que entre 2,.010 y 2.015, un detector de ondas gravitatorias en vuelo espacial llamado LISA nos revelerá la distorsión del espaciotiempo alrededor de muchos agujeros negros masivos en el universo lejano, y cartografiará dicha distorsión con exquisito detalle -los tres aspectos de la diostorsión: la curvatura del espacio, la distorsión del tiempo y el torbellino del espaciotiempo alrededor del horizonte.
En nuestro Universo ocurren sucesos que no hemos sabido detectar y que, de alguna manera, nos mostrarían otra de Universo, es decir, el Universo sería el mismo pero, lo veríamos de otra manera. Hasta el momento el Universo que conocemos es ese que nos han posibilidado los fotones. Las ondas de luz captadas por los potentes telescopios que nos traen hasta nosotros a las más lejanas galaxias, los cúmulos y a las más bellas Nebulosas. Sin embargo, ahí fuera, ocurren otras muchas cosas que no podemos ver. ¿Qué pasará realmente con el espacio-tiempo en presencia de esas inmensas densidades de materia que viven dentro de los agujeros negros gigantes y, que pasará, cuando dos ellos chocan?
Es cierto, como nos dicen los del Instituto de Astrofíca de Andalucía:
“CASI TODO LO QUE SABEMOS DEL COSMOS LO HEMOS APRENDIDO mediante el análisis de la luz que nos llega de él. Con mayor generalidad deberíamos referirnos a la observación de la radiación electromagnética, de la que la luz visible es solo una parte. Y decimos “ todo” porque los rayos cósmicos y los neutrinos nos aportan también importantes claves. En cualquier caso, nuestro modelo del universo más allá de la Tierra es, en buena medida, una tallada con herramientas electromagnéticas. Un modelo muy rico, sin duda alguna. Pero quizá, por estar esencialmente construido a partir de estas proyecciones sobre nuestros muros de luces y sombras solo electromagnéticas, podría ser también un modelo sesgado. ¿Cómo saberlo? ¿Disponemos de alguna manera independiente para evaluar, y en su caso enriquecer, este modelo de génesis electromagnética? La respuesta es sí: las denominadas ondas gravitatorias nos proporcionan lo que podemos considerar como otra luz con la que observar el cosmos, complementaria e independiente a la luz electromagnética.”
Montserrat Villar, Astrofísica con la que tuve el honor de colaborar cuando fue Coordinadora del Año Internacional de la Astronomía, en 2029. La Inauguración en España y aquellas memorables jornadas a las que fui invitado y estuve presente con la élite internacional de la Astronomía. Ella es investigadora del Instituto de Astrofísica de Andalucía (CSIC).
La científica, estando juntos en la celebración del Año Internacional de la Astronomía me dijo: “”La auténtica revolución para el ser humano sería encontrar vida fuera de la Tierra” Y, desde luego, ese es el sueño de muchos Astrónomos y Astrofísicos que piensan en la inmensa posibilidad que existe de que, la Vida, pulule por todo el Universo. Sin embargo, son las distancias por una parte y el tiempo por la otra, las que nos ponen muros por delante que, al menos de momento, no podemos franquear. El muro no es que podamos superar la velocidad de la luz (que nunca podremos), el verdadero muro está en nuestra inmensa ignorancia, toda vez que no sabemos busar el camino para burlarla.
En cuanto a las Ondas gravitacionales (OG) es una de las predicciones más importantes de la Teoría de la Relatividad General de Einstein. A nivel mundial, se está realizando un gran esfuerzo para descubrir la radiación gravitacional, ya que su detección será la contundente para verificar la teoría de Einstein. El estudio de las OG se realiza desde el punto de teórico, numérico y experimental. Se espera que pronto tengamos algunos resultados muy fiables que vengan a confirmar (como ya pasó con otros aspectos de la teoría) que lo que nos dicen las ecuaciones de campo de la relatividad general, es un fiel reflejo de lo que el Universo es.
Una onda gravitacional es una pequeña fluctuación en la curvatura de la tela del espacio-tiempo, la cual se propaga en forma de ola, viajando hacia a fuera a partir de un objeto o un de objetos en movimiento. Fue predicha por Einstein, y su estudio podría contestar el gran interrogante sobre cuál es la naturaleza de la gravedad. Aunque la radiación gravitacional no ha medida directamente, su existencia se ha demostrado indirectamente, y se piensa que podría estar ligada a violentos fenómenos cósmicos. Una sofisticada antena interferométrica espacial llamada LISA, que será puesta en órbita en la próxima década, se dedicará a detectar y analizar las ondas gravitacionales.
¿Qué son las ondas gravitacionales?
Una onda gravitacional es una pequeña fluctuación en la curvatura de la tela del espacio-tiempo, la cual se propaga en forma de ola, viajando hacia a fuera a partir de un objeto o un sistema de objetos en movimiento. Fue predicha por Einstein, y su estudio podría contestar el gran interrogante sobre cuál es la naturaleza de la gravedad. Aunque la radiación gravitacional no ha medida directamente, su existencia se ha demostrado indirectamente, y se piensa que podría estar ligada a violentos fenómenos cósmicos. Una sofisticada antena interferométrica espacial llamada LISA, se dedicará a detectar y analizar las ondas gravitacionales.
¿Qué cuando chocan dos agujeros negros?
Cuando dos galaxias se unen, sus agujeros negros supermasivos (miles de millones el tamaño del sol) eventualmente tienen que interactuar, ya sea en un violento impacto directo o acercándose hacia el centro hasta tocarse uno con otro. Y es ahí donde las cosas se ponen interesantes. En vez de acercase de buena manera, las fuerzas de ambos monstruos son tan extremas que uno de ellos es pateado fuera de la galaxia recién unida a una velocidad tan tremenda que nunca puede regresar. Por su parte, el agujero que da la patada recibe una enorme cantidad de energía, que inyecta en el de gas y polvo que lo rodea. Y entonces este disco emite un suave resplandor de rayos X que dura miles de años. El choque de dos agujeros negros es un suceso rarísimo y, como de manera directa nunca lo hemos podido observar, aquí dejamos una referencia de lo que creemos que podría ser.
No son pocos los sucesos que están presentes en el Universo y de los que no tenemos ni idea y otros, que sabemos que están ahí pero, son también unos completos desconocidos. Es mucho lo que nos queda por andar en este inmenso que, no está precisamente llano y, en el largo camino de la ciencia, nos encontramos con grandes inconvenientes que sirven de freno a nuestras ánsias de saber.
¿Qué cuando chocan dos galaxias?
Es muy común que las galaxias, atraidas por la fuerza de la Gravedad que gfeneran, lleguen a fusionarse e interactúen unas con otras. De hecho, se cree que las colisiones y uniones entre galaxias son uno de los principales procesos en su evolución. La mayoría de las galaxias han interactuado desde que se formaron. Y lo interesante es que en esas colisiones no hay choques entre estrellas ni mundos (o muy leves). La razón es que el tamaño de las estrellas es muy pequeño comparado con la distancia entre ellas. En cambio, el gas y el polvo sí interactúan de tal manera que incluso llegan a modificar la forma de la galaxia. La fricción entre el gas y las galaxias que chocan produce ondas de choque que pueden a su vez iniciarla formación de estrellas en una región dada de la galaxia.
El texto de arriba es algo contradictorio como muchos otros que sobre el Universo podemos . Si resulta que el choque de galaxias es de lo más normal en el Universo (como de hecho sabemos), ¿cómo pueden decirnos más arriba que el choque de agujeros negros es muy raro, si resulta que en “casi” todas las galaxias, en sus núcleos, residen grandes agujeros negros, al colisonar éstas es lógico pensar que, sus agujeros negros, también lo hagan.
El Universo de Einstein…, al menos hasta el momento, ha resultado ser cierto y, aunque los científicos del Proyecto OPERA se empeñaran en hacer correr a los neutrinos algo más que a los fotones (el límite marcado por Einstein para la velocidad que se puede alcanzar en el Universo, es decir, la Luz, c, que en el vacío alcanza los 299.792.458 metros por segundo), lo cierto es, que todo fue un equívoco y, el fotón, sigue firme como el Peñón de Gibratar como diría Dirac.
Lo cierto es que, , lo que se dice saber…sabemos algo pero muy poco como para poder sacar pecho y pasear por ahí pavoneándonos de lo listos que somos. Es mejor admitir nuestra gran ignorancia y, siendo conscientes de ello, luchar con más fuerza por erradicarla. ¡Ah! Pero una cosa que estamos repitiendo una y otra vez, resulta ser falsa: El si ocupa lugar. Lugar en el espacio (tengo la libreria a doble hilera y me cuesta encontrar lo que necesito), de tiempo, buscar información sobre los temas tratados se consume lo suyo al tener que hacer los apartados más convenientes para el trabajo que se desea presentar y, por último, algunas horas en el estudio que nos digan cómo son las cosas. ¡Ah! También, aunque no mucho, algo de dinero hay que poner para que las cosas marchen y, el lugar que aquí ocupamos para que ustedes puedan visitarnos y leer lo que aquí decimos… ¡hay que pagarlo!
Claro que, el que algo quiere algo le cuesta. En esta vida, es difícil encontrar alguna cosa que no valga nada, que se nos regale. Ustedes mismos que, al entrar en la página creen hacerlo de manera gratuita, están pagando la luz que consume el ordenador y gastanto su tiempo. Claro que, quien se lleva el beneficio… ¡Es otra cosa!
emilio silvera
Mar
9
El UNiverso siempre asombroso
por Emilio Silvera ~ Clasificado en El Universo y... ¿nosotros? ~ Comments (2)
Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas crea la estabilidad.
Estas estructuras, podemos decir que son entidades estables que existen en el Universo. Existen porque son malabarismos estables fuerzas competidoras de atracción y repulsión. Por ejemplo, en el caso de un planeta, como la Tierra, hay un equilibrio entre la fuerza atractiva de la Gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e (electrón), h (constante de Planck), G (constante de gravitación) y mp (masa del protón), c (la velocidad de la luz en el vacío). Pero, ¿que es el Tiempo de Planck.
El Tiempo de Planck que se denota:
Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por segundos, donde G es la constante gravitacional (6’672 59 (85) ×10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2π = 1’054589 × 10-34 Julios segundo) y c es la velocidad de la luz (299.792.458 m/s).
Otra variante del Tp
El valor del tiempo del Planck es del orden de 10-43 segundos. En la cosmología del Big Bang, hasta un tiempo (Tp) después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del universo. Expresado en números corrientes que todos podamos entender, su valor es 0’000.000.000.000.000.000.000.000.000.000.000.000.000.000.1 de 1 segundo, que es el tiempo que necesita el fotón para recorrer la longitud de Planck, de 10-35 metrtos (veinte órdenes de magnitud menor que el tamaño de del protón de 10-15 metros). el límite de Planck es Lp = √(Għ/c3 ≈ 1’61624 x 10-35 m.
Todo, Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.
El tiempo es la escalera con peldaños hasta el infinito que nos llevaría hasta el fin de la eternidad pero que… ¡Ninguno podremos recorrrer! Nuestro tiempo, como el de las estrellas y los mundos, es finito. No importa que el nuestro sea de una escala menor de decenas de años y el de la estrella de miles de millones, lo cierto es que, ambos, nosotros y las estrellas, tenemos un comienzo y un fin, así lo dispuso la Naturaleza que, nos deja estar aqui el tiempo preciso para que podamos desarrollar la función encomendada.
Si preguntamos ¿qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio-133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, , tiempo luz, tiempo medio, etc, etc. Cada una de estas versiones del tiempo tiene una respuesta diferente, ya que no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo universal. Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta dejando claro de qué clase de tiempo queremos saber.
Hasta se ha llegado a pensar que el “Tiempo”, eso que llamamos “pasado, presente y futuro”, era una simple abstracción inventada por nosotros para poder manejarnos en nuestras vidas cotidianas adaptando a la rotación de la Tierra sobre sí misma, y alrededor del Sol, una serie de números que denominamos segundos, minutos, horas, días… meses, años, siglos, milenios… Para encuadradar el “tiempo” en que sucediron las cosas, la hora de salir y entrar en la oficina, quedar con un amigo para tomar un café…
Claro que, el Tiempo es mucho más que todo eso. De todas las maneras, nosotros, siempre hemos tendido a racionarlo todo y, con el Tiempo, inventamos el reloj que, primera fue de Sol, después de arena, de péndulo… Hasta llegar a los relojes atómicos de Cesio.
Relos de Cesio cuyo funcionamiento se basa en la diferencia de energía entre dos estados del núcleo de Cesio-133 cuando se sitúa en un campo magnético. En un tipo, los átomos de cesio-133 son irradiados con radiación de radiofrecuencia, cuya frecuencia es elegida para corresponder a la diferencia de energía entre los dos estados. Es decir, nos valemos de un complejo para determinar lo que el tiempo es basado en lo que de él nos indica la Naturaleza.
En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas; los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es sólo uno; ese que comenzó cuando nació el universo y que finalizará cuando éste llegue a su final.
Ahí, enterrada en el centro de esa inmensa concentración de gas y polvo, está escondido la estrella hipergigante Eta Carinae, una estrella variable que llegó a ser la segunda estrella más brillante del cielo con una magnitud de -0,8. Es una variable Azul luminosa y está clasificada como una estrella S Doradus. Se estima que tiene una masa de 100 masas solares (es decir, cien soles juntos) y, sin duda alguna, podría ser una de las estrellas más masivas de la Galaxia.
La masa máxima estimada para una estrella está en unas 120 masas solares, ya que, de ser más masiva, su propia radiación la destruiría y, es precisamente eso lo que le ocurre a Eta Carinae que, para no ser destruida ha encontrado el “truco” de eyectar material al espacio interestelar que ahora la envuelve evitando así su destrucción. Aquí la estrella queda oculta y lo único que contemplamos es el espectro visible de la Nebulosa del Homúnculo como se conoce esa envoltura que la oculta. Está a 8.000 años-luz del Sol y las observaciones nos dicen que es una intensa fuente de radiación infrarroja y su importante pérdida de masa (alrededor de 0,l masa solares añ año) tiene asociadas energías próximas a las de las supernovas.
Lo cierto es que para las estrellas supermasivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el . A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.
Según todos los indicios, la Física nos dice que, al llegar a la singularidad de un agujero negro, no podremos ni tiempo ni espacio. Es una región que, estando en este mundo, es como si estuviera en otro al que sólo se podrá llegar a través de la teoría tan esperada de la gravedad cuántica. Aquí, en la Singularidad, la Relatividad de Einstein llega y hace mutis por el foro.
El tiempo, de esta manera, deja de existir en regiones del universo que conocemos como singularidad. El mismo Big Bang surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el y la materia.
Cuando hablamos de estrellas masivas que, al final de sus viodas se conviereten en Agujeros Negros, no pensamos en la inmensa densidad que, dichas singularidades pueden llegar a alcanzar, de allí no escapa ni la lus que tiene el record de velocidad en nuestro Universo. Veámos:
Hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Una muestra:
Objeto | Velocidad de escape |
La Tierra | ………….11,18 Km/s |
El Sol | ………….617,3 Km/s |
Júpiter | ……………59,6 Km/s |
……………35,6 Km/s | |
Venus | ………….10,36 Km/s |
Agujero | ….+ de 299.000 Km/s |
Ponernos a comentar sobre objetos y fenómenos que en el Universo están presentes, puede a sar fascinante. A medida que nos sumergimos en las complejidades de las cosas, los procesos mediante los cuáles cambian para convertirse en otras diferentes de las que en un principio eran, los ritmos y energías, las fuerzas fundamentales que actúan sobre ellos…Es una maravilla.
Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y agujeros negros, existen regiones del que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.
Muchos son los misterios que nos quedan por resolver y muchos también los objetos que, estando ahí, aún no han sido localizados. La vastedad del inmenso Universo, hace difícil saber la realidad de todo su y, necesitaremos siglos de estudio y observación para poder acernos, aunque sea mínimamente, a sus secretos.
Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 Kg/m3; los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del universo.
Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos la forma de medir el mundo y encontrar las formas del universo. Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de las respuestas de las cosas por medio de las matemáticas.
Arthur C. Clarke nos decía: “Magia es cualquier tecnología suficientemente avanzada”
Por mi partre creo que la magia, la verdadera magia yace en nosotros mismos que hemos sido capaces de evolucionar y llegar a conocer sobre los secretos de las estrellas y del Universo. Cuando sepamos comprender otros muchos de los misterios que encierra la Naturaleza (entre ellos nosotros), entonces tomaremos consciencia de que, la magia, está por todas partes, simplemente tenemos que saber observarla y que no se escape a nuestros sentidos.
Pero también es magia el hecho de que en cualquier tiempo y lugar, de manera inesperada, aparezca una dotada de condiciones especiales que le permiten ver estructuras complejas matemáticas que hacen posible que la humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten en espacios antes cerrados, ampliando el horizonte de nuestro saber.
Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: la teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Göttingen en Alemania. Aquello fue como abrir de golpe todas las ventanas cerradas durante 2.000 años de una lóbrega habitación que, de , se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.
La nueva geometría de Riemann nos dijo como era la realidad del espacio, del Universo
Su ensayo, de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios.
La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas. La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del universo y su evolución mediante su asombrosa teoría de la relatividad . Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.
Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico. Era huraño, solitario y sufría crisis nerviosas. De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis. Al igual que aquel otro genio, Ramanujan, murio muy joven.
Después de un largo recorrido por este mundo, de un sin fin de experiencias, de pasar por situaciones múltiples en todos los sentidos del bien y del mal, de graves problemas laborales y familiares, de muchas horas de estudio y observación, de pensar profundamente en el origen de las cosas… Después de todo eso y una larga vida, se puede llegar a adquirir algo de sabiduría
Claro que la Sabiduría es una buena noticia para todos nosotros. Si alguien la posee, siempre tenderá a exponerla a los demás para que, de una u otra podamos disfrutar de ella aunque sólo sea a través de la admiración hacia el Sabio que nos la muestra pero, en realidad, en el último momento, lo que deseamos es apropiarnos de algo de esa sabiduría para nosotros. ¡Necesitamos saber! Dicen que un Hombre solo está en mala compañía y, se podría añadir también que, Un Ser que no posee un conocimiento, aunque sea somero y superficial, del mundo que le acoge, de la Naturaleza y del Universo en fin, más que sólo estará vacío. ¿Que sentido tiene no saber?
Es el saber popular de todas las Sociedades a lo alrgo de la Historia, la sabiduría siempre ha sido asociada con los ancianos. La sabiduría ha sido el más preciado bien y, en torno a ella, todos nos hemos puesto en coro a escuchar esas palabras sabias que nos indicaban el camino a seguir.
¿Qué es la realidad?, ¿Como la definimos?, ¿Cuántas realidades hay?, ¿Cada uno de nosotros tiene su propia realidad?¿Qué realidad nos transmite el Universo en nuestro Mundo, será distinta a realidades de otros Mundos? ¿Es una realidad la cuántica? ¿Existen realidades que no podemos percibir? La realidad va en función de la percepción que se tenga de ella, y esta parte de la Conciencia. Nuestra conciencia actual es un condicionamiento de nuestra visión del mundo actual y colectivo, es la que nos enseñaron nuestros padres, maestros, la sociedad, gobierno y religiones. A esta manera de ver y entender el mundo, pertenece el antiguo paradigma. Y, como nos diría Tom Wood, necesitamos nuevos paradigmas para poder entender la “realidad” de la Naturaleza.
Es cierto que, algunas veces, cuando profundamente pensamos en todos estos conceptos, llegamos a la conclusión de que la realidad no existe, y, si entramos en el mundo de la filosófía podríamos argumentar que nunca nadie ha podido “ver” un pensamiento y, sin embargo, ¿cuántos generamos durante nuestras vidas?
Nosotros estamos en un mundo Físico donde está presente lo pequeño y lo grande. Todo lo grande está hecho de cosas pequeñas. De la materia “inerte” saurgieron los pensamientos. De esos pensamientos que son generados por el cerebro de un ser consciente, ha llegado a nacer algo más, un Ente que está más allá de la Física y, se eleva hacia lo Metafísico que no hemos llegado a comprender, eso otro elevado a un nivel superior y que llamamos Mente, está, sin duda, conectado mediante hilos invisibles al Universo mismo del que forma parte.
El mundo físico, incluido nuestro cuerpo, es una reacción del observador. Creamos el cuerpo según creamos la experiencia de nuestro mundo.En su estado esencial (microcósmico), el cuerpo está formado de energía e información, y no de materia sólida. Esta energía e información, surge de los infinitos campos de energía e información que abarcan todos los universos. La mente y sus cuerpos, el físico hasta el espiritual y sus múltiples manifestaciones multidimensionales, son inseparablemente uno, o sea la unidad YO SOY.
Como el título del cuadro, todos andamos anclados en la Mente
El YO, dependiendo de quién lo esté manejando y hasta que punto pueda ser consciente del arma que tiene a su servicio, puede ser muy poderoso: Yo puedo, Yo quiero, Yo soy capaz… ¿Cuántas cosas no se habrán conseguido con esos pensamientos? Creer en sí mismo, es vital para conseguir los logros propuestos. La Mente está formada por un conjunto de pensamientos, y, en ella, reside ese YO que no conocemos.
Esta unidad Yo Soy, la separaremos en dos corrientes de experiencia. La experimentamos primero como corriente subjetiva, como pensamientos, ideas, sentimientos, deseos y emociones. La corriente objetiva la experimentamos como el cuerpo físico, mas sin embargo en un plano mas profundo, las dos corrientes se encuentran en una sola fuente creativa, y es a partir de esta , donde realmente nos manifestamos y tenemos nuestro ser.
Claro que, todas las metas perseguidas tienen un precio y, si no estamos dispuestos a pagarlo… ¡Mala cosa será! Nada se nos regala. En este mundo nuestro, todo tiene un precio y, sacrificarse para conseguir los objetivos, es esencial.
La bioquímica del cuerpo es un producto de la conciencia, las creencias, los sentimientos, las emociones, los pensamientos e ideas, crean reacciones que sostienen la vida en célula. La percepción parece como algo automático, pero esto es un fenómeno aprendido, si cambias tu percepción, cambias la experiencia de tu yo , y por ende de tu mundo.
Por supuesto, todos sabemos el dilema del observador en la cuántica. Se trata del enigmático principio de incertidumbre que nos impide medir una partícula sin afectar el resultado. Es posible conocer una cosa, más no la otra. Por mucho tiempo, Copenhague fue el modelo que rigió ese conocimiento específico de la cuántica pero ya existe otro. Tenemos el experimento del físico John Cramer que basó su modelo en la teoría de radiación electromagnética de Wheeler-Feynman y predice los resultados de los experimentos cuánticos tan bien el “viejo” modelo lo hace. Lo más atractivo: el observador no tiene ningún papel especial en el resultado.
Los humanos seguimos afianzándonos a todo lo que nos ponga en el centro de las cosas. Los fenómenos que no pueden ser explicados nos excitan y hemos estado usándolos para justificar a nuestros dioses que descubrimos que podemos producir ilusiones para tapar nuestra ignorancia. Cada vez que algo es explicado, movemos nuestras pertenencias hacia el próximo misterio; y cuando ese enigma revela sus mecanismos nos pasamos a otro. No es la ausencia de evidencia lo que mortifica al creyente que propone afirmaciones extraordinarias como verdaderas, son las evidencias del otro, del científico en el laboratorio; él lo obliga a buscar otra casa y mudarse donde no haya iluminación.
Lo cierto es que, creamos nuestra propia realidad dentro de otra realidad más grande que resulta ser el UNIVERSO.
Claro que, esa sabiduría a la que antes me refería nos debería llevar propósitos superiores, incluso de una célula podríamos aprender: Cada Célula del cuerpo acuerda por el bien del Todo; el Bienestar individual es secundario. Si es preciso, morirá para proteger al cuerpo (Lo que ocurre con frecuencia). La vida de cualquier célula es muchísimo más breve que la nuestra. Las celulas de la piel mueren por cientos cada hora, al igual que las inmunológicas que combaten los microbios invasores. El egoísmo resulta inconcebible, incluso cuando la supervivencia de las células está en juego.
¿Por qué no hacemos nosotros lo mismo? ¿Acaso no hemos finalizado nuestro proceso de Humanización, o, por el contrario, simplemente se trata de que somos así. Seres egoistas en los que prima lo individual y el YO, contra el NOSOTROS, Ente principal. Hay una cuestión que me da algo de esperanza: Cuando hablamos de nuestros hijos, de nuestro ser Amado…El Yo se queda detrás y prevalecen esos valores que, en realidad, son los que nos ditinguen y nos hacen grandes.
Bueno, pero ¿no estaba hablando de estrellas masivas, de la Mente, la Sabiduría y la Inteligencia? Sí, es posible. Sin embargo, todo siempre viene a desembocar en… ¡Nosotros y el Universo! Que, al fin y akl cabo, somos la misma cosa.
emilio silvera
Mar
9
¿Universo Estacionario? ¿Y, los elementos?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
Acordaos que surgió la toería del Big Bang no todos estaban de acuerdo con ella y, allá por el año 1948, Hermann Bondi, Thomas Gold y Fred Hoyle presentaron una teoría rival a la del universo en expansión. La teoría del big bang implicaba que el Universo empezó en un momento concreto del pasado. Posteriormente, la densidad y temperatura de la materia y la radiación en el Universo decrecieron continuamente a medida que el Universo se expandía. Esta expansión puede para siempre o puede un día invertirse en un estado de contracción, volviendo a pasar por condiciones de densidad y temperaturas cada vez mayores hasta llegar al Big Crunch en un tiempo finito de nuestro futuro.
Este escenario evolutivo tiene la característica clave de que las físicas en el pasado del Universo no eran las mismas que las actuales o las futuras. Hubo épocas en que la vida no podía existir porque había demasiado calor para los átomos; hubo épocas previas a las estrellas y habrá un tiempo en el que todas las estrellas hayan muerto. En este escenario hay un intervalo preferido de la historia cósmica durante el que es más probable que los observadores evolucionen por primera vez y hagan sus observaciones del Universo.
También implicaba que hubo un comienzo Universo, un tiempo pasado antes del cuál éste (y quizá el propio tiempo) no existía, pero no decía nada al respecto al por qué o al dónde de este comienzo. Todo quedaba oculto en el más profundo de los misterios y, nadie ha podido llegar a ese tiempo que marca la frontera que está situada en esa fracción de segundo, más allá del tiempo de Planck, en el cual los cosmólogos, para tapar su ignorancia, han puesto una singularidad lo mismo que han colocado la materia oscura para explicar la expansión.
El escenario alternativo creado por Bondi, y Hoyle estaba motivado en parte por un deseo de evitar la necesidad de un principio (o un posible final) del Universo. Su otro objetivo era crear un escenario cosmológico que pareciera de promedio siempre el mismo, de modo que no hubiera instantes privilegiados en la historia cósmica.
El gráfico de abajo indica la velocidad de alejamiento de las galaxias en función de sus distancias. La pendiente de la recta de “La constante de Hubble”
Horizontalmente: la medida de la distancia es proporcionada por la luminosidad de las galaxias más brillantes de diferentes grupos. Verticalmente: velocidades en Km. por segundo. Las diferentes curvas describen la relación velocidad distancia en función de la densidad supuesta del universo (en unidades de densidad crítica). Cuanto más denso es el universo, tanto más a la izquierda se sitúa la curva en el dibujo. La comparación con los puntos observados muestra que la densidad real es tres veces inferior a la densidad crítica. La cuirva más baja es la esperada en un universo estacionario.
Claro que dicho escenario, al principio parece imposible de conseguir. Después de todo, el Universo se está expandiendo. Está cambiando, de modo que, ¿cómo puede hacerse invariable? La visión de Hoyle era la de un río que fluye constantemente, siempre en movimiento pero siempre igual. que el universo presente la misma densidad media de materia y el mismo ritmo de expansión, independientemente de cuándo sea observado, la densidad debería ser constante.
Él propuso que, en lugar de nacer en un instante pasado, la materia del universo se creaba continuamente a un ritmo que compensaba exactamente la tendencia a que la densidad sea diluida por la expansión. Este mecanismo de “creación continua” sólo tenía que ocurrir muy lentamente conseguir una densidad constante; sólo se requería aproximadamente un átomo por metro cúbico cada diez mil millones de años y ningún experimento ni observación astronómica sería capaz de detectar un efecto tan pequeño.
Esta teoría del “ estacionario” del Universo hacía predicciones muy precisas. El Universo parecía el mismo de promedio en todo momento. No había hitos especiales en la historia cósmica: Ningún “principio”, ningún “final, ningún momento en que empezaran a formarse las estrellas o en el que la vida se hiciera posible por primera vez en el Universo. Claro que, finalmente, esta teoría quedó descartada por una serie de observaciones iniciadas a mediados de la década de 1950 que mostraba en primer lugar que la población de galaxias que eran emisores profusos de radioondas variaba significativamente a medida que el Universo envejecía.
La culminación de todo aquello llegó cuando en el año 1965 se descubrió la radiación térmica residual del comienzo caliente predicho por los modelos del Big Bang. Esta radiación de fondo de microondas no tenía lugar en el Universo en estado estacionario. Durante veinte años los astrónomos trataron de encontrar pruebas que dijeran si realmente el universo estaba realmente en el estado estacionario que propusieron Bondi, y Hoyle.
Un sencillo argumento antrópico podría haber demostrado lo poco posible que sería ese estado de cosas. Si uno mide el ritmo de expansión del Universo, da un tiempo durante el que el Universo parece haber estado expandiéndose. En un Universo Big Bang éste es realmente el tiempo transcurrido que empezó la expansión: la edad del Universo. En la teoría del estado estacionario no hay principio y el ritmo de expansión es tan sólo el ritmo de expansión y nada más.
Las primeras estrellas se formaron millones de años después del (supuesto) big bang y se pasó de las tinieblas a la luz
En una teoría del Big Bang, el hecho de que la edad de expansión sea sólo ligeramente mayor que la edad de las estrellas es una situación natural. Las estrellas se formaron en nuestro pasado y por ello deberíamos esperar encontrarnos en la escena cósmica una vez formadas, dado que, los elementos necesarios para la vida, se forjaron en los nucleares de las estrellas calientes que fusionaron aquella primera materia más simple en otras más complejas.
Se necesita mucho tiempo para que las estrellas fabriquen Carbono a partir de gases inertes como el Hidrógeno y el Helio. Pero no basta con el tiempo. La reacción nuclear específica que se necesita para hacer Carbono es una reacción bastante improbable. Requiere que se junten tres núcleos de Helio para fusionarse en un único núcleo de Carbono. Los núcleos de Helio se llaman partículas alfa, y esta reacción clave para formar Carbono ha sido bautizada como el proceso “triple alfa”.
Precisamente fue Fred Hoyle el que descubrió todo aquel complejo proceso de fabricación de Carbono en las estrellas. Él se unió a un grupo de investigadoresque estaban trabajando sobre la cuestión de la relativa abundancia de elementos en las superficies de las estrellas. En conjunto, estructuraron un exhaustivo estudio de los elementos que se acumulan en los núcleos estelares. En un denso que publicaron en Octubre de 1957 en Review of Modem Physics, bajo el título de “Síntesis de los elementos de las estrellas”, lograron explicar la abundancia de practicamente todos los sótopos de los elementos desde el Hidrógeno hasta el Uranio.
Descubrieron que las estrellas, en la medida que van gastando su combustible nuclear, transmutan el Hidrógeno en Helio; el Helio a Carbono y Oxígeno; y así sucesivamente, subiendo hasta llegar hasta los más pesados de la Tabla Periódica. En las explosiones de las supernovas se crean mucho de los elementos más pesados, incluidos el platino, el oro y el uranio. El que fue un inmenso logro científico, no sólo explicó la síntesis de todos los elementos más allá del Hidrógeno, sino que predijo su formación exactamente en las mismas proporciones que ocurrían en el Universo. Pero quedó por explicar la cuestión del Hidrógeno: Cómo se genera el combustible inicial de las estrellas.
Así, en las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: El Hidrógeno (que nunca hemos podido llegar a saber cómo se formó), Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos simples ¿en el big bang? y la posterior fusión de estos núcleos ligeros formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas. Abjo un gráfico de la Necleosíntesis estelar.
Estaba explicando el proceso triple alfa que es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. reacción nuclear de fusión sólo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio. Por tanto, este proceso sólo es posible en las estrllas más viejas, donde el helio producido por las cadenas protón–protón y el ciclo CNO se ha acumulado en el núcleo. Cuando todo el hidrógeno presente se ha consumido, el núcleo se colapsa hasta que se alcanzan las temperaturas necesarias para la fusión de helio.
Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.
Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.
Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caido en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.
Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.
¿No es maravilloso?
Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.
“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolcuión estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:
De la misma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orion) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.
reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Via Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros el Carbono, el Oxígeno, el Hierro y el Plamo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia éscribió Hoyle, Fwler y los Burbidge_…está oculta en la distribución de la anundancia de elementos”
En el Big Bang: Hidrógeno, Helio, Litio (¿se formaría el Hidrógeno a partir del Hylem, la sustancia primigenia del Universo segín Gamow?)
En las estrellas de la serie principal como el Sol: Carbono, Nitrógeno, Oxígeno.
En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.
Como habeis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.
Como decía Hilbert: “Tenemos que saber, ¡sabremos!
emilio silvera
Mar
9
Vamos imparables…, ¡hacia el futuro!, o, ¿hacia nuestro final?
por Emilio Silvera ~ Clasificado en El Universo cambiante ~ Comments (0)
Lo que no sabemos es qué clase de futuro es ese hacia el que nos encaminamos. La Humanidad, aún en proceso de humanización, para su evolución intelectual necesita otro salto cuantitativo y cualitativo del conocimiento que le permita avanzar notablemente hacia eso que llaman futuro. Ese avance está supeditado a que surjan nuevas teorías, nuevos paradigmas de la física que nos lleven más lejos de lo que podemos llegar, por falta del conocimiento de lo que la naturaleza es. De hecho, aunque muchos sabios nos lo han recomendado, por no conocer, ni nos conocemos a nosotros mismos. ¡La Humanidad! Que teniéndola tan cerca, nos resulta tan extraña a veces.
Miembros de la Real Academia Sueca anuncian a los ganadores del Nóbel de Física
Todos los avances de la Humanidad han siempre cogidos de la mano de las matemáticas y de la física y de las demás disciplinas científicas. Gracias a esos apartados del saber podemos vivir cómodamente en ciudades iluminadas en confortables viviendas. Sin Einstein, pongamos por ejemplo, no tendríamos láseres o máseres, pantallas de ordenadores y de TV, y estaríamos en la ignorancia sobre la curvatura del espaciotiempo o sobre la posibilidad de ralentizar el tiempo si viajamos a gran velocidad; también estaríamos en la más completa ignorancia sobre el hecho cierto y demostrado de que masa y energía (E = mc2), son la misma cosa y, ¿qué decir de las operaciones con láser? Gracias a los fotones que, al ser bosones, se pueden unir para hacerlo posible.
La física está presente en nuestras vidas
Como ese ejemplo podríamos aportar miles. Es necesario avanzando en el conocimiento de las cosas para hacer posible que, algún día, dominemos las energías de las estrellas, de los agujeros negros y de las galaxias. Ese dominio será el único camino para que la Humanidad que habita el planeta Tierra, pueda en ese futuro lejano escapar hacia las estrellas, otros mundos. Nuestro por venir es incierto, nada es seguro en el mañana y, es posible (sólo posible), que ese futuro pueda ser el que nosotros podamos construir hoy. Dependiendo de lo que hagamos en el presente nuestros descendientes tendrán un futuro u otro. Como nos decía el filósofo:
“Todo presente de una sustancia simple, es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro.”.
Claro que el filósofo que eso dijo, no sabía del nacimiento, vida y muerte de las estrellas. Independientemente de lo que nosotros podamos hacer (que lógicamente redundará en el mundo de los que vengan detrás), ahora sabemos que, llegará ese irremediable suceso que convertirá nuestro Sol en una gigante roja, cuya órbita sobrepasará Mercurio, Venus y posiblemente el planeta Tierra. Pero antes, en el proceso, las temperaturas se incrementarán y los mares y océanos del planeta se reconvertirán en vapor.
Toda la vida sobre la Tierra será eliminada y para entonces, si queremos sobrevivir y preservarla, mucho antes del suceso tendremos que haber puesto los medios para escapar y estar muy lejos, para instalarnos en nuevos mundos previamente localizados y en los que una avanzadilla lleva años preparándo nuestra llegada para instalarnos como colonizadores primeros y habitantes permanentes después. Mientras tanto, el Sol siguiendo el proceso imparable para el que está destinado, comenzará a eyectar gas y polvo al espacio interestelar creando una Nebulosa Planetaria en cuyo centro, brillará y radiará con fuerza en el ultravioleta, una nueva estrella enana blanca. Toda la masa que ha quedado del Sol se comprimirá sobre sí misma obligada por la fuerza de la Gravedad hasta que la degeneración de los electrones le impida continuar y pueda frenar el que se siga comprimiendo la ingente masa de lo que fue el Sol que teniendo en su origen un diámetro de 1.400.000 Km,quedará reducido a una esfera próxima a la que ahora tiene la Tierra y, su densidad será enorme (5 x 108 Kg/m3). Su temperatura superficial alcanzará más de los 10 000 K. Con el paso de los años, se irá enfriando hasta convertirse en…
¡Un cadáver estelar!
Cualquiera de estas nebulosas planetarias podría ser nuestro Sol ewn el futuro lejano
Como si fuera una mariposa, la estrella enana blanca comienza su vida envolviéndose en un capullo. Sin embargo, en esta analogía, la estrella sería más bien la oruga y el capullo el gas expulsado que conforma la etapa verdaderamente más llamativa y hermosa. En el centro de la figura estará la densa y ahora pequeña estrella enana blanca radiando con fuerza para ionizar el gas circundante que brillará con los colores que emitan los elementos allí presentes.
Ese es el destino del Sol que ahora hace posible la vida en nuestro planeta, enviándonos su luz y su calor, sin los cuales, no podríamos sobrevivir. Para cuando eso llegue faltan unos 4.000 millones de años, y durante todo ese tiempo que es enorme pero…, ¡llegará!, la Humanidad tendrá que tener conocimientos y medios tan avanzados que ahora sólo podríamos imaginar. Las dificultades que habrá que vencer son muchas e increíblemente difíciles de superar. Claro que, ¿estaremos aquí para entonces? Mis palabras están guiadas más por el deseo que por la lógica.
¿Cómo podremos evitar las radiaciones gamma y ultravioletas?
¿En qué clase de naves podremos escapar a esos mundos lejanos?
¿Seremos capaces de vencer la barrera de la velocidad de la luz?
Ante tántas dificultades que ahora nos parecen imposible de superar, de vez en cuando, aparecen noticias esta: “Los motores de curvatura que impulsaban a la nave Enterprise en sus viajes por el espacio pueden convertirse en una realidad y permitirnos superar la velocidad de la luz. Así lo creen dos físicos de Baylor, que han creado un concepto de motor de curvatura que podría reducir el espacio, permitiendo que una nave salvara distancias enormes sin romper las leyes de la física. Para hacer algo así, se tendría que utilizar energía oscura, la fuerza cósmica antigravitatoria de la que no se sabe básicamente nada. El plan sería utilizar energía oscura para crear una burbuja de espacio que viajaría más rápido que la luz, con una nave confortablemente instalada en su interior.” ¿Os day de hasta dónde puede llegar nuestra imaginación?
Volviendo a nuestra realidad presente podemos ver que, nuestros ingenios a los que llamamos naves espaciales (estamos en la edad primitiva de los viajes por el cosmos), pueden alcanzar una velocidad máxima de 40 ó 50 mil kilómetros por hora y, además, la mayor de su carga es el combustible necesario para moverla. La estrella más cercana al Sol es Alfa Centauro; un sistema triple, consistente en una binaria brillante y una enana roja débil a 2º, llamada Próxima Centauro. La binaria consiste en una enana G2 de magnitud -0’01 y una enana K1 de magnitud 1’3. Vistas a simple vista, aparecen como una única estrella y se encuentran a 4’3 años luz del Sol.
Alpha Centauri
Situado en la Constelación del Centauro, el sistema estelar de Alpha Centauri es el más cercano a nuestro Sistema solar. Todas las demás estrellas están a mayor distancia. Esta particularidad, por sí sola, la hace muy interesante, pero además concurren otras circunstancias que la convierten en una de las más atrayentes del cielo nocturno. Resulta ser, en su conjunto, la tercera estrella más brillante de todas. Además, y como se trata de una estrella triple, Alpha Centauri A, la componente principal, se constituye en una buena candidata para la búsqueda de planetas del mismo que la Tierra, capaces de albergar vida en la forma en que la conocemos en caso de que existan. Y siendo lo más cercano que a nosotros tenemos…nos parece inalcanzable…por .
Sabemos que 1 año luz es la distancia recorrida por la luz en un año trópico a través del espacio vacio, y equivale a 9’4607×1012 km, ó 63.240 Unidades Astronómicas, ó 0’3066 parsecs. La Unidad Astronómica es la distancia que separa al planeta Tierra del Sol, y equivale a 150 millones de kilómetros; poco más de 8 minutos luz. pensemos en la enormidad de la distancia que debemos recorrer para llegar a Alfa Centauri, nuestra estrella vecina más cercana.
63.240 Unidades Astronómicas a razón de 150 millones de km. Cada una nos dará 9.486.000.000.000 de kilómetros recorridos en un año y, hasta llegar a Alfa Centauro, lo multiplicamos por 4’3 y nos resultarían 40.789.800.000.000 de kilómetros hasta Alfa Centauri. Y, viajando a 50.000 Km/h, ¿cuánto tardaríamos en llegar?
Bueno, en estas y suponiendo (que es mucho suponer) que pudiéramos construir una nave adecuada para esa misión, los viajeros que salieran de la Tierra junto con sus familias, tendrían que pasar el testigo a las siguientes generaciones que, con el paso del tiempo y las previsibles mutaciones en el espacio ingrávido, olvidarían hasta su origen y, al llegar a su destino (asi es que llegaban) podrían ser cualquier cosa menos humanos.
Alguien ha dicho: “Para llegar a Alfa Centauri dentro de un tiempo aceptable, las velocidades que tenemos que alcanzar deben superar los diez mil kilómetros por segundo. A esa velocidad llegaríamos en 130 años, lo que puede suponer algún engorro que otro teniendo en la mala costumbre que tenemos la mayoría de seres humanos de morirnos antes de los cien años. Si viajamos a 25 000 km/s, el tiempo de vuelo se reduce a 50 años. Medio siglo no está nada mal para un viaje interestelar, por lo que ésta debería ser la velocidad que debemos proponernos alcanzar, todo un reto si recordamos que la Voyager 1 se mueve a menos de 18 km/s.
Está claro que no nos queda más remedio que usar sistemas de propulsión distintos a los habituales, así que mejor nos vamos olvidando de la propulsión química convencional empleada por los cohetes corrientes. ¿Por qué? Pues porque si queremos alcanzar el 1% de la velocidad de la luz (3000 km/s) usando cohetes químicos convencionales necesitaríamos 1026 kg de combustible por kg de masa de la nave. O sea, muestra nave terminaría por tener cien veces la masa de la Tierra.”
¡Qué atrasados estamos!
Casi no podemos escapar de nuestro propio Sistema solar y ya hablamos de ir a otros sistemas que, por muy cercanos que puedan estar, nosotros, están “en el fin del mundo” como, coloquialmente hablando diría cualquiera. Unos simples 4,3 años-luz que son, inalcanzables.
Así las cosas, el primero de los problemas será buscar soluciones para escapar de nuestro propio Sistema solar, lo que en un futuro lejano (esperémos que así sea), y teniendo encuentra que el avance tecnológico es exponencial, podría ser factible dentro de unos márgenes razonables.
Claro que, según lo que creemos que sabemos sobre el final de todo esto, el segundo problema parece más serio, ¡escapar de nuestro universo! Pero… ¿hacia dónde podríamos escapar? Stephen Hawking y otros científicos nos hablan de la posibilidad de universos paralelos o múltiples; en unos puede haber para albergar la vida y en otros no. ¿Pero cómo sabremos que esos universos existen y cuál es el adecuado para nosotros? ¿Cómo podremos escapar de este universo para ir a ese otro?
Claro que, te pones a buscar por ahí y te encontrar con cosas y afirmaciones como estas:
“Los universos paralelos existen. Así de contundentes son los resultados del último estudio efectuado por científicos de la Universidad de Oxford, en el que demuestran matemáticamente que el concepto de estructura de árbol de nuestro universo es real. propiedad del universo es la que sirve de base para crear nuestra realidad.
La teoría de los universos paralelos fue propuesta por primera vez en 1950 por el físico estadounidense Hugh Everett, en la que intentaba explicar los misterios de la mecánica cuántica que resultaban completamente desconcertantes los científicos. Expresado de una manera muy simplificada, lo que propuso Everett fue que cada vez que se explora una nueva posibilidad física, el universo se divide. Para cada alternativa posible se “crea” un universo propio.”
¡Qué cosas!
Hallá por el 2.010 se pudo leer en algún medio: “Durante noviembre, Roger Penrose de la Universidad de Oxford y Vahe Gurzadyan de la Universidad Estatal de Yerevan en Armenia, anunciaron que habían encontrado muestras de círculos concéntricos en el fondo cósmico visualizado en el espectro de microondas. Este hallazgo demostraría la existencia de multiversos, o universos sucesivos y que el Big Bang, sería una etapa más, pero no el origen.”
Nadie dudar de la seriedad de éste científico y, ahí quedan sus declaraciones que nos llevan a pensar en lo mucho que podría ser y lo poco que es (que son) nuestro conocimiento. Otras noticias y declaraciones también son sorprendentes, por ejemplo:
Acompañada de ésta imagen de arriba, la revista “Philosophical Transactions” perteneciente a la sociedad científica británica, la Royal Society, advirtió en una de sus ediciones que, los gobiernos del mundo deberían prepararse un posible encuentro con una civilización alienígena que podría ser violenta.
La publicación, dedicó un completo al tema de la vida extraterrestre y, sostenía que si el proceso de evolución sigue en todo el universo los principios de Darwin, tal como ocurre en la Tierra, las formas de vida que contactarían con los seres humanos podrían “compartir su tendencia a la violencia y la explotación” de los recursos.
Por ese motivo, los científicos implicados pedían que la ONU configurara un grupo de dedicado a “asuntos extraterrestres” con la capacidad de delinear un plan a seguir en caso de un contacto alienígena. “Debemos estar preparados para lo peor” en caso de coincidir con una civilización extraterrestre, alertó el profesor de paleobiología evolutiva en la Universidad de Cambridge Simon Conway Morris, quien considera que la vida biológica debe tener en todo el universo unas características similares a las de la Tierra.
Como vereis, por todo lo leído anteriormente, hay razones para todo y, cada cual, se puede preocupar en la medida que desee. La mayoría, como es lógico pensar, adoptarán la cuestión bajo el pensamiento de que el tiempo que falta para que cualquier cosa de esas ocurran…es mucho y, preocuparse por ello, sería estéril. Sin embargo…
Lo cierto es que imaginamos y nos hacemos preguntas que nadie las contestar. La Humanidad, para saber con certeza su futuro, tendrá que seguir trabajando y buscando nuevos conocimientos y, posiblemente, pasados algunos milenios…nos sigamos planteando preguntas muy parecidas que, tampoco entonces, exista alguién que esté capacitado para contestar. Espero que, como del Universo que somos, algún día muy lejano aún en el futuro, nos llegue ese rayo de luz que despierte nuestros sentidos, que eleve nuestra inteligencia y nos haga comprender…
Se puede sentir la fascinación causada por la observación de la belleza que encierra el Universo pero no copmprenderla. La simple observación de lo que encierra nos causará asombro, y, aunque no se tenga preparación científica pero sí cierto nivel de apreciación de la Naturaleza y sus muchas maravillas que, despertando nuestra curiosidad, nos llevarán finalmente a comprender mejor lo que estamos viendo que, es mucho más que grandes figuras luminosas y múltiples objetos brillantes, llegaremos a comprender que se trata de… ¡la evolución…, la vida…, la consciencia… la mente!
Ensimismado en mis pensamientos me asombrode lo ya andado por la Humanidad y, aunque a veces nos parez<ca poco lo alcanzado, lo cierto es que, desde aquellas pinturas rupestres en lasm cuevas del pasado…el camino andado ha sido largo y provechoso. Al menos creemos saber lo que vemos cuando miramos al cielo de la noche estrellada, hemos podido llegar a comprender parte de lo que la materia es, estamos en el camino de conocer el Universo, tratamos de mejorar nuestros conocimientos sobre nosotros mismos, nuestro origen y nuestro destino y, en definitiva, sentimos inquietud por y conocer.
¿Como algo pequeñito ha dado para tanto? ¡Qué misterio! El Universo y la Mente. Conexiones sin fin, sucesos que crean estrellas y pensamientos que, siendo cosas tan dispares…¡son tan cercanas! En las estrellas se creó la materia que nos conforma, ahí se fraguaron los mimbres que han hecho posibles nuestras ideas y, ¿quién sabe? si no será ese nuestro destino.
Y, de vez en cuando nos podemos preguntar: ¿Habrá merecido la pena?
emilio silvera
Mar
8
Hoy el día Internacional de las mujeres ¿Y de lo demás qué?
por Emilio Silvera ~ Clasificado en General ~ Comments (2)
Hoy es un día muy especial para todas las mujeres, ya que hace 100 años que empezó a celebrarse el Día Internacional de la Mujer, y el Club Gynea quiere celebrarlo con todas vosotras. Por todo lo que hemos conseguido… y lo que conseguiremos…
Hace 100 años se celebraron mítines a los que asistieron más de un millón de personas que exigieron para las mujeres el derecho de voto y el de ocupar cargos públicos, el derecho al trabajo, a la y a la no discriminación laboral.
En este día se conmemora la lucha de la mujer por su participación, en pie de igualdad con el hombre, en la sociedad y en su desarrollo íntegro como persona. Aunque se ha avanzado mucho, todavía queda mucho por hacer.
¡FELICIDADES A TODAS!
Muestras como la de arriba la podemos ver hopy por todas partes. Todos los medios se hacen eco del acontecimiento. En el Correo.com nos dicen:
Ana Patricia Botín, consejera delegada del Banco Santander./ Reuters.