miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El “universo” de lo muy pequeño: NANO

Autor por Emilio Silvera    ~    Archivo Clasificado en Tecnología futura    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

http://gal.darkervision.com/wp-content/uploads/2010/06/feynman2.jpg

                    Richard Feynman

Alguna vez hemos hablado aquí de Nanotecnología pero, pocos saben que sus comienzos se remontan a 1959 cuando el físico y premio Nobel Richard Feynman pronunció en el Instituto de Tecnología de California su famoso discurso (en el ámbito de la Física). Feynman trató en su conferencia del problema de la manipulación individual de objetos tan pequeños como átomos y moléculas y de las múltiples oportunidades tecnológicas que ofrecería dicha manipulación.

A él le hubiera gustado conocer la realidad actual sobre todo lo que vaticinó en aquella conferencia, ya que, al haberse cumplido todos sus pronósticos, estaría satisfecho al ver que llevaba razón y sus ideas estaban bien encaminadas. La Nanociencia y la Nanotecnología son hoy un conjunto de conocimientos teóricos y prácticos que permiten determinar como se comporta el denominado nanamundo (el ámbito en el que el tamño de los objetos tienen 1 y 100 nm). A partir de estos conocimientos se están haciendo continuamente interesantes y arriesgadas apuestas sobre nuevos procedimientos.

Pero los seres humanos no somos los primeros nanotecnólogos. Ese honor le corresponde a cualquier célula, sea una bacteria, un protozoo o un fibroblasto. Las células están continuamente realizando procesos nanotecnológicos para mantenerse vivas. Como siempre, los seres humanos estamos aprendiendo a copiar procesos que se llevan a cabo en la Naturaleza con la esperanza de mejorarlos y beneficiarnos de ellos.

La elaboración de materiales nanoestructurados tridimensionales – aquellos que tienen formas distintivas y estructuras a escalas de unas pocas millonésimas de un metro – se ha convertido en un área fértil de investigación, produciendo materiales útiles dispositivos biomédicos, fotónica y electrónica.

Sin embargo, los métodos de elaboración de materiales han estado limitados en la complejidad 3D que pueden producir. Ahora, un equipo del MIT ha encontrado una manera para producir estructuras más complicadas utilizando una mezcla de enfoques Top-down y Bottom-up.

En aquel discurso de Feynman, no se pronunció, sin embargo, la palabra Nanotecnología. Dicho término no fue acuñado 1974 por el profesor N. Taniguchi de la Universidad de las Ciencias de Tokio en un artículo titulado “On the Basic Concept of ´Nanotecnolgy´”. Se presentó en una conferencia de la Sociedad Japonesa de Ingenieria de Precisión. En este contexto, la Nanotecnología se presenta como la tecnología que nos permite separar, consolidar y deformar materiales átomo a átomo o molécula a molécula.

En la Nanotecnología suelen intervenir Ingenieros, Físicos, Químicos, Bioquímicos, Biólogos, Médicos y perfiles de todos aquellos campos dónde la nanotecnología tiene aplicación. La nanotecnología es un sector transversal. Un campo de las ciencias aplicadas a tecnologías que pueden ayudar a optimizar la cadena de valor de cualquier proceso de producción, permitiendo implementar el ratio de competitividad de las empresa. Es tecnología punta y, va estando presente en infinidad de máquinas y sofisticados aparatos que, tanto en la Tierra con el en Espacio, llevan a cabo cometidos de todo con una garantía y seguridad que antes era imposible obtener.

Aquellas semillas sembradas por Feynman y regadas por Taniguchi, empezaron a germinar cuando E. Drexter publicó su libro titulado “Engines of Creation” en el que describe como será viable construir ordenadores hasta maquinaria pesada, ensamblando molécula a molécula, ladrillo a ladrillo, mediante nanorobots ensambladores, que funcionarán de un modo parecido a como lo hacen los ribosomas y otros agregados moleculares en las células de nuestro cuerpo (siempre copiando a la Naturaleza). Este conjunto de ideas -1960-1990-, han sido el punto de arranque de lo que hoy en día conocemos por Nanotecnología, el bagaje creciente de conocimientos teórico-prácticos que nos permitirán dominar la materia en la región de dimensiones comprendidas entre 1 y 100 nm, y que denominamos nanoescala que es el ámito de la Nanotecnología y la Nanociencia.

NanoInfoSi vamos ya a ejemplos concretos de interrelaciones entre estas tecnologías en desarrollo encontraremos una importante cantidad de dirigido al área de la salud, por ejemplo en el campo de los biosensores y técnicas de diagnóstico, en donde se unen principalmente herramientas nano y bio, siempre apoyadas por la tecnología de la información. Así mismo, aparecen los proyectos dirigidos a desarrollar tratamientos médicos localizados o al transporte y suministro local de fármacos. También en el campo de la salud, una imprescindible sinergia está ya establecida entre la bio y la info en lo que se llama la bioinformática, que permite por ejemplo diseñar fármacos computacionalmente, desarrollar terapias génicas o la ingeniería genética en los cultivos. Sobre las ciencias cognitivas, sus aplicaciones e interacciones con las otras tecnologías, también encontramos importantísimas áreas de trabajo ya en marcha, como es el caso del desarrollo de órganos artificiales o prótesis inteligentes, combinando los conocimientos de neurociencia, principalmente con tecnologías de la información y bio, y en muchos casos, con el área de nuevos materiales desarrollados gracias a la nanotecnología. De manera general, para entender mejor el funcionamiento del cerebro (ciencias cognitivas), tendremos que apoyarnos fuertemente en las herramientas que nos brinda la biotecnología y la tecnología de la información, que, a su vez aprovechará las conclusiones que se vayan obteniendo para proponer nuevas aplicaciones.

Claro que, trabajar con objetos tan pequeños entraña una gran dificultad, y de hecho fue prácticamente imposible que se desarrollaron los microscopios de campo cercano (SPMs) a partir del miscroscopio de Efecto Túnel (STM que fue inventado por H. Rohrer y G. Binning a principio de la década de los 80, contribución por la que recibieron el premio Nobel en 1986. Las herramientas SPM permiten no sólo la visualización, sino también la manipulación de objetos de dimensiones nanométricas y de muy distinta naturaleza.

Aventurarse a predecir futuras aplicaciones del conocimiento científico siempre resulta una tarea arriesgada, y con más razón se trata de un conocimiento tan joven como la Nanociencia. No obstante, a la luz del camino ya recorrido es posible adivinar algunas de las implicaciones futuras de este conocimiento. Los campos científicos y tecnológicos que podrían beneficiarse a medio o largo plazo son muchos y variados.

Sin ánimo de ser exhaustivos, podemos destacar algunas de las ramas del saber y de la técnica que pueden aplicar la Nanotecnología en un futuro no demasiado lejano.

metrico.jpg

                                          Nanomateriales

A medio plazo podemos destacar las siguientes mejoras:

– Televisores y pantallas presentar información. Se pretende aumentar el área útil de estos dispositivos, mejorando el brillo de los actuales TFT. Nanocristales de seleniuro de cinc o de sulfuro de cadmio con candidatos muy prometedores que, además, permitirían reducir el consumo energético.

– Aditivos en aditivos: Se ha comprobado que las nanopartículas de óxido de cerio permiten reducir el gasto de diesel.

– Baterias diesel:clara la necesidad de aumentar la capacidad de almacenamiento de energía de las baterías que se utilizan en dispositivos móviles (ordenadores portátiles, teléfonos). Se ha comprobado que los nanocristales sintetizados por técnicas sol-gel mejorar dicha capacidad debida a su estructura aerogel.

– Catálisis: La eficacia de proceso depende fundamentalmente del área, y la razón área/volumen es mayor en partículas de pequeño tamaño.

nokia-morph-concept-nano-materials.jpgnanotubos-de-carbono.png

                                       Nanomateriales aplicados a dispositivos electrónicos y los tres tipos de geometrías de nanotubos de carbono

Las aplicaciones a largo plazo podrían ser:

  • Composites de nanotubos de carbón, que deberían presentar unas excepcionales propiedades mecánicas (alta resistencia y poco peso).
  • Lubruicantes: Se pretenden utilizar nanoesferas de materiales inorgánicos que actúen pequeños rodamientos, reduciendo el desgaste de superficies sometidas a grandes tensiones mecánicas.
  • Materiales mangnéticos: Los nanocristales de ytrio-samario-cobalto presentan grandes campos cohercitivos. Su uso mejoraría las prestaciones de ciertos instrumentos como aquellos utilizados en Resonancia Magnética Nuclear. Asimismo, podrían mejorar la capacidad de almacenamiento de información de los discos duros empleados por los ordenadores.

 

Electrónica

  • Miniaturización de circuitos integrados: objetivo sigue siendo esencial para el desarrollo de la electrónica tal y como la conocemos hoy día. Se cree que la tecnología de 22 nm estará disponible en unos 10 años.
  • Cristales fotónicos, con mejores rendimientos para focalizar haces de luz, mejorando la eficiencia de las guías de luz. Por ejemplo, un típico cristal fotónico podría estar basado en redes de agujeros realizados en un dieléctrico, uno fabricado con una precisión inferior a los 10 nm. Las imperfecciones deben ser necesariamente pequeñas porque en caso contrario se degradan las bandas prohibidas de estos dispositivos.
  • Computación Cuántica y criptografía cuántica: Los puntos cuánticos basados en semiconductores son candidatos ideales fabricar dispositivos que permitan aplicar todas las teorías que ya existen sobre computación y criptografía cuánticas.
  • Sensores: El sensor ideal es aquel de pequeño tamaño que resulte mínimamente invasivo. Para fabricar un dispositivo de 1 mm2 que contenga una fuente de alimentación, el sensor y el transmisor de la señal es indudable que se requiere una alta miniaturización.

 

elena2.png

        Diferentes geometrías de cristales fotónicos

Biotecnología


  • Nanofarmacología: El transporte de los fármacos a los lugares específicos del cuerpo donde son necesarios reduce la necesidad de ingesta alta dosis de los mismos y mejora su eficacia. Así, se especula que los nanocristales de plata podrían liberar iones de plata un largo intervalo de tiempo, actuando sobre un espectro de unos 150 agentes patógenos.
  • Nanosensores: Al disminuir su tamaño resultan invasivos y por tanto más beneficiosos para el diagnóstico médico.
  • ADN: Sus propiedades de carácter semiconductor cuando se ha eliminado el agua son muy prometedoras para su uso como nanohilos. Además, tiene unas cualidades muy atractivas para su aplicación en nanoelectrónica por su capacidad para auto-ensamblarse y duplicarse. Se alcanzaría así el objetivo de conseguir circuitos electrónicos con capacidad para auto-repararse.

 

adn-300.jpg

       Molécula de ADN

Todos estos conocimientos generados han desembocado en la puesta a punto de diferentes iniciativas (programas de investigación, nuevos centros y equipamientos, proyectos futuristas, ingenios espaciales, óptica, medicina, ingeniería, fotónica, computación, robótica, etc. Y, pocas dudas nos pueden caber a estas alturas de que, todo este “universo” de lo NANO, desembocará en un nuevo mundo de tecnología muy tangible y real en nuestro futuro próximo. La gran belleza de estos experimentos y nuevas técnicas, junto a las enormes e ilimitadas espectivas que de ellos se generan han conducido a la proliferación del prefijo “nano” (no pocas veces un tanto abusiva y con el simple objetivo de revalorizar el producto o la linea de investigación). Así podemos oir hablar de disciplinas como nanoquímica, nanoelectrónica, nanofotónica, nanomedicina o nanobiotecnología; o de objetos tales como nanopartículas, nanotubos, nanoimánes o nanomotores. Es decir, el colocar el prefijo “nano” delante de una palabra determinada nos indica que ese campo se va estudiar enfatizando aquellos aspectos del mismos relacionados con la nanoescala.

Los más fiables y sofisticados aparatos son empleados hoy para desarrollar estas tecnologías que, si buscamos un símil sencillo, el fundamento en que se baza gran parte de la tecnología actual se asemeja al trabajo realizado por un escultor, que cincela, pule y modela un bloque de material para obtener un objeto más pequeño con la forma deseada. Puesto que cada vez son más necesarias tecnologías de fabricación más precisas, es importante disponer de tamños de “cincel” cada vez más pequeños y, también, más precisos. Este planteamiento es conocido como tecnología de fabricación descendente o “top-down” (arriba y abajo, el de los quarks que conforman a los protones y neutrones).

Se están consiguendo maravillas en el campo de la electrónica molecular. El potencial de las moléculas como componentes electrónicos manométricos. Variando la estructura de moléculas especialmente diseñadas que contienen átomos de metales de transición, como el cobalto en un caso y un par de átomos de vanadio en el otro ,se consigue obtener las características similares a de un transistor y establecer un flujo de corriente a través de un cuantico. El siguiente dibujo es una representación de un complejo cobalto-terpiridinil (cobalt-terpyridinyl) (a la izquierda) y de una molécula di vanadio(a la derecha) unidas ambas a electrodos de oro.

El “universo” de lo muy pequeño, nos tiene deparada grandes sorpresas

Investigadores de la universidad de Cornell y de la universidad de Harvard informaron sobre el desarrollo de este sistema de un solo átomo del cobalto en un caso y dos átomos del vanadio en el otro. Todo una hazaña increíblemente difícil de realizar, construir estos circuitos requirió la fabricación de “moléculas diseñadas” integradas por varios átomos dispuestos a modo de andamio en donde los átomos de cobalto o de vanadio se ubican en central.

Una pequeña molécula de 1 a 2 nm(nanómetro) de longitud se une a dos electrodos de oro, los cuales se depositan en una superficie de oxido de silicio.Infinidad de experimentos y funciones son objetos de los más variados proyectos

La Electrónica se molecular y la molécula Memoria

Por ejejmplo, una punta de cobalto sobre un colorante azul finamente fijada en una isla de cobalto emplatada en una base de cobre. Parece una receta de cocina de vanguardia, no, es molectrónica, electrónica molecular nanométrica. Un equipo de instituto tecnológico de Karlsruhe ha conseguido un detector magnético de un nanómetro de diámetro, basado en una molécula orgánica común (el azul de los bolis) y un fenómeno mecanocuántico la magnetorresistencia gigante. Rico, rico, veamos el sencillo fundamento.

Magnetorresistencia gigante mediante una única molécula de H2 ftalocianina.

Magnetorresistencia gigante mediante una única molécula de H2 ftalocianina. Electrónica molécular de espín. Representación del dispositivo compuesto por una isla base de cobalto sobre la que se deposita una sola molécula de ftalocianina, la punta a escala atómica de cobalto. La escala del dispositivo es realmente sorprendente, el diámetro de la molécula orgánica es de 0.6 nm de diámetro y la fila de diez átomos de cobalto (Co) es de 1.5 nm. De longitud.

La magnetoresistencia es la variación de la resistencia que ofrece un material se aplica sobre él un campo magnético. La magnetorresistencia gigante es un fenómeno cuántico, a escalas pequeñas, se da en estructuras de finísimas capas ferromagnéticas separadas por un espaciador no magnético, un sandwidch don el pan conduce y la mortadela no. Cuando se aplica un campo magnético externo disminuye muchísimo la resistencia eléctrica al alinearse los espines de los electrones de todas las capas.

File:Methane-2D-stereo.svg

La idea que subyace es utilizar la simple química de moléculas orgánicas comunes, como la utilizada en la tinta azul de los bolis y unirla a su peculiar física cuando se depositan como una capa monoatómica dos sustratos ferromagnéticos. Se aúna electrónica molecular, con la electrónica de espín ‘espintrónica’. Son las moléculas de hidrógeno ftalocianina las que actuarán transistores, resistencias y unidades del circuito electrónico.

Científicos en Suiza han logrado visualizar una semanas los atomos que forman la molécula del pentaceno, representando un hito en el ámbito de la nanotecnología y la electrónica molecular. La molécula es el pentaceno (C22H14), consistente en cinco anillos de benceno enlazados formando una cadena aromática, que es candidato a ser utilizada en nuevos semiconductores orgánicos.

Investigadores europeos informaron en el Internacional Solid-State Circuits de San Francisco, California, el desarrollo del primer microprocesador flexible orgánico. Los investigadores, especialistas en polímeros y electrónica molecular, son del Imec, un centro de investigación de nanotecnología de Belgica.

El mayor escollo para desarrollar esta tecnología, según el leader del equipo de investigadores, Jan Genoe, fue encontrar la de controlar los transistores orgánicos, pues cuando se habla de estructura, el silicio es mejor que las alternativas orgánicas pues su estructura monocristalina permite una reacción más consistente.

El costo de estos tipos de procesadores es mucho más baratos que los de silicio. Más o menos costaría producirlos el 10 % de lo que cuesta producir uno de silicio.

Según la fuente, este descubrimiento puede ser el inicio de un montón de aplicaciones que van desde poder registrar la presión del agua, cuando se lo coloca alrededor de una caño, hasta empaquetar alimentos y drogas de farmacia, ya que podría indicar el de la comida y avisar cuando nos olvidamos de tomar una medicina.

Fullereno C540.

Ampliamente hemos hablado aquí de los fullerenos y Nanotubos de carbono, Grafeno, Nanohilos y Nanopartículas y seguiremos hablando en el futuro, todos estos bocablos y palabras nuevas son las que están desceribiendo las tecnologías que nos llevarán adelante y, si queremos estar al día, si deseamos no quedarnos atras, debemos estar pendientes de todo lo que se mueva en ese “nuievo” campo de la Ciencia que, de seguro, nos dará muchas alegrías.

¿Hasta dónde podremos llegar?

¿Qué límite nos impondrá la Naturaleza?

O, al ser también nosotros de ella, nos dejará acercarnos tanto que, podremos, finalmente, confundirnos con ella al llegar a entenderla tan profundamente que, nada se interpone para que, nos podamos fusionar en un abrazo final cuando, llegado el momento y, convertidos en pura luz de energía infinita, podamos vagar por las estrellas del Universo siendo parte, una importante parte, de todo ese complejo conglomerado que llamamos Universo.

emilio silvera

Se acerca el Verano: ¡Época de vacaciones!

Autor por Emilio Silvera    ~    Archivo Clasificado en No solo de pan vive el hombre    ~    Comentarios Comments (10)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Cuando el calor arrecie y las tardes sean más largas, como suelo hacer casi todos los días -menos los sabados y domingos, cuando las playas están saturadas-, hacemos el corto viaje que separa nuestro hogar de la costa y, acompañado de mi inseparable compañera, nos sentamos en la Terraza de un Chiringuito a orillas de la Playa, las olas finalizan su recorrido en la orilla dejando oir su rumor al romperse contra la afina arena blanca de Punta Umbria, a orillas del Atlántico. Miramos hacia el horizonte y nuestra vista se pierde en esa línea final que da la sensación de la redondez de la Tierra.

   Paisajes como este es lo que puedo contemplar cada día del cálido verano

Si decides dar un paseo por el litoral, andando sobre la fina arena, éstos son los paisajes que vas dejando atrás a medida que avanzas. En la parte terrestre abundantes retamas en las que, con cierta facilidad puedes ver, si prestar antención, a los camaleones protegidos y, en la parte del marítima, la superficie oceánica lanzando destellos que resaltan los royos del Sol que sobre ella caen, más cerca, puedes oir el rumor de las olas, si vas cerca de la playa y su blanca espuma mojarán tus pies de manera intermitente con sus idas y venidas. Es una sensación inigualable, el aire límpio y puro, exento de contaminaciones químicas, la Naturaleza en puro.

Nunca podría estar en ese lugar que arriba podemos contemplar, el gentío me agobia y, aunque me encuentro bien en una buena compañía que nunca está nada mal, teniendo la posibilidad de estar acompañado de alguien con quien poder conversar, intercambiar ideas y pareceres, poder expresar tus pensamientos y escuchar los ajenos de los que siempre, podremos aprender alguna cosa. Además, como decía el sabio: “un hombre solo no está en buena compañía”.

http://www.playasconencanto.net/wp-content/uploads/misericordia-atardecer.jpg

Aquí, seguramente (si pasáis por Huelva, y os dais una vuelta por la playa de Punta Umbría),  si me podréis encontrar en cualquier momento, tranquilamente sentado mirando al horizonte y pensando en la grandiosidad de la que formamos y en las muchas implicaciones que todo eso conlleva, nuestra complejidad que junto con la que nos rodea es ese conjunto de cosas que no hemos podido llegar a comprender y que, en conjunto, conforma la estructura de un vasto Universo lleno de secretos que tendremos que desvelar, más tarde o más temprano, de ello, dependerá lo que pueda ser de nuestra especie.

http://www.playasconencanto.net/wp-content/uploads/Punta-Umbria-vista.jpg

Esta vista de Punta Umbría, la Playa de Huelva, nos muestra desde el aire, un pueblecito de pescadores que se ha llenado de y apartamentos, aquello parece una invasión de las masas que acuden en tropell y, sus vehículos, no dejan un hueco libre en plazas y calles. Parte del encanto que allí se podía disfrutar se fue, y, ahora, en contadas horas, puedes disfrutar de lugares tranquilos y de la belleza natural que la zona ofrece.

Lejos queda ya en el recuerdo aquella Punta Umbria que conocí de niño, cuando mi padre, viejo pescador, me llevaba junto a mi madre y mis hermnos, en el pequeño barquito de vela latina de mi abuelo, hacia la salida del río Odiel y, dando la vuelta a lo que él llamaba los bancos de arena, nos colábamos por la ría de Punta Umbría, por la Canaleta y recorríamos todo el trayecto hacia la Peguera, lugar tranquilo en el que, junto a mis hermnos y entre gritos y risas, cogíamos cangrejos mientras mi madre, aquella santa mujer, nos preparaba la comida.

http://www.playasconencanto.net/wp-content/uploads/Punta-Umbria-vista-cerca.jpg

Aunque tenemos un Apartamento con garaje y trastero, al estar los dos chicos mayores en sus obligaciones: Uno en Madrid en una multinacional como Abogado Administrador de Empresas, encargado de la Tesorería de la central y filiales en Perú y México, y, la “niña”,aunque con residencia en Sevilla, actualmente estámás tiempoo en Londres y viajando por Europa pendiente de su trabajo como asesora musical de un gran músico compositor, y, al mismo tiempo,  da algún que otro concierto y participa en el Coro de la Ciudad de Sevilla, y, por último, los dos pequeños estudian en casa y no son muy playeros. Por nuestra , mi mujer prefiere un ratito de playa y volver a casa. Mientras tanto ella toma su baño mixto de agua y Sol, yo me sitúo cómodamente sentado en una silla con una mesa sobre la que coloco la libreta de turno o el libro (si ha tocado leer). Allí, en la tranquilidad y con el fondo del murmullo de las olas, escribo cada día durante algo más de una hora.

Así, mi privilegiada atalaya cercana al océano, puedo ver como mi esposa toma el Sol y se da un baño, mientras escribo mis pensamientos de cada día en estas libretas que llevo siempre a cuestas en el coche, en cuqluqier rincón de la casa, en la oficina, en cualquier lugar en el que, de pronto, se me puedan ocurrir ideas que merezcan la pena llevar al papel en blanco de sus hojas.

Aunque los políticos lo prometieron, el Ave (el tren de alta velocidad) aún no llegó a Huelva, y, como siempre ha pasado, tenemos que desplazarnos hasta Sevilla para poder cogerlo hasta Madrid. Lugar al que, de vez en cuando, tengo que desplazarme por razones de reuniones y seminarios relacionados con la Fisica o la Astronomía.

Lo cierto es que, mi mundo laboral real, está muy alejado de la ciancia propiamente dicha, y, cada día, estoy sumergido entre leyes y preceptos legales que me lleven a resolver problemas que los empresarios tienen con la Hacienda Pública que, en su afan de recaudar, no siempre está muy atinada y, como todos, también comete errorres que me toca resolver para impedir alguna que otra injusticia.

Así que, dejando a un lado el Avión que, a la larga, es más engorroso que el Tren, los viajes y desplazamientos largos los hago mediante este medio más seguro y, aunque pueda tardar algo más, su comodidad compensa. En los viajes más cortos de menos de 300 kilómetros, prefiero mi propio coche que me da (nos da) la oportunidad de parar en cualquier sitio que nos guste tomar alguna cosa o decansar.

Es cierto, no sólo de Pan vive el Hombre y, necesita tener otras cosas, disfrutar de otras cuestiones para poder llegar a ser feliz, sentir que su Alma está llena de gozo a través de admirar la Naturaleza, una conversación, una mirada o una caricia, un paisaje o una buena lectura. También los pensamientos pueden, en ocasiones, transportarnos esos lugares soñados, a esos mundos idílicos que nos puedan proporcional la felicidad que aquí no encontramos, toda vez que, cuando miramos a nuestro alrededor, no todo es bello ni admisible para nuestros sentidos.

Mientras tanto, yo continuaré escribiendo en mis libretas y en ellas, volcaré todos aquellos pensamientos que a mi mente acudan. Unas veces serán de Física y otras de Astronomía. No pocas veces me visita la filosófía y, cuando ésta no dilucidar mis preguntas, sigo adelante y llego hasta la metafísica en la que siempre me pierdo pero, en ella, puedo imaginar mundos que podrían ser, seres que posiblemente serán, y cuestiones que, sin ser de este mundo, en este mundo pueden ser pensadas.

¡La Imaginación! ¿Habrá algo más grande que eso en nuestro Universo?

emilio silvera

¡La Física! ¿Estará perdiendo el Norte?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física en las estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 ¿Queremos imitar el salto cuántico viajar más rápido?

A finales del siglo XIX y principios del XX algunos podían creer que los secretos de la Naturaleza estaban todos descubiertos gracias a los hallazgos que en el pasado hicieran Newton y otros y más recientemente Maxwell, Planck, Einstein y otros muchos que, con sus trabajos nos desvelaron cómo funcionaba la gravedad, qué era en realidad la electricidad y el magnetismo y también, nos llevaron el fascinante mundo de lo muy pequeño con el cuanto de acción, h, de Planck que nos trajo poco más tarde, la mecánica cuántica.

La mecánica, la óptica, la electricidad… todo estaba descubierto y explicado. Los científicos de la época pansaban que sus futuros colegas sólo se dedicarían a realizar medidas para obtener las constantes con mayor precisión vez. Después de todo aquello, se siguió avanzando y continuamos haciéndonos preguntas creyendo que nos llevarían a las respuestas últimas.

Si, por ejemplo, las supercuerdas nos conducen a las respuestas últimas, entonces, ¿en qué dirección debemos nuestra investigación?, ¿es que nos hemos introducido tanto en el mundo de lo desconocido y lo ininteligible que estamos a punto de ahogarnos en un mar de lo absurdo?, ¿estamos enterrados bajo tántas preguntas de los imposibles que deberíamos considerarnos perdidos?, ¿tiene algún sentido especular acerca de la “Teoria de Todo” en un  mundo extraño de las unidades de Planck?

Bueno, si queremos ser sinceros…, podemos discrepar de algunas de las cuestiones que hoy se están debatiendo y ser críticos con otras. Sin embargo, no podremos negar los avances que realmente se están logrando en el mundo de las nuevas tecnologías que, gracias a la Física, ya están en el futuro y, en nuestras vidas cotidianas lo estamos viendo continuamente.

Por otra , nada despierta más nuestra curiosidad que lo ininteligible y, precisamente por eso, tiene tanto éxito y llama la atención teorías como la de las supercuerdas. Miremos, por ejemplo, lo que es tan curioso en el mundo de la longitud de Planck es que no podemos encontrar absolutamente ningún modelo que nos pueda dar una descripción razonablemente autoconsistente de partículas que interaccionan entre sí con fuerzas gravitatorias tan intensas y que, al mismo tiempo, obedezcan a las leyes de la mecánica cuántica. Por tanto, incluso si hubiéramos sido capaces de realizar experimentos con choques de partículas con energías planckianas, no hubiéramos sabido como comparar los resultados con una teoría. Aquí hay para los físicos: hacer una teoría. No nos importa demasiado como describa esa teoría la interacción gravitatoria, pero tenemos suficientes requisitos en la lista como para que encontrar  esa candidata a ser la teoría sea una labor extremadamente difícil. La Teoría de Supercuerdas parecía estar a punto de conseguirlo, pero falló en los últimos momentos. Dicen que necesitamos la energía de Planck para poder verificarla y, si es así, nos queda espera para rato.

Mientras buscamos esas teorías que están más allá de nuestras posibilidades reales de hoy, la Ciencia no se para y sigue avanzando en otros muchos campos que, como antes decía, nos están llevando a pasos agigantados un futuro que ya está con nosotros y, lo está haciendo con tal rapidez que ni nos hemos percatado de ello.

En cuanto a esa soñada Teoria de Todo, en primer lugar debe ser matemáticamente exacta y tiene que permitirnos calcular con extrema precisión el comportamiento de las partículas bajo todas las circunstancias imaginables. Por ahí circulan una y mil “teorías” que exponen las ideas más variopintas que imaginarnos podamos pero, desgraciadamente, son inútiles para los físicos porque sus descripciones no reúnen el rigor ni la prcisión que deben estar presentes en toda buena teoría. Por otra , los físicos prefieren que la teoría trate la fuerza gravitatoria de tal manera que esté de acuerdo con la obtenida en la formulación de la teoría de la relatividad general de Einstein. Sabemos que la fuerza gravitatoria cuerpos pesados como las estrellas y los planetas obedece a esta teoría con gran exactitud (como ha sido confirmado espectacularmente en las observaciones de los púlsares, estrellas compactas que rotan a gran velocidad. Nuestra teoría candidata debería explicar estas observaciones).

No digamos de los intrincados caminos que la Física ha sobrevolado cuando se ha querido meter en la posibilidad de viajes en el Tiempo y, los físicos se encontraron con una y mil paradojas extrañas. Además, como nos ocurre con la Teoría de cuerdas, al meternos en un sendero desconocido y de intrincados peligros…nunca hemos podido llegar al final después de largos y costosos recorridos. ¿Servirá para algo los muchos esfuerzos realizados?

Por otra somos conscientes y conocedores de que las leyes de la mecánica cuántica son inexorables y, por tanto, queremos que nuestra teoría sea formulada en términos de la mecánica cuántica. Tanto la mecánica cuántica como la teoría de la relatividad tienen la propiedad de que, tan pronto como uno admita la más pequeña desviación de esos principios, ambas darían lugar a una teoría totalmente diferente, que de ninguna manera se parecería al mundo que conocemos (o pensamos conocer). “Un poco relativista” o “un poco mecanicuántico” tan poco sentido como “un poco embarazado”. Podríamos imaginar, por otra parte, que la mecánica cuántica o la relatividad general, o ambas, serían marcos demasiado restrictivos nuestra avanzada teoría, de manera que habría que extender sus principios, llegar más lejos.

Diferencias en partículas y formas entre el modelo estándar y la Teoría de Cuerdas

La cuerda es cuántica y gravitatoria, de sus entrañas surge, por arte de magia, la partícula mensajera de la fuerza de gravedad: el gravitón. Funde de natural las dos teorías físicas más poderosas de que disponemos, la mecánica cuántica y la relatividad general, y se convierte en supercuerda -con mayores grados de libertad- es capaz de describir bosones y fermiones, partículas de fuerza y de materia. La simple vibración de una cuerda infinitesimal podría unificar todas la fuerzas y partículas fundamentales.

Parece que todo está hecho de cuerdas, incluso el espacio y el tiempo podrían emerger de las relaciones, más o menas complejas, cuerdas vibrantes. La materia-materia, que tocamos y nos parece tan sólida y compacta, ya sabíamos que está casi vacía, pero no imaginábamos que era tan sutil como una cuerda de energía vibrando. Los átomos, las galaxias, los agujeros negros, todo son marañas de cuerdas y supercuerdas vibrando en diez u once dimensiones espaciotemporales.

Está claro que no trato de explicar aquí una teoría que no comprendo y, el tratar el tema se debe a la curiosidad de tratar de indicar el camino, o, los caminos, por los que se podría llegar más lejos, al , algo más allá. De una cosa si que estoy seguro: ¡Las cuatro fuerzas fundamentales del Universo, un día fueron una sola fuerza!

En el universo existen numerosas estrellas cuyas masas son considerablemente mayores que las del Sol, debido a lo cual, la fuerza gravitotoria en su superficie es considerablemente más intensa que sobre la Tierra o sobre el Sol. La enorme cantidad de materia de una de esas estrellas causa una presión inimaginablemente alta en su interior, pero como  las tenperaturasd en el interior de las estrellas es también altísima, se produce una presión contraria que evita que la estrella se colapse. La estrella, sin embargo, pierde calor continuamente. Al proncipio de su vida, en las estrellas se producen todo de reacciones nucleares que mantienen su temperatura alta y que incluso la pueden elevar, pero antes o después el combustible nuclear se acaba. Cuanto más pesada sea la estrella, mayor es la prsión y la temperatura, y más rápidamente se consume su combustible. La contrapresión disminuye progresivamente y la estrella se va colapsando bajo la presión,  según dismunye el tamaño de la estrella, la fuerza gravitatoria aumenta hasta que finalmente se produce una implosión -un colapso repentino y completo- que no puede ser evitado por más tiempo: ¡ha nacido un agujero negro!

Según todos los indicios, cuando la estrella es muy masiva, la Improsión finaliza convirtiendo toda la inmensa masa de la estrella en un A. N., pero antes, explota como supernova y llena el espacio de los materiales coplejos que han sido fabricados en sus nucleares, siembra el espacio con una Nebulosa de la que, años más tarde, nacerán nuevas estrellas y nuevos mundos…Y, ¿quién sabe? ¡Si nuevas formas de Vida!

A menudo implosión libera tanto calor que las capas exteriores de la estrella explotan por la presión de la radiación, y la implosión queda interrumpida produciéndose una esfera extremadamente compacta de “material nuclear” que conocemos como una estrella de neutrones. Algunas veces, estas estrellas de neutrones rotan con una tremenda velocidad (más de 500 revoluciones/segundo), y, debido a irregularidades en la superficie, emiten una señal de radio que pulsa con esa velocidad.

Si todos estos sucesos pudieran ser observados una distancia segura, las señales emitidas por el material durante la implosión pronto serían demasiado débiles para ser detectadas y, en el caso de un afgujero negro, el objeto se vuelve de ese color y desaparece de nuestra vista convertido en una “bola de gravedad pura”, se pueden calcular sus propiedades con precisión matemática. Sólo se necesitan tres parámetros para caracterizar completamente al agujero negro: su masa, su movimiento angular (cantidad de movimiento de rotación) y su carga eléctrica.

También se calcular como se comportan los chorros de partículas cuando se aventuiran cerca del agujero negro. Hawking ya nos habló de ello y explicó con suficiente claridad, lo que pasaba era que, en contra de lo que pudiéramos pensar, el agujero emite un débil flujo de partículas en ciertas circunstancias. ¿Esas partículas son reales! Agujero Negro está emitiendo un flujo constante de partículas de todas las especies concebibles.

NASA

El Telescopio Espacial Hubble y Chandra han captado la imagen de un impresionante anillo de Agujeros negros. La fotografía corresponde al conjunto Arp 147, en el que aparecen 2 galaxias interactuando entre sí y que se ubican a una distancia de 430 millones de años luz de la Tierra. La NASA combinó datos del Chandra con imágenes del Hubble. Mientras los tonos rojos, azules y verdes fueron resultado del trabajo del Hubble; los de color magenta, del Chandra. La captura muestra un anillo formado por estrellas masivas que evolucionaron rápidamente y explotaron en supernovas, como consecuencia de una colisión galáctica. Es así como dejaron densas estrellas de neutrones y posiblemente, también agujeros negros.

En el Universo ocurren sucesos que no podemos ni imaginar, tales son las fuerzas y energías que ahí están presentes y que dan lugar a maravillas que desembocan en transiciones de fase que convierten unas cosas en otras muy distintas haciendo que la diversidad exista, que la belleza permanezca, que la monotonía no sea el camino.

Es cierto que nunca hemos podido estar tan cerca de un agujero negro como poder comprobar, in situ, la radiación Hawking que, para su formulación, sólo utilizó leyes bien establecidas de la naturaleza y que, por tanto, el resultado debería ser incuestionable, pero no es del todo cierto por dos razones:

La primera razón es que nunca ( he dicho) hemos sido capaces de observar un agujero negro de cerca y mucho de un tamaño tan pequeño que su radiación Hawking pueda ser detectada. Ni siquiera sabemos si tales miniagujeros negros existen en nuestro universo, o si sólo forman una minoría extremadamente escasa entre los objetos del cielo. Aunque pensemos conocer la teoría, no nos habría hecho ningún daño haber podido comprobar sus predicciones de una o de otra. ¿Sucede todo exactamente como pensamos actualmente que debería suceder?

Otros, como Gerald ´t  Hooft, consiguieron construir otro de teorías alternativas y le dieron resultados distintos a los de Hawking, en la que el Agujero Negro podia radiar con una intensidad considerablemente mayor que la que la teoría de Stephen predecía.

Hay un aspecto relacionado con la radiación Hawking mucho más importante. El agujero negro disminuye su tamaño al emitir partículas, y la intensidad de su radiación crece rápidamente según se reduce su tamaño. Justo de llegar a los estadios finales, el tamaño del agujero negro se hará comparable a la longitud de Planck y toda la masa llegará a ser sólo un poco mayor que la masa de Planck, Las energías de las partículas emitidas corresponderan a la masa de Planck.

¡Solamente una teoría completa de la Gravedad Cuántica podrá predecir y describir exactamente lo que sucede al agujero negro en ese ! es la importancia de los Agujeros Negros la teoría de partículas elementales en la Longitud de Planck. Los agujeros negros serían un laboratorio ideal para experimentos imaginarios. Todos alcanzan, por sí mismos, el régimen de energía de los números de Planck, y una buena teoría debe ser capaz de decirnos como calcular en ese caso. casi una década, Gerad ´t Hoofft ha resaltando esa objeción en la teoría de supercuerdas: no nos dice nada de los agujeros negros y mucho de cómo un agujero negro comenzar su vida como un agujero negro de tamaño “astronómico” y acabar su vida explosivamente.

Lo cierto es que, andamos un poco perdidos y no pocos físicos (no sabemos si de interesada), insisten una y otra vez, en cuestiones que parecen no llevar a ninguna parte y que, según las imposibilidades que nos presentan esos caminos, no sería conveniente elegir otros derroteros para indagar nuevas físicas mientras tanto, avanzan las tecnologías, se adquieren más potentes y nuevas formas de energías que nos puedan permitir llegar a sondear las cuerdas y poder vislumbrar si, es cierto, que pueda existir alguna “materia oscura”, o, si existen bosones dadores de masa, o…¡tántas cosas más que, la lista, sería interminable! de las cosas que no sabemos.

emilio silvera