Abr
7
¡¡Quásares!! Extraños objetos de inusitado brillo y energía
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
Una composición artísdtica del quásar brillante descubierto hasta el momento: ULAS J1120+064.
Los quásares son galaxias distantes muy luminosas, alimentadas por un agujero negro supermasivo en su centro. Su brillo los convierte en poderosos faros que pueden ayudar a investigar la época en que se formaron las primeras estrellas y galaxias.Son útilespara ir comprendiendo cómo se formó el universo al revelar el estado de ionización del medio intergaláctico que tuvo lugar unos mil millones de años después del Big Bang. Parece que ULAS J1120+064 es es quásar más distante descubierto hasta el momento. Situado a más de doce mil millones de años-luz de nuestra Galaxia, está cerca de los limites del universo visible. La masa del agujero negro situado en el centro de ULAS J1120+0641 equivale a dos mil millones de veces la masa del Sol.
Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres. Los quasáres son objetos distantes de gran energía. El quasar de arriba a la izquierda está a 1.4 mil millones de años luz de la Tierra. La imagen a la derecha muestra un quasar que puede ser el resultado del choque de dos galaxias viajando a 1 millón de millas por hora. Esta galaxia está a 3 mil millones de años luz de distancia. En la foto del centro un quasar se une con una galaxia.
STScI.
Los quásares han sido identificados históricamente en estudios ópticos, insensibles a fuentes de desplazamiento al rojo más allá de 6,5. Con el estudio de ULAS J1120+0641 se ha podido compronbar que tiene un acercamiento de 7,085, lo que significa 770 millones de años después del origen del universo. El quásar más cercano a este punto observado hasta el momento tenía un desplazamiento de 6,44 (100 millones de años más joven que este). Estudiar la distancia entre los dos “faros” servirá para arrojar algo de luz a una época de la que los científicos no tienen mucha información. Para la ciencia no es fácil poder explicar cómo, en una fase tan temprana del universo, se pudo crear un objeto con una masa tan inmensa que derriba las actuales teorías sobre el crecimiento de los agujeros negros supermasivos que predicen un crecimiento lento a medida que “el monstruo” atrae materia hacia sí desde la región circundante.
La imagen de arriba es otra representación artística de un Quásar, las auténticas los las seis fotografías que más arriba podéis ver y que representan -al menos eso es lo que parece- una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidad propia que los hace muy diferents a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.
Imagen de 3C273 recogida por el telescopio espacial Chandra
Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.
Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiento, quasares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.
Comparando las dos imágenes, aunque sean tan distitnas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.
Lo asombroso de los quásares está en una pregunta que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.
El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.
Arriba podemos contemplar la simulación por ordenador de Joshua Barnes de la Universidad de Hawai. Abajo la escenificación artística del corazón de un quásar, un agujero negro masivo que absorbe en un vórtice de gas. Los astrónomos e Hawai creen que el Quásar brilla debido a que una galaxia gigante con un agujero negro colisiona con otra galaxia rica en gas que alimenta al agujero negro. Según todos los síntomas y datos que podemos poner sobre la mesa de estudio, la conclusión que podría ser la más acertada nos lleva a pensar que, los quásares, son inmensos agujeros negros alojados en los núcleos de grandes galaxias ricas en gas y numerosas estrellas que rodean al masivo objeto que, de manera gradual va describiendo una espiral de materia que atrae hasta él. A medida que cada estrella se acerca lo suficiente al agujero negro, su cuerpo gaseoso se desprende…
… debido a la fuerza de gravedad que genera el agujero negro y que es totalmente irresistible para la estrella que, inevitablemente, se espaguetiza y cae en las fauces del monstruo para engrosar su increíble y densa masa que lo hace más y más poderoso a medida que engulle materia de todo tipo que por las cercanias pueda pasar.
Los átomos de materia gaseosa situados en el interior de la estrella que, literalmente se desintegra, tomando gran velocidad por la fuerza de atracción que sobre ella ejerce el agujero negro, se mueve cada vez más rápidamente, como deseosa de llegar a su fatal destino. Cuando los átomos se aproximan a los límites del agujero negro, chocan unos con otros. Estas colisiones elevan la temperatura del gas, y este gas caliente irradia energía al espacio. Esta energía es la que detectan nuestros ingenios cuando estamos observando a un quásar lejano.
Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las beiznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconcoidas y misteriosas.
La teoría prevé que el diámetro de un agfujero negro es proporcional a la cantidad de materia que hay en su interior. De esta manera, cada vez que un agujero negro se encuentra con otro y lo absorbe, el agujero negro resultante es mucho mayor. Al ser mucho más grande, ese mismo agujero negro tiene más posibilidad de chocar con otros objetos al atraerlos gravitacionalmente y, los engulle para hacerce más y más grande. A partir de cierto momento, la capacidad de ese agujero negro de seguir absorbiendo más y más masa, se hace imparable y entra en un proceso sin fin en el que, cuanto mayor sea el agujero negro, más probabilidades tendrá de seguir consumiendo la materia que -pobre de ella- pase por sus dominios gravitatorios. De estos agujeros negros gigantes, han sido detectados -al menos así lo parecen los efectos de radiación y otros muy específicos que han sido comprobados- una buena cantidad en diversas galaxias más o menos lejanas.
Cuando un agujero negro engulle a una estrella, al ginal del proceso, se emite una inmensa explosión de energía. Estas explosiones de energía que se siguen unas a otras a medida que las estrellas más cercanas al agujero negro son consumidas por él, alimentan la extraordinaria cantidad de energía del quásar. Así que, resulta que el quásar es una galaxia que tiene un agujero negro gigante en el centro.
La deslumbrante radiación del quásar se crea a partir de las estrellas que, una por una, van alimentando al agujero negro gigante. Cada vez que el agujero negro gigante captura una estrella, vemos como el quásar tiene un fulgor como cuando arrojamos otro leño al fuego -guardando las distancias-. Al principio, el fuego resplandece con gran fulgor porque el agujero negro gigante tiene a su alcance un amplio suministro de estrellas disponibles para alimentar su insaciable voracidad.
Hemos podido llegar tan lejos gracias a que la Ciencia de la Astronomía y la Astrofísica no ha dejado de avanzar desde aquellos rudimentarios datos observacionales de los sumerios, y babilonios, o, los chinos los griegos y los árabes hasta llegar a Galileo y Kepler, Tycho Brahe y tantos otros que, enamorados de las maravillas del Universo, entregaron sus vidas al estudio de la Naturaleza del espacio infinito.
Así, hemos podido llegar a saber que, pasando el tiempo, muchas estrellas de la zona interior de las galaxias han ido desapareciendo al ser engullidas por esos monstruosos gigantes que llaamamos agujeros negros. Después de un intervalo de tiempo relativamente corto, quizá de unos cientos de millones de años, quedan ya muy pocas estrellas. Al quedar sin fuente de energía, el quásar se va oscureciendo y allí, donde antes resplandecía un fulgurante quásar, sólo queda ahora una galaxia de apariencia normal que, eso sí, en su interior aloja a un monstruo que está al acecho de lo que por allí pueda pasar para devorarlo.
Se conocen más de 200.000 cuasares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc (780 millones de años luz) y el más lejano a 6 Gpc (13.000 millones de años luz). La mayoría de los quasares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuasares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.
Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber.
Claro que, esa inteligencia a la que me refiero podría estar plasmada de muchas formas e incluso, algunas, aíun teniéndolas junto a nosotros ni la podríamos ver. La vida en el Universo, aunque la única que conocemos es la que está presente en el planeta Tierra, de cuya diversidad nos asombramos cada día -sólo tenemos que recordar que de las formas de vida que han estado presente en nuestro planeta, simplemente el uno por ciento pervive y está presente en estos momentos, el resto se entinguió por uno u otro motivo-, y, si la diversidad es tan grande en un redudico espacio como la Tierra… ¿Qué no habrá por ahí fuera?
emilio silvera
Abr
7
¿El Universo? Siempre nos asombrará
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
Hace algún tiempo que un grupo de científicos descubrieron una galaxia distante hambrienta alimentándose del gas presente en su región. Los expertos observaron que el gas cae hacia adentro, hacia la galaxia, creando un flujo de combustible para la formación de estrellas y las unidades de rotación de la galaxia. ¡Hay tántos sucesos desconocidos en el inmenso Universo!
Acordáos del mes de febrero de 2010, cuando se publicó este hallazgo
“Gracias al telescopio WIYN (Arizona, EEUU), un equipo de científicos han detectado un asteroide con una singular cola de un millón de kilómetros de longitud. Esta dimensión es comparable a la de casi tres veces la distancia entre la Tierra y la Luna.” ¿Cómo pueden tener una cola tan larga un asteroide? Al parecer son conocidos unos diez objetos similares.
Se la conoce como NGC 5189 y es una inusual nebulosa que tiene su origen en una estrella para de un sistema binario
Esta es la Galaxia anular NGC 660 situada a más de 20 millones de años-luz, nos muestra su rara figura
Comocida como Zeta Ophiuchi, la estrella fugitiva. Como un barco que surca los mares cósmicos, la estrella fugitiva produce la onda de arco o el arco de choque interestelar, que se puede apreciar en esta imagen. Es una estrella 20 veces más masiva que el Sol, que se encuentra cerca del centro de la imagen, moviéndose hacia la izquierda a 24 kilómetros por segundo.
Marte nunca dejará de asombrarnos. Pueden parecer árboles, pero no lo son. Grupos de rayas marrones oscuras fueron fotografiadas por el Mars Reconnaissance Orbiter, en medio de dunas de arenas rosadas con ligeras heladas. En abril de 2008, arenas oscuras de interior de las dunas marcianas se vuelven más visibles con el Sol.
Oculta por la inmensa nube de gas y polvo que ella misma ha eyectado al espacio interestelar para evitar su propia muerte, Eta Carinae, una estrella súper masiva, unas cien veces la masa del Sol que, en cualquier momento podría dar un susto y explotar como Supernova para convertirse en un agujero negro.
A unos 2.000 millones de años luz de distancia se encuentra la galaxia elíptica Hércules A, conocida también como 3C 348. Con el uso combinado del telescopio espacial Hubble y el radiotelescopio Karl G. Jansky Very Lare Array, se revelaron dos enormes chorros, que parecen dos grandes llamaradas y que empequeñecen la galaxia.
En esta imagen aparece el primer grupo compacto de galaxias identificado como Quintento de Stephan. A unos 300 millones de años luz de distancia, solo cuatro de estas galaxias se encuentran atrapadas en una danza cósmica de encuentros repetidos. Pero la galaxia predominantemente azul, NGC 7320a, está a tan sólo 40 millones de años luz, y no es parte del grupo en interacción. El Quinteto de Stephan se encuentra dentro de los límites de la constelación Pegasus.
La Supernova 1987A nos muestra sus misteriosos anillos. ¿Qué está causando estos anillos impares en la supernova 1987A? Hace veinticinco años, en 1987, la supernova más brillante en la historia reciente se ha visto en la Gran Nube de Magallanes. En el centro de la imagen se ven los restos de la explosión violenta de una estrella. Alrededor del centro son curiosos anillos exteriores que aparecen como una figura plana. A pesar del Telescopio Espacial Hubble para monitorear los curiosos anillos , su origen sigue siendo un misterio.
Con una hermosa apariencia, la nebulosa Sharpless 2-106, también conocida como nebulosa del ángel, se encuentra a aproximadamente 2,000 años luz de la Tierrra. Se trata de una gran nube de gas y polvo creadora de millones de estrellas.
La famosa Nebulosa Orión, M42, contiene a la estrella estrella múltiple conocida como el Trapecium. En el borde de esta mágica nebulosa se halla la estrella doble Iota Orionis. Al norte de esta nebulosa se encuentra otra brillante nebulosa NGC 1977, y más al norte el cúmulo abierto NGC 1981. Este complejo de nebulosidad y cúmulos constituye la Espada de Orión, que cuelga del cinturón de Orión. Sigma Orionis es una impresionante estrella múltiple. Eta Orionis es una estrella doble con sus componentes muy próximos entre sí. Por ahí se encuentra también la oscura nebulosa Cabeza de Calballo que se introduce en una débil banda de luminosidad, IC 434 que llega hasta el sur de Alnitak, una de las tres estrellas que forman el Cinturon de Orión con Alnilam y Alnitak. Tampoco nos podemos olvidar de que por el “barrio” andan las conocidas Betelgeuse, Bellatrix y Rigel, sin que nos olvidemos de Saiph.
Como siempre contamos aquí, el Universo es grande, grande, muy muy grande, para nosotros infinito, toda vez que nunca lo podremos visitar al completo de manera física y, nos tendremos que conformar con captar objetos lejanos situados en regiones de belleza inimaginable que, por su lejanía nos oculta secretos que desde aquí no podemos desvelar. Fijáos en cuánto hemos podido contemplar en solo unas pocas imágenes captadas por el Hubble y otros ingenios fabricados por nuestra especie para poder, viajar a lugares ignotos en los que nunca podremos poner el pie.
emilio silvera
Abr
6
Materia de sombra, Axiones, ¿WIMPs en el Sol?
por Emilio Silvera ~
Clasificado en ¡La Materia Oscura! ~
Comments (7)
Habiendo leido la Noticia que publica el Diario El Mundo y que he reproducido hoy mismo en este Blog, recuerdo otro trabajo que hice y expuse en esta página que, al estar con esta noticia relacionado, creo que está bien ponerlo de nuevo para que puedan comparar los criterios y cómo van cambiando las cosas
Es curioso como a veces, la realidad de los hechos observados, vienen a derribar esas barreras que muchos ponen en sus mentes para negar lo evidente. Por ejemplo: Los extraordinarios resultados de la sonda Kepler, que en su primer año de misión ha encontrado ya 1.235 candidatos a planetas, 54 de ellos en la zona habitable de sus estrellas, ha permitido a los investigadores extrapolar el numero total de mundos que podría haber sólo en la Vía Láctea, nuestra Galaxia. Y ese número ronda los 50.000 millones. De los cuales, además, unos 500 millones estarían a la distancia adecuada de sus soles para permitir la existencia de agua en estado líquido, una condición necesaria para la vida.
Planetas parecidos a la Tierra, como arriba nos dicen, hay miles de millones y sólo cabe esperar que estén situados en los lugares adecuados para que la vida tenga la oportunidad de surgir acogida por el ecosistema ideal del agua líquida, una atmósfera acogedora y húmeda, temperatura ideal media y otros parámetros que la vida reqiere para su existencia.
Un equipo de astrónomos internacionales pertenecientes al Observatorio Europeo Austral (ESO), el más importante del mundo, investiga la formación de un posible nuevo sistema planetario a partir de discos de material que rodea a una estrella joven. Según un comunicado difundido hoy por el centro astronómico que se levanta en la región norteña de Antofagasta (Chile), a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.
Según los astrónomos, los planetas se forman a partir de discos de material que rodean a las estrellas, pero la transición desde discos de polvo hasta sistemas planetarios es rápida y muy pocos son identificados en esta fase. Uno de los objetos estudiados por los astrónomos de ESO, es la estrella T Chamaleontis (T-Cha), ubicada en la pequeña constelación de Chamaleón, la cual es comparable al sol pero en sus etapas iniciales.
Dicha estrella se encuentra a unos 330 años luz de la Tierra y tiene 7 millones de años de edad, lo que se considera joven para una estrella. “Estudios anteriores han demostrado que T Cha es un excelente objetivo para estudiar cómo se forman los sistemas planetarios”, señala el astrónomo Johan Olofsson, del Max Planck Institute of Astronomy de Alemania.
Algunas veces hablando de los extensos y complejos temas que subyacen en la Astronomía, lo mismo hablamos de “materia de sombre” que de “supercuerdas” y, se ha llegado a decir que existe otro universo de materia de sonbra que existe en paralelo al nuestro. Los dos universos se separaron cuando la Gravedad se congeló sepapándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo cual las convierte en candidatas ideales para la tan traida y llevada “materia oscura”.
Llegamos a los Axiones.
El estado actual de la cuestión es que los cosmólogos creen saber que hay una gran cantidad de materia oscura en el Universo y, han conseguido eliminar la candidatura de cualquier tipo de partícula ordinaria que conocemos. En tales circunstancias no se puede llegar a otra conclusión que la materia oscura debe de existir en alguna forma que todavía no hemos visto y cuyas propiedades ignoramos totalmente. Sin embargo, se atreven a decir que, la Gravedad, es el efecto que se produce cuando la “materia oscura” pierde consistencia… , o algo así. ¡Cómo son!
A los teóricos nada les gusta más que aquella situación en la cual puedan dejar volar libremente la imaginación sin miedo a que nada tan brusco como un experimento u observación acabe con su juego. En cualquier caso, han producido sugerencias extraordinarias acerca de lo que podría ser la “materia oscura” del universo.
Lo que hay en el Universo…no siempre lo podemos comprender.
Otro de los WIMPs favoritos se llama axión. Como el fotino y sus compañeros, el axión fue sugerido por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el Universo en el segundo 10ˉ³5, más que de las teorías totalmente unificadas que operan en el tiempo de Planck.
Durante mucho tiempo han sabido los físicos que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la película hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reversa del tiempo (pasar la película al revés).
Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es éste el caso. El mundo visto en un espejo se desvía un tanto al mundo visto directamente, y lo mismo sucede al mundo visto cuando la película pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el inverso en cada uno de estos casos se cancelan una a la otra cuando miramos las tres inversiones combinadas.
Aunque esto es verdad, también es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?
La respuesta a esta cuestión parece que puede estar en la posible existencia de esa otra partícula apellidada axión. Se supone que el Axión es muy ligero (menos de una millonésima parte de la masa del electrón) e interacciona sólo débilmente con otra materia. Es la pequeña masa y la interacción débil lo que explica el “casi” que preocupa a los teóricos.
Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de momento, es imposible verificarla.
El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.
Dispersas entre oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.
¿Podeis imaginar la existencia de un Universo en permanente sombra?
La idea de un universo en sombra nos proporciona una manera sencilla de pensar en la materia oscura. El universo dividido en materia y materia se sombra en el Tiempo de Planck, y cada una evolucionó de acuerdo con sus propias leyes. Es de suponer que algún Hubble de sombra descubrió que ese universo de sombra se estaba expandiendo y es de suponer que algunos astrónomos de sombras piensan en nosotros como candidatos para su materia oscura.
¡Puede que incluso haya unos ustedes de sombras leyendo la versión de sombra de este trabajo!
¿Partículas y partículas supersimétricas? ¿Dónde están?
Partículas son las que todos conocemos y que forman la materia, la supersimétricas, fotinos, squarks y otros, las estamos buscando sin poder hallarlas.
Estas partículas son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados, pero son mucho más pesadas. Se nombran en analogía con sus compañeras: el squark es el compañero supersimétrico del quark, el fotino del fotón, etc. Las más ligeras de estas partículas podrían ser la materia oscura. Si es así, cada partícula probablemente pesaría al menos cuarenta veces más que el protón.
Materia de sombra, si existe, no hemos sabido dar con ella y, sin embargo, existen indicios de que está ahí
En algunas versiones de las llamadas teorías de supercuerdas hay todo un universo de materia de sombra que existe paralelo con el nuestro. Los dos universos se separaron cuando la gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo que las convierte en candidatas ideales para la materia oscura.
Habiendo inventado la “materia oscura” para explicar lo que no pueden, se inventan también, las partículas que la conforma: Axiones, unas partículas supersimétricas que buscará el LHC.
El Axión es una partícula muy ligera (pero presumiblemente muy común) que, si existiera, resolvería un problema antiguo en la teoría de las partículas elementales. Se estima que tiene una masa menor que una millonésima parte de la del electrón y se supone que impregna el universo de una manera semejante al fondo de microondas. La materia oscura consistiría en agregaciones de axiones por encima del nivel general de fondo.
Construímos inmensos aparatos de ingeniosas propiedades tecnológicas para tratar de que nos busquen las WIMPs
¿WIMPs en el Sol?
A lo largo de todo el trabajo se ha dado a entender que todas estas partículas candidatas a materia oscura de la que hemos estado hablando, son puramente hipotéticas. No hay pruebas de que ninguna de ellas se vaya a encontrar de hecho en la naturaleza. Sin embargo sería negligente si no mencionase un argumento –un diminuto rayo de esperanza- que tiende a apoyar la existencia de WIMPs de un tipo u otro. Este argumento tiene que ver con algunos problemas que han surgido en nuestra comprensión del funcionamiento y la estructura del Sol.
Creemos que la energía del Sol viene de reacciones nucleares profundas dentro del núcleo. Si éste es el caso en realidad, la teoría nos dice que esas reacciones deberían estar produciendo neutrinos que en principio son detectables sobre la Tierra. Si conocemos la temperatura y composición del núcleo (como creemos), entonces podemos predecir exactamente cuántos neutrinos detectaremos. Durante más de veinte años se llevó a cabo un experimento en una mina de oro de Dakota del Sur para detectar esos neutrinos y, desgraciadamente, los resultados fueron desconcertantes. El número detectado fue de sólo un tercio de lo que se esperaba. Esto se conoce como el problema del neutrino solar.
El problema de los neutrinos solares se debió a una gran discrepancia entre el número de neutrinos que llegaban a la Tierra y los modelos teóricos del interior del Sol. Este problema que duró desde mediados de la década de 1960 hasta el 2002, ha sido recientemente resuelto mediante un nuevo entendimiento de la física de neutrinos, necesitando una modificación en el modelo estándar de la física de partículas, concretamente en las neutrinos” Básicamente, debido a que los neutrinos tienen masa, pueden cambiar del tipo de neutrino que se produce en el interior del Sol, el neutrino electrónico, en dos tipos de neutrinos, el muónico y el tauónico, que no fueron detectados. (Wikipedia).
La segunda característica del Sol que concierne a la existencia de WIMPs se refiere al hecho de las oscilaciones solares. Cuando los astrónomos contemplan cuidadosamente la superficie solar, la ven vibrar y sacudirse; todo el Sol puede pulsar en períodos de varias horas. Estas oscilaciones son análogas a las ondas de los terremotos, y los astrónomos llaman a sus estudios “sismología solar”. Como creemos conocer la composición del Sol, tenemos que ser capaces de predecir las propiedades de estas ondas de terremotos solares. Sin embargo hay algunas duraderas discrepancias la teoría y la observación en este campo.
No mucho que los astrónomos han señalado que si la Galaxia está en realidad llena de materia oscura en la forma de WIMPs, entonces, durante su vida, el Sol habría absorbido un gran de ellos. Los WIMPs, por tanto, formarían parte de la composición del Sol, una parte que no se había tenido en cuenta hasta ahora. Cuando los WIMPs son incluidos en los cálculos, resultan dos consecuencias: primero, la temperatura en el núcleo del Sol resulta ser menor de lo que se creía, de forma que son emitidos menos neutrinos, y segundo, las propiedades del cuerpo del Sol cambian de tal modo que las predicciones de las oscilaciones solares son exactas.
Hasta nos atrevemos a exponer una imagen que nos muestra la distribución de los WIMPs
Este resultado es insignificante en lo que se refiere a la existencia de WIMPs, pero como no debemos despreciar las coincidencias halladas, lo más prudente será esperar a nuevos y más avanzados experimentos (SOHO y otros). Tanto el problema del neutrino como las oscilaciones se pueden explicar igualmente bien por otros efectos que no tienen nada que ver con los WIMPs. Por ejemplo, el de oscilaciones de neutrinos podría resolverse si el neutrino solar tuviera alguna masa, aunque fuese muy pequeña, y diversos cambios en los detalles de la estructura interna del Sol podrían explicar las oscilaciones. No obstante estos fenómenos solares constituyen la única indicación que tenemos de que uno de los candidatos a la materia oscura pueda existir realmente.
Toda esta charla sobre supersimetría y teoría últimas da a la discusión de la naturaleza de la materia oscura un tono solemne que no tiene ningún parecido con la forma en que se lleva en realidad el debate entre los cosmólogos. Una de las cosas que más me gusta de este campo es que todo el mundo parece ser capaz de conservar el sentido del humor y una distancia respecto a su propio , ya que, los buenos científicos saben que, todos los cálculos, conjeturas, hipótesis y finalmente teorías, no serán visadas en la aduana de la Ciencia, hasta que sean muy, pero que muy bien comprobadas mediante el experimento y la observación y, no una sino diez mil veces antes de que puedan ser aceptadas en el ámbito puramente científico.
El el Sol podemos hallar algunas respuestas
Posiblemente, el LHC nos pueda decir algo al respecto si, como no pocos esperan, de sus colisiones surgen algunas partículas supersimétricas que nos hablen de ese otro mundo oscuro que, estando en este, no hemos sabido encontrar hasta este momento. Otra posibilidad sería que la tan manoseada materia oscura no existiera y, en su lugar, se descubriera otro fenómeno o mecanismo natural desconocido hasta que, incidiendo en el comportamiento de expansión del Universo, nos hiciera pensar en la existencia de la “materia oscura” cubrir el hueco de nuestra ignorancia.
Hace algún tiempo, en esas reuniones periódicas que se llevan a cabo entre científicos de materias relacionadas: física, astronomía, astrofísica, comología…, alguien del grupo sacó a relucir la idea de la extinción de los dinosaurios y, el hombre se refirió a la teoría (de los muchas que circulan) de que el Sol, en su rotación alrededor de la Vía Láctea, se salía periódicamente fuera del plano de la Galaxia. Cuando hacía esto, el polvo existente en ese plano podía cesar de proteger la Tierra, que entonces quedaría bañada en rayos cósmicos letales que los autores de la teoría pensaban que podían permeabilizar el cosmos. Alguien, el fondo de la sala lanzó: ¿Quiere decir que los dinosaurios fueron exterminados por la radiación de fotinos?
La cosa se tomó a broma y risas marcaron el final de la reunión en la que no siempre se tratan los temas con esa seriedad que todos creen, toda vez que, los conocimientos que tenemos de las cosas son muy limitados y tomarse en serio lo que podría no ser… ¡No sería nada bueno!
emilio silvera
Abr
6
Noticia del Diario el Mundo
por Emilio Silvera ~
Clasificado en Noticias ~
Comments (3)
A la caza de la materia oscura

En los años 40, la ciencia no era precisamente cosa de mujeres. En su primer acercamiento a la universidad, Vera Rubin tenía más que claro su interés por la astronomía. Sin embargo, el empleado de la oficina de admisiones le sugirió la idea de cambiar su vocación por algo relacionado con el estudio de las estrellas, pero, de alguna forma, más femenino… como la pintura. Rubin acabó estudiando Artes en el Vassar College de Nueva York. Pero no dio su brazo a torcer y terminó estudiando Física en Cornell con Richard Feynman, aunque no lo tuvo fácil. Como cuenta el físico teórico de Caltech Sean Carroll en su libro La partícula al final del Universo (Debate), cuando escribió a la Universidad de Princeton pidiendo el catálogo de estudios de doctorado se negaron a enviárselo señalando que el departamento de Astronomía no aceptaba mujeres como estudiantes de postgrado (algo que no cambió hasta el año 1975).
La perseverancia dio sus frutos y en 1978 Vera Rubin y su colega Kent Ford descubrieron algo inesperado que cambiaría la concepción del Cosmos. La Ley de la Gravedad dice que las estrellas deberían moverse a menor velocidad a medida que se alejan del centro de su galaxia, igual que los planetas más lejanos del Sistema Solar giran a menor velocidad que la Tierra alrededor del Sol. Cuanto más lejos del cuerpo que se orbita, menos intensa es la fuerza gravitatoria.
Sin embargo, Rubin y Ford observaron algo muy diferente: Las estrellas se mueven a la misma velocidad aunque se alejen del centro de la galaxia. Parecía imposible, pero no había otra explicación: las galaxias tenían que tener mucha más masa de la que podemos ver. Sin saberlo, habían demostrado la existencia de la materia oscura, uno de los grandes retos de la Astronomía y la Física actuales.
Hacia lo desconocido
No obstante, otros investigadores como Fritz Zwicky o Jan Oort ya habían demostrado por otras vías que en el Universo había muchas más energía de la que podemos ver con los telescopios. El Cosmos es mucho más que galaxias, planetas, estrellas y cuerpos celestes. Toda la materia ordinaria que conocemos, la que compone la Tierra, el Sol, todas las estrellas y constelaciones y a nosotros mismos supone apenas un 5% del Cosmos. El resto del Universo está formado por materia (25%) y energía (70%) oscuras. Pero a pesar de que lo oscuro supone el 95% del Universo y de que han transcurrido 35 años desde el descubrimiento de Rubin, la Física aún no puede explicar ni siquiera qué compone esta enigmática materia, y mucho menos qué hay detrás de la energía oscura.
«La materia oscura es un misterio, pero hay un consenso de que está formada por partículas», explica Carlos Muñoz, director del Instituto de Física Teórica (IFT) de la Universidad Autónoma de Madrid y el CSIC y coordinador del Proyecto Multidark. «En la energía oscura, en cambio, no se sabe nada, no se sabe ni por donde empezar», asegura.

Tras el sonado hallazgo del bosón de Higgs en julio de 2012, la materia oscura se ha convertido en el nuevo El Dorado de la Física. La partícula predicha por el británico Peter Higgs era la última pieza que faltaba por encontrar del Modelo Estándar de la Física, el que explica las propiedades y el funcionamiento de la materia que nos rodea y que nos constituye. Lo que se abre ahora ante los físicos es la frontera de lo desconocido. Por ese motivo, bajo el paraguas del proyecto de excelencia Multidark que dirige Carlos Muñoz desde el año 2010, se acaba de celebrar en el Instituto de Física Corpuscular (IFIC) de Valencia una reunión científica internacional para poner en común los últimos avances en la búsqueda de materia oscura.
Pero para entrar en esa nueva era hace falta una nueva Física, nuevas reglas del juego que hagan encajar las piezas del puzle de la materia oscura. Y, aunque no se sabe cuáles serán, sí hay varias teorías propuestas que podrían hacer funcionar esa nueva Física. «La más atractiva es la Supersimetría», dice Carlos Muñoz. Según este modelo, conocido entre los físicos como SUSY, cada partícula elemental del Modelo Estándar -quarks, electrones, bosones, neutrinos, etcétera- tendría un duplicado supersimétrico, pero con mucha más masa y con unas propiedades distintas, como que no emiten ni absorben luz o que no tienen carga eléctrica, porque en caso contrario, ya las habríamos encontrado.
Eso explicaría la enorme masa que detectaron Zwicky o Rubin y que aún no somos capaces de ver. Pero hay otros muchos modelos propuestos que habría que comprobar en caso de que alguna partícula oscura fuese finalmente detectada.
«Lo que nos interesa es saber de qué está hecho lo que no podemos ver del Universo», afirma David G. Cerdeño, investigador del IFT de Madrid, durante su conferencia titulada Los cazadores de materia oscura. «Como no podemos encontrar estas partículas directamente ya que no son visibles y sus interacciones son muy débiles, buscamos las huellas que deja», dice Cerdeño.
Huellas sobre la nieve
La metáfora perfecta es el final de la adaptación al cine de James Whale de la novela de H. G. Wells El hombre invisible, cuando el atormentado e invisible protagonista deja sus pisadas sobre la nieve. «No podemos ver ni detectar estas partículas de ningún modo, a no ser que atraviesen un campo de nieve, como en la película», explica Cerdeño.
Los físicos experimentales han sido capaces en los últimos años de diseñar un buen número de experimentos que hagan las veces de nieve sobre la que podría pisar una partícula oscura y ser detectada.
De forma sintética, hay tres vías para cazar estas partículas. Mediante métodos directos en los que un material es capaz de detectar el choque de una partícula oscura contra el núcleo de un átomo de ese material; de forma indirecta localizando los neutrinos o rayos gamma que se producen cuando una de estas partículas se aniquila o produciéndolas en un acelerador de partículas, como el LHC (de hecho, el aumento de energía que está sufriendo para pasar de 8GeV a 14GeV está enfocado a producir partículas más pesadas, como las que se piensa que tiene la materia oscura).
Desde hace años, se trata de dar caza a la materia oscura desde satélites como el Fermi -dedicado a analizar rayos gamma- o desde laboratorios subterráneos o excavados en el hielo, como el IceCube de la Antártida o el de Gran Sasso (Italia), tristemente conocido por los resultados que resultaron erróneos sobre neutrinos que viajaban más rápido que la velocidad de la luz. Pero en el campo de la materia oscura, de las decenas de experimentos que se llevan años realizando, sólo uno asegura haber encontrado este tipo de partículas, y fue precisamente el experimento Dama-Libra, llevado a cabo en Gran Sasso.
Desde entonces, muchos grupos científicos persiguen el sueño de encontrar esas mismas partículas y corroborar así los resultados obtenidos en Italia. Pero nadie lo ha logrado aún. Aldo Morselli es uno de los científicos principales del telescopio espacial Fermi que está tratando de confirmar los resultados de Dama-Libra. «Estamos en niveles de confianza de 2 o 3 sigma, si llegamos a cinco sigma podremos decir que hemos encontrado materia oscura», adelanta Morselli. «Esperamos poder tener más resultados en medio año, pero si tuviera que apostar mi dinero sobre cuándo se encontrarán partículas de materia oscura diría que se logrará en el próximo año», asegura.
Los cazadores de materia oscura no sólo ocupan laboratorios fuera de nuestras fronteras. En España, hay desde hace años instalaciones punteras a nivel mundial para la búsqueda de lo desconocido en el Cosmos. La materia oscura tiene interacciones muy débiles, así que el efecto que provoca en los núcleos de los detectores es pequeño y éstos tienen que ser muy sensibles.
Además, para evitar las interferencias del fondo de radiación cósmica -descubierta por casualidad por Penzias y Wilson en los Laboratorios Bell en 1965- y que nos llega como una reliquia del Big Bang, estos laboratorios se tienen que proteger bajo montañas de roca, excavadas en el hielo o en el fondo del mar. Por esa razón, quizá los dos mejores exponentes en España estén en un túnel ferroviario en Canfranc (Pirineos) a 850 metros de profundidad bajo el monte Tobazo –Laboratorio Subterráneo de Canfranc, dirigido desde la Universidad de Zaragoza- y bajo las aguas del Mediterráneo, como el proyecto Antares de detección de neutrinos desarrollado por el IFIC.
A pesar de los esfuerzos internacionales por esclarecer la porción oscura de la materia, aún ni siquiera se alcanzan a vislumbrar sus posibles aplicaciones prácticas. «Nadie tiene ni idea de para qué puede servir la materia oscura si se llega a encontrar», admite Carlos Muñoz. «Pero Faraday y Maxwell, cuando descubrieron la electricidad, tampoco sabían para qué se podía utilizar lo que estaban construyendo y era nada menos que el mundo moderno».
En todo caso, el momento de buscar la practicidad de un avance semejante aún parece muy lejano. Para Quaisar Shafi, físico teórico del experimento BICEP 2 que confirmó recientemente la teoría de la inflación cósmica y, por tanto, la del Big Bang, queda un trabajo enorme de búsqueda y de contraste con las diferentes teorías sobre la materia oscura. Aún así, para él estamos viviendo un momento apasionante para la historia de la Física.
«Si se encuentra materia oscura, pero no encaja con ninguna teoría de las que hay sobre la mesa, sería muy interesante para los físicos teóricos, se abriría una nueva era de la Física. En ese momento, sí que necesitaríamos un nuevo Einstein», asegura Shafi exaltado. Quizá en este nuevo siglo, el nuevo Einstein podría ser una mujer.
Abr
6
¿La Naturaleza? ¡Es la misma en todo el Universo!
por Emilio Silvera ~
Clasificado en El Universo y la Vida ~
Comments (0)
El Universo que es todo lo que existe: Materia, espaciotiempo, las cuatro fuerzas fundamentales que conocemos, las constantes universales que jhemos podido descubrir y como interaccionan con esas pequeñas partículas subatómicas que forman los átomos que se juntan para formar moléculas y éstas para formar objetos unas veces como mundos y estrellas, otras como galaxias y cúmulos de ellas y, a veces, en algún mundo favorecido por el Azar, puede incluso evolucionar la materia hasta alcanzar la consciencia y otras muchas clases de vida que, aunque menos desarrolladas, también conforman los ecosistemas que, como el de la Tierra, es rico y variado y se nos muestra en todo su esplendor.
En cualquier mundo en el que podamos ver imágenes como la de arriba… ¡La vida estará presente!
¿Estamos ahora en condiciones de comprender por qué, si existieran animales en otros planetas capaces de moverse a través de sus mares, de su atmósfera o de sus tierras, sería muy probable que, también ellos, tengan simetría bilateral? En otro planeta, igual que en la Tierra, actuarían los mismos factores que darían lugar a la mencionada simetría. La Gravedad produciría diferencias esenciales entre arriba y abajo, y la locomoción originaría marcadas diferencias entre frente y dorso. La ausencia de asimetrías fundamentales en el entorno permitiría que la simetría izquierda derecha de los cuerpos permaneciera inalterada.
¿Extraños mundos con extrañas criaturas?
¿Podemos ir más allá? ¿Podemos esperar semejanzas más concretas entre la vida extraterrestre y la vida tal como la conocemos? Creo que sí, que de la misma manera que existen planetas como la Tierra que tendrán paisajes parecidos a los que podemos contemplar en nuestro mundo, de igual forma, dichos planetas podrán albergar formas de vida que, habiéndo surgido en condiciones similares a las nuestras de Gravedad, Magnetismo, Radiación… Habrán seguido el mismo camino que tomamos nosotros y los otros seres que en la fauna terrestre nos acompañan de entre los que algunos, tenemos que reconocer que son bien raritos dependiendo del medio en el que viven.
En los extraños mares de otros planetas, sin tener en cuenta la composición química, es difícil imaginar que la evolución de lugar a una forma más sencilla de locomoción que la que se produce ondulando colas y aletas. Que la propia evolución encontraría este tipo de propulsión viene avalado por el hecho de que, incluso en la Tierra, esta evolución se ha produción de manera totalmente espontánea e independiente. Los peces desarrollaron la propulsión cola-aleta; después, ellos mismos evolucionaron hasta convertirse en tipos anfibios que se arrastraban por tierra firme hasta llegar a ser reptiles.
Por ejejmplo, en nuestro planeta el ornitorrinco representa la primera rama de mamíferos a partir de un ancestro con características de ambos mamíferos y reptiles de hace 166 millones años. De alguna manera se mantiene una superposición de funciones, mientras que los mamíferos posteriores perdieron sus rasgos de reptil. Comparando el genoma del ornitorrinco con el ADN de otros mamíferos, incluidos los seres humanos que llegaron a lo largo del transcurso del tiempo, y los genomas de los pájaros, que bifurcan hace unos 315 millones años, ayuda a definir la evolución.
Ornitorrinco: ¿Mamífero, Ave o Reptil? Lo cierto es que, sin movernos de aquí, podemos ver los mismos extraños animales que nos podríamos encontrar en cualquier lugar situado en lejanos sistemas planetarios alumbrados por otras estrellas distintas a nuestro Sol. “Allí” como “aquí” en la Tierra, las mismas leyes, las mismas fuerzas, los mismos principios y los midsmos ritmos que el Universo impone por el inmenso Cosmos, estarían presentes para que todo se repita, para que todo se destruya y pueda resurgir. Del material de estrellas que “mueren” nacen nuevas y vigorosas estrellas.
Algunos reptiles fueron evolucionando y dieron lugar a a los mamíferos. Pero cuando algunos de estos últimos regresaron al mar (los que luyego han sido ballenas y focas, por ejemplo), sus piernas volvieron a evolucionar hacia las formas de las aletadestinadas a la propulsión por el medio acuatico y a la navegación.
De la misma manera, cuesta imaginarse una forma más sencilla de volar por el aire que no sea utilizando las alas. De nuevo, también en la Tierra estuvo presente el proceso de evolución necesario e independiente y paralela de las alas. Los reptiles las desarrollaron a causa de la evolución, y llegaron a volar. En millones de años, muchas habrán sido las mutaciones que se produjeron y que nos han pasado desapaercibidas, no podemos, por falta de medios fósiles desapàrecidos, saber todo lo que pudo pasar.
Los Pterodáctilos desaparecieron hace unos 100 millones de años
Lo mismo hicieron los insectos. Algunos mamíferos, como la ardilla voladora, desarrollaron alas para planear. El murciélago, otro mamífero, desarrolló unas alas excelentes y el rádar que le dice por donde debe ir. Algunas especies de peces, que saltan por encima del agua para evitar ser capturadas, se han provisto de alas de planeo. Otros emiten descargas eléctricas…
¡La Naturaleza! ¿Qué no será posible para ella?
En tierra firme, ¿existe algún modelo más sencillo por el cual un animal puede desplazarce que no sea mediante apendices articulados? Las patas de un perro, desde el punto de vista mevcánico, no se diferencian demasiado de las de una mosca, pese a haber sufrido evoluciones completamente independientes una de otra. Evidentemente, la rueda es también, una máquina muy sencilla, útil para desplazarce por tierra, pero hay buenas razones técnicas que dificultan su evolución.
Recuerdo haber visto con los chicos cuando eran pequeños, aquella película en la que L. Frank Baum, en Ozma de Oz, inventó una raza de hombres, llamada “los rodadores” , con cuatro piernas como un perro pero que, cada una de ellas terminaba con una ruedecilla que les hacía correr velozmente para causar el pánico en la pequeña protagonista de la fantástica historia. Y, de la misma manera, si nos paramos a observar la Naturaleza y las criaturas que en ella han llegado a sugir, el asombro de tan fantástico logro, nos llega a dejar sin habla.
Pese a que ningún animal utiliza ruedas para autopropulsarce a través del suelo o del aite, sí existen bacterias que se mueven por los líquidos haciendo rodar sus flagelos a modo de propulsores.
Existen mecanismos de rotación en el interior de las células para esparcir filamentos retorcidos de ADN. Algunos aniumales unicelulares se desplazan a través del agua haciendo que ruede todo su cuerpo. Si estudiamos el mundo microscópico de esos infinitesimales seres, nos quedaríamos maravillados de la inmensa diversidad de mecanismos que utilizan para poder realizar sus actividades cotidianas.
Órganos sensoriales como los ojos y nariz también deben ser como son si la vida evoluciona hacia algún tipo de actividad inteligente avanzada. Las ondas electromagnéticas son ideales para dar al cerebro un cuidadoso “mapa” del mundo exterior. Las ondas de presión, transmitidas por moléculas, proporcionan pistas adicionales de gran valor sobre el entorno, y son captadas por los oídos. Las moléculas emanadas por una sustancia se detectan por la nariz.
Por ahí fuera, cualquier cosa que podamos imaginar… ¡Podría ser posible! El cine se adelanta
No es imposible que puedan existan culturas avanzadas extraterrestres inteligentes en las que el olfato y el gusto no sean solamente los sentidos dominantes, sino que también sean los que proporcionan los principales medios de comunicación entre individuos. Hasta hace muy pocos años, los biólogos no han descubierto que, en especies animales terrestres, se transmite una gran cantidad de información mediante una transferencia directa de sustancias que ahora se denominan feromonas.
Puesto que tanto la luz como el sonido y las moléculas existen efectivamente en otros planetas, parece que la evolución debería crear también sentidos que explotaran éstos fenómenos como excelente medio de control de las circunstancias de la vida. Aquí en la Tierra, por ejemplo, el ojo no ha tenido menos de tres desarrollos independientes entre sí: Los ojos de los vertebrados, los ojos de los Insectos y los de las diversas clases de moluscos.
¡La Naturaleza! Esa maravilla
El pulpo, por ejemplo, tiene un ojo particularmente bueno (de hecho, en algunos aspectos es mejor que el nuestro); posse párpados, córnea, iris, pupíla, retina igual que el ojo humano, ¡aunque ha evolucionado de forma completamente independiente del ojo de los vertebrados! Es difícil encontrar un ejemplo más sorprendente de cómo la evolución, actuándo según dos líneas de desarrollo desconectadas, puede llegar a crear dos instrumentos nada sencillos que, en esencia, poseen la misma función e idéntica estructura.
Pueden parecer muy diferentes pero… ¡En esencia son lo mismo y de las mismas sustancias hechos!
Los ojos, igual que otros órganos sensoriales, tienen buenas razones para constituir un tipo de cara habitual. En primer lugar, constituye una gran ventaja que ojos, nariz y oídos estén situados cerca de la boca, pués así son de utilidad para buscar alimentos. Asimismo, resulta ventajoso que estén colocados en las proximidades del cerebro: la sensibilidad está allí, y debe reaccionar para conseguir alimentos, eludir peligros y atisbar el mundo que nos rodea transmitiendo, por medio de los sentidos al cerebro, lo que pasa a nuestro alrededor.
El propio cerebro, al evaluar e interpretar los impulsos sensoriales, lo hace mediante redes eléctricas: una especie de microcomputador de inmensa complejidad. Los filamentos nerviosos que conducen los impulsos eléctricos pueden ser esenciales para el cerebro de los seres vivos avanzados (de ello hemos hablado aquí con frecuencia).
Si la vida en otros planetas llega a alcanzar el nivel de inteligencia de nuestra especie en la Tierra, parece probable que tendría al menos, algunos rasgos humanoides. La ubicación de los dedos en los extremos de los brazos reporta, evidentemente, indudables ventajas. De la misma manera y para su seguridad, el valioso cerewbro debe estar fuertemente encastado y, además, tan alejado del suelo como sea posible, su seguridad es esencial.
El simpático Eté que a tantos niños abrió los ojos como plato llenos de asombro
Imaginar podemos todo lo que a nuestras mentes pueda acudir, incluso seres con ojos en las puntas de los dedor pero, la Naturaleza es racional, no pocas veces decimos que es sabia y, si pensamos en todo lo que antes hemos heído y visto, no tenemos más remedio que aceptarlo: ¡La Naturaleza es realmente Sabia! y, lo mismo que aquí en la Tierra, habrá sabido conformar criaturas en esos mundos lejanos en los que, la diversidad, será tan abundante como lo es en nuestro propio planeta y, lo mismo que en él, en esos otros mundos estará presente la evolución y la adaptación medio que, en definitiva, son las reglas que rigen cuando la vida está presente.
emilio silvera