lunes, 24 de febrero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Ciencia!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

              Arquímedes

Cuando nos ponemos a hablar de Ciencia en relación a su historia y los orígenes de la misma, la mayoría de las veces nos perdemos por vericuetos que nos llevan,  callejones sin salida, situados muy lejos en el tiempo y que no podemos ver con claridad. Así las cosas, estamos obligados a ser menos ambiciosos y mirar más cerca poder obtener algunos resultados más fiables de lo que pudo pasar en esos pueblos del mundo que, como Sumer, India, Egipto, China y más tarde Grecia, nos dejaron una buena colección de señales del saber que pudieron llegar nuestros días. De todo eso hemos hablado aquí en los últimos trabajos presentados.

La ciencia y el pensamiento proceden de la necesidad de investigar, de indagar, y su fin es la investigación. Ésta nace de una insatisfacción frente a las que proporciona la tradición las preguntas fundamentales de la existencia humana y material. El fundamento de la primera ciencia de que se tiene noticia, la filosofía, consiste en que el hombre no posee las a las cuestiones que se le plantean, sino que debe buscarlas para alcanzar la sabiduría: no es “sophias” (sofía) o sabiduría en sí, sino “philosophia”, es decir, amor por la sabiduría, deseo de poseer la sabiduría, indagación directa para rastrear la verdad más allá de las costumbres, de las tradiciones y de las apariencias.

Se han realizado algunos en los que, finalmente, se reconocía que entre el siglo IX y el siglo XV “el flujo de la ciencia y la tecnología entró en Europa sobre todo procedente del Islam”. Expertos de la Revista Sciencie informa de que las contribuciones del Islam y de China figuran entre los acontecimientos que “representan los innumerables giros, vueltas, paradojas, contradicciones, tragedias y otros detalles históricos deshilvanados que se han sintetizado en esa realidad mucho más compleja y variada que es la aventura científica”. Otros acontecimientos de este que figuran en la lista son la práctica de la Alquimia por parte de Newton, el falso descubrimiento de los “rayos N” y las negativas de los geólogos a aceptar la teoría de la deriva continental.

Por lo , cuando oímos hablar de Isaac Newton nos vienen a la cabeza sus aportaciones a la ciencia, y en a la física y las matemáticas. Sin embargo, Newton no sólo fue uno de los más importantes científicos de todos los tiempos, sino que a lo largo de su vida dedicó gran de sus esfuerzos a cuestiones como la Alquimia o la teología, interesándose, por ejemplo, en descifrar lo que interpretó como un oculto en la Biblia –lo que le llevó al estudio de la cábala hebrea–, o en intentar determinar el probable aspecto del Templo de Salomón, además de muchas otros intereses que hoy pueden resultarnos insólitos un científico.

No existe una buena definición de la Ciencia. Después de muchas tentativas, la American Physical Society, se decidió finalmente por una definición pero, consideraba que si la definición era muy larga, se podrían colar en ella alguna pseudociencias tales como ; si la hacían demasiado estricta, podrían quedar excluídos temas como la teoría de cuerdas, la biología evoluctiva e incluso la Astronomía.

Es una Ciencia por derecho propio, nos habla del Universo, del espacio-tiempo, de todo lo que existe y que está conformado por la materia y, de las fuerzas que lo rigen todo. que definir lo que la Ciencia es, ser realistas, no es una tarea si tenemos en su diversidad, su complejidad, su maravillosa y extensa estructura que hace un recorrido que abarca todo el del mundo y, sintetizar eso, en unas pocas palabras…aparte de ser una difícil tarea, tiene el peligro de no decir lo que pretende expresar. “La ciencia es un estudio lógico y sistemático de la naturaleza y del mundo físico que, generalmente incluye tanto experimento como teoría”. En verdad es una definición bastante floja. La Ciencia, eas mucho más que eso y, para esa incompletitud, mejor me quedaría con: “La Ciencia es la que nos lleva hacia la Sabiduría, hacia el conocimiento del “mundo”, del Universo y todo lo que en él está presente”.

 Todo evoluciona y nada permanece, los cambios son irreversibles

En la primera definición (no la mía), el autor ha puesto generalmente en cursiva, y explica:

“porque si planteáramos una exigencia absoluta de experimentos, tendríamos que excluir la Astronomía, la más antigua de todas las ciencias, ya que no es posible recrear nuevas estrellas o galaxias en el laboratorio, ni escenificar la del Sistema solar. Sin embargo, en astronomía las observaciones son a menudo tan valiosas como el experimento. El cometa Halley regresa con una regularidad sorprende; el Sol sale ”.

El Filósofo Kal Popper añadió el rerquisito de la “refutación”. La Ciencia es refutable; la religión no es. Una teoría o una ley científica munca pueden ser demostradas de una manera absoluta; de ahí que sea posible refutarlas. Por ejemplo, Newton dijo que la fuerza es igual al de la masa por la aceleración ( F= ma). No podemos demostrar que todos los objetos de todas las galaxias obedecen esta ley o que todos los objetos obedecerán siempre esta ley. Sin embargo, demostrar la falsedad de esta ley bastaría un sólo experimento. (Albert Einstein y algunos expertos en física cuántica han demostrado que algunos de los conceptos de Newton son erróneos). Por lo tanto, los científicos deben proponer sólo teorías que puedan ser refutadas, tal afirmó Popper. Estas teorías han de ser comprobables. No existe tal requisito en el caso de la religión.

Una imagen del Gran Colisionador de Hadrones.| Efe

Dicho esto, sigue habiendo problemas con la de lo que la Ciencia es. , por ejemplo, es refutable. Si un astrólogo nos dice que nos encontraremos con una guapa extranjera el martes, esto puede comprobarse. Por otra parte, la teoría de las supercuerdas, planteada por algunos físicos como la “teoría de todo”, requeriría un acelerador de partículas de diez años-luz de diámetro para poder refutarla. La mayor parte de la biología evolutiva tampoco puede comprobarse experimentalmente. No se puede reproducir la evolución de una nueva especie, ni recrear los dinosaurios comenzando con un animal unicelular. Si aplicamos la regla de la refutación demasiado estrictamente, tendremos que incluir la astrología en el de la ciencia y excluir la biología evolutiva, la teoría de cuerdas y quizá incluso la astronomía.

http://4.bp.blogspot.com/-93kILSgJoHA/TfFbPq_-ADI/AAAAAAAAACA/7kz6BwQ259I/s1600/ciencia+y+conciencia.jpg

En consecuencia, es mejor que no nos tomemos demasiado en serio lo de la refutación de Popper. De otro modo, podríamos vernos obligados a excluir toda la de los antiguos griegos. Éstos no sólo eludían los experimentos, sino que abominaban de ellos, confiando en que la razón estaba por encima de la evidencia empírica.

que no se debe tomar en considración es el pragmatismo de la ciencia o la motivación del científico. Estas cuestiones se han utilizado a menudo desacreditar las ciencias no occidentales:  sí,  es un bien hecho , pero no es “puro”; o, a la inversa, no resulta práctico. En cuanto a la motivación, descubrimientos científicos fueron impulsados por motivos religiosos: los matemáticos árabes perfeccionaron el álgebra en para facilitar las leyes islámicas de la herencia, del mismo modo que los védicos de la India resolvieron raíces cuadradas para construir los altares de los sacrificios con unas dimensiones adecuadas. En estos casos, la ciencia estuvo al servicio de la religión.

http://4.bp.blogspot.com/-6XsEwq3j46Y/Tmcui3xHgeI/AAAAAAAAGgE/H_YKY3jd2QI/s320/wqpfatdsjx.9514.jpeg

La ley de los opónimos de Stigler, formulada por el experto en estadística Stephen Stigler (arriba), afirma que ningún descubrimiento científico lleva el de su descubridor original. Él mismo admite que “su Ley”, en realidad, fue descubierta por Robert K. Merton, un especialista en sociología de la ciencia.

Entre todos los casos en los que se cumple la Ley Stigler, el más famoso es el del Teorema de Pitágoras, según el cual la suma de los cuadrados de los dos lados perpendiculares de un triángulo rectángulo es igual al cuadrado de la hipotenusa de dicho triángulo. O bien en lenguaje matemático, a2 + b2 = c2, a y b son los lados perpendiculares y c es la hipotenusa. Jacob Bronowski escribe lo siguiente:

http://www.monografias.com/trabajos910/sentido-matematica-escolar/Image6942.gif

“Hasta la , el Teorema de Pitágoras sigue siendo el teorema más de todas las matemáticas. Esta afirmación puede parecer atrevida y extraordinaria, pero no es extravagante, ya que lo que el teorema de Pitágoras establece es una caracterización fundamental del en que nos movemos y es en este teorema donde dicha caracterización se expresa por primera vez traducida a números. Además, el encaje exacto de los números describe las leyes exactas que rigen el universo. De hecho, se ha propuesto que los números correspondientes a las dimensiones de los triángulos rectángulos sean mensajes que podrían enviarse a planetas de otros sistemas solares a modo de , comprobar si en estos planetas existe vida racional.”

que, los hindúes, los egipcios y los babilonios utilizaban “tríos pitágóricos” determinar ángulos rectos en la construcción de edificios. Un trío de números pitagóricos es un conjunto de números que representan las dimensiones de los lados de un triángulo rectángulo. Pitágoras “inventó” su teorema hacia el año 550 a. C. Los babilonios habían catalogados cientos de tríos antes del año 2000 a. C., en una época en la que Pitágoras ni había nacido.

http://www.emiliosilveravazquez.com/blog/wp-content/uploads/2008/09/matriz.gif

El tensor métrico de Riemann

Lo mismo se podría decir de Riemann y Einstein, cuando éste último utilizó el Tensor métrico de aquel (formulado 60 años antes) poder formular su teoría de la relatividad general. Riemann creó su tensor métrico que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresarse, a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2.  El teorema de Pitágoras, por supuesto, es la de toda la arquitectura; toda estructura construida en este planeta está basada en él. Claro que, es una herramienta para utilizar en un mundo tridimensional).

                                                             Los espacios curvos de Riemann que llevaron a la ecuación de Einstein de la relatividad general

El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del en presencia de grandes masas. Precisamente, el tensor de Riemann permitió a Einstein formular su teoría de la gravedad y posteriormente lo utilizo Kaluza y Klein su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de supergravedad, supersimetría y, finalmente, las supercuerdas.

http://2.bp.blogspot.com/_sVrODyc0GK8/TMBnbiVhYcI/AAAAAAAAAis/92ZPG5FNx-k/s1600/Fractal.jpg

Para asombro de Eintein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854 que le había enviado su amigo Marcel Grossman, rápidamente se dio de que allí estaba la clave para resolver su problema.  Descubrió que podía incorporar todo el cuerpo del de Riemann en la reformulación de su principio. Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de la realtivdad . Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E = mc2. La reinterpretación física de la famosa conferencia de Riemann se denomina relatividad general, y las ecuaciones de de Einstein se sitúan las ideas más profundas de la historia de la ciencia.

                                    Sí, dudas hemos tenido todos

Hay otras muchas cuestiones de las que podríamos hablar y, la Física y la Astronomía, siendo mi gran Pasión, ocupa mucho de mi tiempo

  1. Una simetría unificadora.
  2. La capacidad de explicar grandes cantidades de experimentales con las expresiones matemáticas más económicas.

 

El Modelo Estándar falla en ambos aspectos, mientras que la relatividad los exhibe, ambos, de manera bien patente. Nunca una teoría dijo tanto con tan poco; su sencillez es asombrosa y su profundidad increíble.De hecho, que se publicó en 1.915, no ha dejado de dar frutas, y aún no se han obtenido de ella todos los mensajes que contiene.

El principio director del modelo estándar dicta que sus ecuaciones son simétricas. De igual modo que una esfera ofrece el mismo aspecto desde cualquier punto de , las ecuaciones del modelo estándar subsisten sin variación al cambiar la perspectiva desde la que son definidas. Las ecuaciones permanecen invariables, además, cuando esta perspectiva se desplaza en distinta magnitud a diferentes puntos del espacio y el tiempo.

Al contrario de la relatividad general, la simetría del Modelo Estándar, está realmente formada empalmando tres simetrías más pequeñas, una por cada una de las fuerzas; el modelo es espeso e incómodo en su . Ciertamente no es económica en modo alguno. Por ejemplo, las ecuaciones de Einstein,  escritas en su totalidad, sólo ocupan unos centímetros y ni siquiera llenaría una línea de esta página. A partir de esta escasa línea de ecuaciones, podemos ir más allá de las leyes de Newton y derivar la distorsión del , el Big Bang y otros fenómenos astronómicos importantes como los  Agujeros Negros.  Por el contrario, sólo escribir el Modelo Estándar en su totalidad requeriría, siendo escueto, un par de páginas  y parecería un galimatías de símbolos complejos sólo entendibles por expertos.

Claro que, todo esto es, otra historia.

silvera

Física y algunos personajes

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hubo que la historia de explorarla. Los mensajes del pasado se transmitían primero a través de las habilidades de la memoria, luego de la escritura y, finalmente, de modo explosivo, en los libros. El insospechado tesoro de reliquias que guardaba la tierra se remontaba a la prehistoria. El pasado se convirtió en algo más que un almacén de mitos y leyendas o un catálogo de lo familiar.

http://1.bp.blogspot.com/_Bir3bs__J2E/TTYdp2yRnPI/AAAAAAABHgc/VqivzWGpvmM/s1600/maya.bmp

      INAH restaura piezas mayas de Palenque que nos hablan del pasado

Nuevos mundos terrestres y marinos, riquezas de continentes remotos, relatos de viajeros aventureros que nos traían otras formas de vida de pueblos ignotos y lejanos, abrieron perspectivas de progreso y novedad. La sociedad, la vida diaria del hombre en comunidad, se convirtió en un y cambiante escenarios de descubrimientos.

 

 

Quizás una de las historias más maravillosas que nos han dejado los aventureros del pasado siglo XX, es la de la tercera expedición de Irvine y Mallory al . Estos dos jóvenes aventuresros ingleses tenían el ardiente deseo de escalar por primera vez el pico más alto del planeta. Cosa que no sucedió oficialmente 29 años después.

Aquí, como sería imposible un recorrido por el ámbito de todos los descubrimientos de la Humanidad, me circunscribo al ámbito de la física, y, hago un recorrido breve por el mundo del átomo que es el tema de hoy, sin embargo, sin dejar de mirar al hecho cierto de que, TODA LA HUMANIDAD ES UNA, y, luego, teniendo muy presente que, todo lo que conocemos es finito y lo que no conocemos infinito. Es bueno tener presente que intelectualmente nos encontramos en medio de un océano ilimitado de lo inexplicable.

http://lamemoriacelular.com/blog/wp-content/uploads/2010/04/celula.png

    La complejidad de nuestras mentes tienen un reto por delante

La tarea de generación es reclamar un poco más de terreno, añadir algo a la extensión y solidez de nuestras posesiones del saber.

decía Einstein: “El eterno misterio del mundo es su comprensibilidad.”

Amigos, hablemos del átomo. De lo Grande a lo Pequeño.

                       Explosión nuclear de Hiroshima

El 6 de Agosto de 1945 el mundo recibió estupefacto Hiroshima la noticia de que el hombre había desembarcado en el oscuro continente del átomo. Sus misterios habrían de obsesionar al siglo XX. Sin embargo, el “átomo” había sido más de dos mil años una de las más antiguas preocupaciones de los filósofos naturales. La palabra griega átomo significa unidad mínima de materia, que se suponía era indestructible. el átomo era un término de uso corriente, una amenaza y una promesa sin precedentes.

[leucipo.jpg]

Leucipo (c. 450-370 a.C.), filósofo griego. Es reconocido creador de la teoría atómica de la materia, más tarde desarrollada por su discípulo, el filósofo griego Demócrito. Según teoría, toda materia está formada por partículas idénticas e indivisibles llamadas átomos.

Así que, el primer filósofo atómico fue un griego legendario, Leucipo, que se cree vivió en el siglo V a.C., y, a Demócrito, su discípulo, que dio al atomismo su clásica como filosofía: “la invisible e indivisible de la materia”, se divertía tanto con la locura de los hombres que era conocido “el filósofo risueño” o “el filósofo que ríe”. No obstante fue uno de los primeros en oponerse a la idea de la decadencia de la Humanidad a partir de una Edad de Oro mítica, y predicó sobre una base de progreso. Si todo el Universo estaba compuesto solamente por átomos y vacío, no sólo no era infinitamente complejo, sino que, de un modo u otro, era inteligible, y seguramente el poder del hombre no tenía límite.

Lucreci0 (c. 95 a. C. -c. 55 a.C.) perpetuó en De rerum natura uno de los más importantes poemas latinos, al atomismo antiguo. Con la intención de liberar al pueblo del temor a los dioses, el poeta demostró que el mundo entero estaba constituido por vacío y átomos, los cuales se movían según sus leyes propias; que el alma moría con el cuerpo y que por consiguiente no había razón temer a la muerte o a los poderes sobrenaturales.

Lucrecio decía que comprender la Naturaleza era el único modo de hallar la paz de espíritu, y, era de esperar, los padres de la Iglesia que pregonaban la vida eterna, atacaron sin piedad a Lucrecia y fue ignorado y olvidado durante toda la Edad Media que, como sabéis, fue la culpable de la paralización del saber de la Humanidad. Sin embargo, Lucrecia fue, una de las figuras más influyentes del Renacimiento.

Así pues, en un principio el atomismo vino al mundo sistema filosófico. Del mismo modo que la simetría pitagórica había proporcionado un marco a Copérnico, la geometría había seducido a Kepler y el círculo perfecto aristotélico a Harvey, así los “indestructibles” átomos de los filósofos atrajeron a los físicos y a los químicos. Francis Bacon observó que “la teoría de Demócrito referida a los átomos es, si no cierta, al aplicable con excelentes resultados al análisis de la Naturaleza”.

http://2.bp.blogspot.com/_oqEuOBXQxwU/TRq4qxhuhrI/AAAAAAAAAds/SH-UpPgkks0/s1600/Rene+Descartes.jpg

                                                              Descartes

Descartes (1596-1650) inventó su propia noción de partículas infinitamente pequeñas que se movían en un medio que llamó éter. Otro filósofo francés, Pierre Gassendi (1592-1655), pareció confirmar la teoría de Demócrito y presentó otra versión más del atomismo, que Robert Boyle (1627-1691) adaptó a la química demostrando que los “elementos clásicos -tierra, aire, fuego y agua- no eran en absoluto elementales.

Las proféticas intuiciones de un matemático jesuita, R.G. Boscovich (1711-1787) trazaron los caminos una nueva ciencia, la física atómica. Su atrevido concepto de “los puntos centrales” abandonaba la antigua idea de una variedad de átomos sólidos diferentes. Las partículas fundamentales de la materia, sugería Boscovich, eran todas idénticas, y las relaciones espaciales alrededor de esos puntos centrales constituían la materia… Boscovich que había llegado a estas conclusiones a partir de sus conocimientos de matemáticas y astronomía, anunció la íntima conexión la estructura del átomo y la del Universo, entre lo infinitesimal y lo infinito.

Johndalton.jpg

                            John Dalton

El camino experimental hacia el átomo fue trazado por John Dalton (1766-1844). Era este un científico aficionado cuáquero y autodidacta que recogió un sugestivo concepto de Lavoisier (1743-1794). Considerado una de los fundadores de la química moderna, Lavoisier, definió un “elemento” una sustancia que no ser descompuesta en otras sustancias por medio de ningún método conocido, hizo del átomo un útil concepto de laboratorio y trajo la teoría atómica a la realidad.

Dalton había nacido en el seno de una familia de tejedores de Cumberland, localidad inglesa situada en la región de los lagos, y estuvo marcada toda su vida por su origen humilde. A los doce ya se encontraba a cargo de la escuela cuáquera de su pueblo. Después, comenzó a ejercer la enseñanza en la vecina Kendal, y en la biblioteca del colegio encontró ejemplares de los Principia de Newton, de las Obras de la Historia Natural de Buffón, así un telescopio reflectante de unos setenta centímetros y un microscopio doble. Dalton recibió allí la influencia de John Gough, un notable filósofo natural ciego que, de acuerdo a lo que Dalton escribió a un amigo, “entiende muy bien todas las diferentes ramas de las matemáticas…Conoce por el tacto, el sabor y el olor de casi todas las plantas que crecen a casi treinta kilómetros a la redonda”. También Wordsworth elogia a Gough en su Excursión. Dalton recibió del filósofo ciego una educación básica en latín, griego y francés, y fue introducido en las matemáticas, la astronomía y todas las ciencias “de la observación”. Siguiendo el ejemplo de Gough, Dalton comenzó a llevar un meteorológico diario, que continuó el día de su muerte.

http://1.bp.blogspot.com/_UEIeEnL_N_k/TMIjomuygEI/AAAAAAAACgg/EJU3ptAX7Uw/s1600/molecules+by+john+dalton.jpg

Una ilustración de moléculas, según la teoría atómica de John Dalton. En el siglo XIX, Dalton sentó las bases de la actual teoría atómica, que luego se revelaría substancialmente correcta.

los “disidentes” fundaron su colegio propio en Manchester, Dalton fue designado profesor de matemáticas y de filosofía natural. Halló una audiencia muy receptiva para sus experimentos en la Sociedad Literaria y Filosófica de Manchester, y presentó allí sus Hechos extraordinarios concernientes a la visión de los colores, que probablemente fue el primer sistemático sobre la imposibilidad de percibir los colores, o daltonismo, enfermedad que padecían tanto John Dalton como su hermano Jonathan. “He errado tantas veces el camino por aceptar los resultados de otros que he decidido escribir lo menos posible y solamente lo que pueda afirmar por mi propia experiencia”.

http://www.ojocientifico.com/sites/www.ojocientifico.com/files/64414_Papel-de-Parede-Aurora-Boreal_1152x864.jpg

Dalton observó la boreal, sugirió el probable origen de los vientos alisios, las causas de la formación de nubes y de la lluvia y, sin habérselo propuesto, introdujo mejoras en los pluviómetros, los barómetros, los termómetros y los higrómetros. Su interés por la atmósfera le proporcionó una visión de la química que lo condujo al átomo.

Newton había confiado en que los cuerpos visibles más pequeños siguieran las leyes cuantitativas que gobernaban los cuerpos celestes de mayor tamaño. La química sería una recapitulación de la Astronomía. Pero, ¿Cómo podía el hombre observar y medir los movimientos y la atracción mutua de estas partículas invisibles? En los Principios Newton había conjeturado que los fenómenos de la Naturaleza no descritos en este libro podrían “depender todos de ciertas fuerzas por las cuales las partículas de los cuerpos, debido a causas desconocidas, se impulsan mutuamente unas otras y se unen formando figuras regulares, o bien se repelen y se apartan unas de otras.”

http://4.bp.blogspot.com/_AGSpYDvydis/SxKisoaJikI/AAAAAAAAS_o/OpzLV7aghrc/s1600/nino-y-atomo.jpg

          ¿Podremos ver algún día, el átomo así?

Dalton se lanzó a la búsqueda  de “estas partículas primitivas” tratando de encontrar algún medio experimental que le permitiera incluirlas en un sistema cuantitativo. Puesto que los gases eran la de materia más fluida, más móvil, Dalton centró su estudio en la atmósfera, la mezcla de gases que componen el aire, el cual constituyó el punto de partida de toda su reflexión sobre los átomos.

“¿Por qué el agua no admite un volumen similar de gas?, preguntó Dalton a sus colegas de la Sociedad Literaria y Filosófica de Manchester en 1803. “Estoy casi seguro de que la circunstancia depende del peso y el de las partículas últimas de los diversos gases; aquellos cuyas partículas son más ligeras y simples se absorben con más dificultad, y los demás con mayor facilidad, según vayan aumentando en peso y en complejidad.”

Dalton había descubierto que, contrariamente a la idea dominante, el aire no era un vasto disolvente químico único sino una mezcla de gases, uno de los cuales conservaban su identidad y actuaba de manera independiente. El producto de sus experimentos fue recogido en la trascendental TABLE: Of the Relative Weights of Ultimate Particles of Gaseous and Other Bodies (“Tabla de los pesos relativos de las partículas últimas de los cuerpos gaseosos y de otros cuerpos”).

File:Hydrogen.svg

         El átomo de Hidrógeno sólo tiene 1 protón y 1 electrón

Tomando al Hidrógeno número uno, Dalton detalló en esta obra sustancias. Describió las invisibles “partículas últimas” como diminutas bolitas sólidas, similares a balas pero mucho más pequeñas, y propuso que se les aplicaran las leyes newtonianas de las fuerzas de atracción de la materia. Dalton se proponía lograr “una nueva perspectiva de los primeros principios de los elementos de los cuerpos y sus combinaciones”, que “sin duda…con el tiempo, producirá importantísimos cambios en el sistema de la química y la reducirá a una ciencia de gran simplicidad, inteligible hasta para los intelectos menos dotados”. Cuando Dalton mostró una “partícula de aire que descansa sobre cuatro partículas de agua como una ordenada pila de metralla” donde cada pequeño globo está en con sus vecinos, proporcionó el modelo de esferas y radio de la química del siglo siguiente.

Dalton inventó unas “señales arbitrarias como signos elegidos representar los diversos elementos químicos o partículas últimas”, organizadas en una tabla de pesos atómicos que utilizaba en sus populares conferencias. Naturalmente, Dalton no fue el primero en emplear una escritura abreviada para representar las sustancias químicas, pues los alquimistas también tenían su código. Pero él fue probablemente el primero que utilizó este tipo de simbolismo en un sistema cuantitativo de “partículas últimas”. Dalton tomó como unidad el átomo de Hidrógeno, y a partir de él calculó el peso de las moléculas como la suma de los pesos de los átomos que la componían, creando así una sintaxis moderna para la química. Las abreviaturas actuales que utilizan la primera letra del latino (por ejemplo H2O) fueron ideadas por el químico sueco Berzelius (1779-1848).

 

                                                    Berzelius

La teoría del átomo de Dalton no fue recibida en un principio con entusiasmo. El gran sir Humphry Davy desestimó inmediatamente sus ideas tachándolas de “más ingeniosas que importantes”. Pero las nociones de Dalton, desarrolladas en A New System of Chemical Philosophy (1808), eran tan convincentes que en 1826 le fue concedida la medalla real. Como Dalton no olvidó nunca su origen plebeyo, permaneció siempre apartado de la Royal Society de Londres, pero fue elegido miembro, sin su consentimiento, en 1822. Receloso del tono aristocrático y poco profesional de la Sociedad, él se encontraba más a gusto en Manchester, donde realizó la mayor de su obra, colaboró con Charles Babage y contribuyó a fundar la Asociación Británica el Progreso de la Ciencia, cuyo objetivo era llevar la ciencia el pueblo. Los newtonianos partidarios de la ortodoxia religiosa no creían que Dios hubiera hecho necesariamente sus invisibles “partículas últimas” invariables e indestructibles. Compartían con Isaac Newton la sospecha de que Dios había utilizado su poder “ variar las leyes de la Naturaleza y crear mundos diversos en distintos lugares del Universo”.

El átomo indestructible de Dalton se convirtió en el fundamento de una naciente ciencia de la química, proporcionando los principios elementales, las leyes de composición constante y de proporciones múltiples y la combinación de elementos químicos en razón de su peso atómico. “El análisis y la síntesis química no van más allá de la separación de unas partículas de otras y su reunión”, insistió Dalton. “La creación o la destrucción de la materia no está al alcance de ningún agente químico. Sería lo mismo tratar de introducir un planeta en el Sistema Solar o aniquilar uno de los ya existentes que crear o destruir una partícula de Hidrógeno.” Dalton continuó usando las leyes de los cuerpos celestes visibles como indicios del Universo infinitesimal. El profético sir Humphry Davy, sin embargo, no se convencía, “no hay razón suponer que ha sido descubierto un principio real indestructible”, afirmó escéptico.

     Humphry Davy.

 

Dalton no era más que un Colón. Los Vespucios aún no habían llegado, y lo hicieron trajeron consigo algunas sorpresas muy agradables y conmociones aterradoras. Entretanto, y durante medio siglo, el sólido e indestructible átomo de Dalton fue muy útil para los químicos, y dio lugar a prácticas elaboraciones. Un científico francés, Gay-Lussac, demostró que cuando los átomos se combinaban no lo hacían necesariamente de dos en dos, como había indicado Dalton, sino que podían agruparse en asociaciones distintas de unidades enteras. Un químico italiano, Avogadro (1776-1856), demostró que volúmenes iguales de gases a la misma temperatura y presión contenían el mismo de moléculas. Un químico ruso, Mendeleiev, propuso una sugestiva “Ley periódica” de los elementos. Si los elementos estaban dispuestos en orden según su creciente peso atómico entonces grupos de elementos de características similares se repetirían periódicamente.

La disolución del indestructible átomo sólido provendría de dos fuentes, una conocida y la otra bastante nueva: el estudio de la luz y el descubrimiento de la electricidad. El propio Einstein describió este histórico movimiento como la decadencia de una perspectiva “mecánica” y el nacimiento de una perspectiva “de campo” del mundo físico, que le ayudó a encontrar su propio camino la relatividad, hacia explicaciones y misterios nuevos.

Albert Einstein tenía en la pared de su estudio un retrato de Michael Faraday (1791-1867), y ningún otro hubiera podido ser más apropiado, pues Faraday fue el pionero y el profeta de la gran revisión que hizo posible la obra de Einstein. El mundo ya no sería un escenario newtoniano de “fuerzas a distancias”, objetos mutuamente atraídos por la fuerza de la Gravedad inversamente proporcional al cuadrado de la distancia que hay ellos. El mundo material se convertiría en una tentadora escena de sutiles y omnipresentes “campos de fuerzas”. Esta idea era tan radical como la revolución newtoniana, e incluso más difícil de comprender los legos en la materia.

Toda esta historia es mucho más amplia de lo que aquí podemos contar pero, en algún momento hay que parar y aquí lo dejamos.

emilio silvera

¡¡Noticias que merecen la pena leer!

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia

¡Una niña rusa inventa una nave para llegar a otros planetas mucho más rápido!

 

abc.es / madrid
Día 31/03/2014 – 23.55h

En la nave podrían viajar 500 personas y se utilizaría el hidrógeno existente en el ambiente interestelar como combustible

 

Una niña rusa inventa una nave para llegar a otros planetas mucho más rápido

Ekaterina Trúsheva, una niña rusa de 13 años, se preocupó tanto cuando averiguó que los días de un planeta Tierra habitable estaban contados que decidió inventar una nave para poder explorar el espacio, otros sistemas y planetas y salvar a la Humanidad. El viaje, por ejemplo, hacia Alpha Centauri —el sistema estelar más cercano al nuestro, dentro de nuestra galaxia—, duraría tan sólo 42 años cuando hasta ahora las naves espaciales existentes necesitarían 50.000 años para hacerlo.

La nave, a la que Trúsheva ha bautizado como «Tierra», tendría una capacidad para 500 personas, los alimentos serían sintetizados o cultivados a bordo y no le haría falta incluir ninguna ninguna fuente de energía, ya que captaría mediante un embudo magnético el hidrógeno que se encuentra en el ambiente interestelar. De esta manera, se reduce la masa y se aumenta la velocidad del .

El proyecto, que ha sido elegido por el director del Instituto Internacional de Educación Espacial de Alemania, Ralf Heckel, para con su equipo en la competición de construción de astromóviles para la exploración humana de la NASA, sería construido en la órbita terrestre.

El hidrógeno sería comprimido y calentado por reacción termonuclear. Un propulsor de uniflujo termonuclear y un propulsor de uniflujo fotónico completarían la nave. De esta forma, se conseguiría la propulsión y velocidad necesaria.

Además, según defiende la menor, su construcción no sería demasiado costosa y se podía incluso financiar gracias a los turistas que quisieran viajar a bordo de la nave.

La Fascinación de algunas estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «


Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”.

R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelación de Lepus, del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind.

A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbonooxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja. (Wikipedia)

El concepto de vecindad es relativo e indefinido. Su valor puede variar según sean las distintas medidas de celeridad de los medios habituales de comunicación y según sea la extensión dentro de la cual sirva de medida de relación.

Con el de la expresión “vecina” va siempre implícita o sugerida la idea de que existe una región que no es vecina. La vecina persistente de la Tierra es la Luna; los cometas son sólo visitantes ocasionales. Podemos considerar vecinas del Sol a las estrellas situadas a una distancia comprendida entre los cincuenta y cien años-luz, dejando excluidos a los miles de millones de estrellas de la Vía Láctea. Los planetas y los cometas no son vecinos del Sol, sino miembros de su familia, y los bólidos serían una especie de parásitos cósmicos.

Pero mi intención al comenzar este comentario, era el de exponer aquí alguno de los muchos caprichos cósmicos que en el Universo podemos contemplar y, en este caso concreto, me he decidido por contaros lo siguiente:

Cerca de la famosa estrella Rigel (Beta Orionis), la débil constelación de Lupus (la Liebre) es escenario cada catorce meses de un prodigio de la evolución estelar: R Leporis, la estrella carmesí, cobra vida y regala a los astrónomos toda su belleza al encender en la oscuridad del cielo el resplandor de color rojo más acentuado que puede observarse a través de un telescopio. La encontró el astrónomo inglés John Russell Hind en el año 1845 y dijo de ella, estupefacto, que era como una “gota de sangre”. aquel día, el espectáculo celeste se repite periódicamente cada año y dos meses, cuando R Leporis abandona la oscuridad y resplandece como un candil en un área del firmamento casi vacía de estrellas que contrasta con el fulgor de los soles azules que forman la constelación de Orión.

Estrella hipotética de más de 120 masas solares, tan luminosa que se esperaría que se desintegrase por la presión de su propia radiación. Las estrellas supermasivas fueron propuestas como explicación a unos muy brillantes existentes en la Gran Nube de Magallanes, aunque en la actualidad se sabe que son cúmulos de estrellas O ordinarias.

R Leporis es una estrella de Carbono y constituye uno de esos caprichos cósmicos a los que antes me refería y que han permitido al hombre percibir la magia de los cielos y en ellos la belleza de sus orígenes. La ausencia de colores intensos de las que adolece el firmamento se rompe aquí para deleite del observador nocturno, que asistía a un acontecimiento de la Naturaleza extensivo a miles de millones de estrellas y que en el siglo XVII asombró al científico alemán Johannes Hevelius.

A diferencia del Sol y de las estrellas de su , que permanecen estables, el brillo de una gran parte de la población estelar es variable, y en algunos casos su ciclo hace oscilar espectacularmente su intensidad lumínica ante nuestros ojos. En R Leporis, más que sus cambios de brillo, la faceta más hermosa es su tonalidad roja, una de las más intensas que puede observarse en todo el cielo, pero otras variables tienen un ciclo que las hace apagarse y encenderse como si fueran faros en la Vía Láctea. Ese es el caso de Mira, a la que Hevelius llamó “la estrella maravillosa” después de que apareciera en el cielo como por arte de magia.

Del grupo destaca Antares, una supergigante M 1,5, 10 000 veces más luminosa que el Sol y con un diámetro que es probablemente más de 500 veces el del Sol. Nos contempla 520 a.l. de distancia y tiene una compañera enana. Su color es el rojo intenso.

Aldebaran, la estrella Alfa Tauri, es una Gigante K5. Aparentemente forma parte del grupo de estrella de las Hyades, aunque en realidad sólo está a 60 a.l., aprpoximadamente la mitad de la distancia del cúmulo.

Betelgeuse, la estrella Alfa Orionis, la décima más brillante del cielo, es una gigante tipo M2 que es una variable semirregular. Se dice que está a unos 400 a.l. de la Tierra y su luminosidad es 5000 veces a la del Sol pero, si se encuentra a la misma distancia de la Asociación de Orión (como algunos postulan), la luminosidad verdadera sería de 50 000 veces la del Sol. Su diámetro es cientos de veces el del Sol. Su brillo varía a medida que se expande y contrae en tamaño.

Arthurus es la estrella Alfa Boötis, magnitu -o,o4, la estrella más brillante al norte del ecuador celeste y la cuarta más brillante de todo el cielo. Es una gigante K 1 situada a 35 a.l.

Rigel, la estrella Beta Orionis de magnitud o,12 es una gigante B 8 siatuada a 1 400 a.l., su luminosidad es de unas 150 000 veces la del Sol, tiene una compañera de magnitud 6,8, que es a su vez una binaria espectroscópica.

Al lado de estas gigantes, el Sol y otras estrellas resultan minusculos como podemos ver en la y, sin embargo, ya sabemos todos la importancia que nuestro Sol tiene para hacer posible la vida en la Tierra.

Las consecuencias de una explosión supernova de una de estas estrellas gigantes, a pesar de sus distancias a la Tierra, no sabemos lo que podría pasar, y, hay varias candidatas en la lista a futuras supernovas y agujero negro. ¿Qué repercuciones podrá ?

Mira es el nombre propio que Hevelius le puso a esta estrella, cuya denominación original en el catálogo de Johann Bayer, basado en el alfabeto griego, era Omicrón Ceti, es decir, la estrella omicrón de la constelación de Cetis, la Ballena. Su variabilidad fue descubierta en 1596 por David Fabricius, pero Hevelius se sintió tan atraído por ella que le dedicó un , que tituló Historia de la estrella maravillosa. Realmente lo es; el brillo de Mira disminuye hasta la magnitud 11, invisible a ojo desnudo y sólo observable con telescopio como un débil punto de luz, pero al cabo de un tiempo su gigantesca máquina nuclear la hincha vertiginosamente y se convierte en una estrella de segunda magnitud, alcanzando un brillo notable, similar al de la estrella polar. Por eso, cuando está en la parte inferior del ciclo, Mira no puede verse sin ayuda óptica, pero después surge entre las demás estrellas de su constelación, como si se hubiera encendido de repente.

http://upload.wikimedia.org/wikipedia/commons/e/e8/Mira_1997.jpg

de Mira obtenida con el Telescopio Espacial HubbleHubble

Mira pertenece a la clase espectral M, la misma que Antares y Betelgeuse. Las tres son estrellas muy frías en comparación con el Sol, ya que su temperatura es del orden de los 3000 grados. Sin embargo, Mira, Betelgeuse y Antares son decenas de miles de veces más luminosas que el Sol, puesto que figuran entre las estrellas más grandes conocidas, alcanzando diámetros de unos ochocientos millones de kilómetros, equivalentes a la distancia a la que se halla Júpiter del Sol. Estas tres gigantes, sin embargo, comparten sus atributos relativos a la clase espectral con las estrellas representativas del polo opuesto: las enanas rojas, como la estrella de Barnard y Próxima Centauri. Todas se muestran ante nosotros con el bello color rojizo, pero la gigante Betelgeuse es una estrella inestable a la que los astrónomos consideran una de las mejores candidatas de la Vía Láctea para estallar en cualquier momento en forma de supernova; puede ocurrir mañana o dentro de mil años, pero Betelgeuse está destinada a un final cataclísmico que se observará alguna vez. En cambio Barnard y Próxima, dos diminutos soles rojos, viven en la eternidad, al ser tan frías y pequeñas podrían permanecer en sus actuales en torno a doscientos mil millones de años, de acuerdo con la teoría aceptada de la evolución estelar para este tipo de bajo consumo de material nuclear.

      El grupo de estrellas gigantes Pismis 24-1 (CSIC).

Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.

http://upload.wikimedia.org/wikipedia/commons/7/7c/EtaCarinae.jpg

Eta Carinae, un monstruo arrojando material al espacvio interestelar como vía de escape y regular su estabilidad que, debido a sus es muy precaria. Es la criatura más prodigiosa de la Vía Láctea: una súper estrella azul que brilla como cinco millones de soles juntos. Es tan grande que, si estuviera en el centro de nuestro Sistema Solar, sus bordes tocarían la órbita de Júpiter.

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la Historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos. Alguno de estos días, tendremos que hablar de Eta Carinae (arriba), otra variable irregular hipergigante, que llegó a ser la segunda estrella más brillante del cielo. Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, es probablemente la estrella más masiva de la Galaxia. El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su pérdida de masa (alrededor de 0,1 masas solares por año) tiene asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.

Estrellas fijas:

Expresión arcaica para el de estrellas en general, con el fin de distinguirlas de los planetas que eran conocidos como estrellas errantes. En la actualidad, el término se aplica a las estrellas sin movimiento propio detectable.

rica en metales:

Estrellas con una alta proporción de elementos pesados como calcio, hierro y titanio. Son miembros de la Población I, y se encuentran en el y en los brazos espirales de nuestra Galaxia.

reloj:

Brillante estrella situada en la región ecuatorial del cielo con ascensión recta muy bien conocida, para determinar el de los relojes empleados para medir tránsitos en el meridiano.

Estrella simbiótica:

Estrella (en muchos casos una cataclísmica) que presenta líneas espectrales a temperaturas muy diferentes, como las típicas de una gigante roja de tipo tardío o supergigante (3000K) y las de una estrella enana B (20 000 K). Dichas características indican que la estrella es una binaria interaccionante.

Estrellas de Neutrones:

Estrellas que se forman a partir de estrellas amasivas (2-3 masas solares) cuando al final de sus vidas, agotado el combustible nuclear de fusión, quedan a merced de la Gravedad que no se ve frenada por la fusión nuclear, y, en ese momento, la comienza a contraerse su propio peso, de forma tal que, los protones y electrones  se funden y se convierten en neutrones que, al verse comprimidos tan violentamente, y, no pudiendo permitirlo por el principio de esclusión de Pauli, se degeneran y y hacen frente a la fuerza gravitatoria, consiguiendo así el equilibrio de lo que conocemos como estrella de nweutrones de intensom electromagnético y rápida rotación.

Estos objetos, después de los Agujeros Negros, son los más densos que se conocen en el Universo, y, su masa podría pesar 1017 Kg/m3.

La estrella de Quarks

Es hipotética, aún no se ha observado ninguna pero, se cree que pueden estar por ahí, y, si es así, serían mucho más densas que las de neutrones, ya que, ni la degeneración de los neutrones podría parar la Fuerza de la Gravedad.

Enana Blanca

Nuestro Sol es de esta de estrellas y, tampoco su densidad se queda corta, ya que, alcanzan 5 x 108 Kg/m3. Aquí, cuando la estrella implosiona y comienza a comprimirse bajo su propio peso por la fuerza de Gravedad, como ocurrió con la estrella de Neutrones, aparece el Principio de Exclusión de Pauli, el cual postula que los fermiones (los electrones son fermiones) no pueden ocupar el mismo lugar estando en posesión del mismo cuántico, y, siendo así, se degeneran y hace que, la compresión de la estrella por la Gravedad se frene y vuelve el equilibrio que la convierte en estrellas enana blanca.

El fenómeno de convertirse en enana blanca ocurre cuando la estrella original tiene una mása máxima posible de 1,44 masas solares, el límite de Shandrashekar, si fuera mayor se convertiría en estrella de neutrones. Y, siendo mayor la masa de 3-4 masas solares, su destino sería un agujero negro.

La variedad de Nebulosas Planetarias es enorme, y, cada una de ellas tiene sus propias características. Nuestro Sol podría ser cualquiera de ellas, y, al final de su vida, después de la etapa de Gigante Roja en la que su óbita aumentará hasta engullirse a Mercurio, a Venus y a la propia Tierra, comenzará a contraerse para convertirse en una de ellas y, lo que fué el Sol, se quedará reducido a ese puntito blanco y denso que vemos en el centro de la Nebulosa de abajo.

Está claro que la lección de hoy sobre las estrellas es insuficiente y de que existen muchas más clases de estrellas que aquí no han sido nombradas pero, es tanta la diversidad y tan enorme la gama de peculiaridades de todas las estrellas del cielo que, exponerlas aquí todas sería imposible. Además, y, como muy bien nos dijo Nelson hace unos días, este lugar es para aficionados que, en amable tertulia puedan desahogar sus pasiones por la Astronomía y los objetos del cielo, exponer sus propias ideas e intercambiar pareceres que, de esa manera, siempre dentro de los parámetros del bien estar, aprenderemos los unos de los otros y, todos, nos enriqueceremos.

emilio silvera

¿Universos múltiples?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 
                    ¿Qué caras tendrán esos otros universos?

Hoy, para variar, contaremos aquí alguna teoría sobre el Universo que, como otras muchas, trata de bucear en las posibilidades que podrían ser. En pensamientos surgidos de la Mente Humana, esa máquina compleja que

                                                                           Universos múltiples

¿Quién no conoce al cosmólogo Stephen Hawking que, privado de sus cuerdas vocales, incapaz de sujetar un lápiz, utiliza dispositivos mecánicos

Pues, este señor en sillita de ruedas no sólo lleva a la práctica un intenso programa de investigación, sino que, además, le queda tiempo libre Newton, donde imparte clases de física.

Hawking, junto con su amigo Kip S. Thorne, es uno de los mayores expertos mundiales en el conocimiento de la relatividad general y de los agujeros negros. Sin embargo, úlñtimamente nos ha salido diciendo que los Agujeros Negros no existen… ¡Cómo evolucionan algunos! Me gustaría preguntsrle en qué se convierte una estrella supermasiva cuando “muere” al acabar su ciclo de fusión en la secuencia principal.

 

Si a un pobre planeta se le ocurriera traspasar la linea de seguridad marcada por el horizonte de sucesos, el futuro sería fatal para él, y se vería lo que la imagen de arriba nos muestra, y, a partir de ese momento o fase, el planeta sufriría el efecto espagueti y se alargaría en grandes tubulares de materia que sería engullida por el agujero enviándolas hacia la singularidad en un viaje de irás y no volverás.

Tampoco Stephen Hawking, como antes le ocurrió a Einstein, ha podido resistir la tentación de embarcarse en la mayor búsqueda jamás soñada por un físico, la unificación final de la teoría de la gravedad de Einstein y la teoría cuántica. Como resultado, también él se ha sentido maravillado por la coherencia de la teoría decadimensional, y de hecho cierra su conocido libro con un análisis de la misma.

 

Es una lástima que aún no hayamos podido llegar a las cercanías de un agujero negro, y, lo que podemos agujero negro es una especie de realidad-fantasía que nos lleva a llenar cientos, miles de páginas con los pormenores que dentro y fuera de un objeto así podrían estar presentes y, muchos de esos sucesos que describimos, no siempre estarán con la realidad que presentimos pero que, ¡podría ser tan diferente!

Hawking ya no dedica el grueso de su energía creativa al campo que le hizo mundialmente famoso: los agujeros negros, que Einstein. Hawking, partiendo como un puro relativista clásico más que como un teórico cuántico, enfoca el problema Einstein, y luego ¡cuantizan el universo entero!

 

¿Quién puede dar una explicación clara y precisa de lo que es la gravedad cuántica y la cosmología cuántica? ¿No se contradicen ambas? La primera trata del universo de lo muy pequeño y, la segunda, sin embargo, se refiere a lo muy grande. Sin embargo, el hombre elucubra sin cesar y llega a rincones del pensamiento que, no pocas veces parecen alejados de la lógica y la razón.

Hawking es uno de los fundadores de una nueva disciplina científica, denominada cosmología cuántica. A primera vista, esto parece una contradicción en los términos. La palabra cuántico se aplica al mundo infinitesimalmente pequeño de los quarks y los neutrinos, mientras que cosmología significa la extensión casi ilimitada del espacio exterior. Sin embargo, Hawking y otros creen Recordemos que el punto de partida de la teoría cuántica está en el cuanto de acción de Planck, h, que más tarde desarrollaron Werner Heisenberg, con su principio de incertidumbre, y Schrödinger, con su función de ondas, Y, que describe todos los diversos estados posibles de una partícula. Cuanto más grande y oscuro es el nubarrón, mayor es la concentración de vapor de agua y polvo en el lugar en el que está situada la nube, con lo cual, podemos estimar rápidamente la probabilidad de encontrar grandes concentraciones de agua y polvo en ciertas partes del cielo.

 File:2D Wavefunction (1,2) Surface Plot.png

Función de onda para una partícula bidimensional encerrada en una caja. Las líneas de nivel sobre el plano inferior están relacionadas con la probabilidad de presencia. La función de onda del Universo de Schrödinger que nos dice la probabilidad que tenemos de saber donde se encuentra una partícula determinada. A partir del Principio de Incertidumbre de Heisenberg, surgió la ecuación de Schrödinger para paliar, en El nubarrón puede compararse a una sola función de onda electrónica.Al igual que el nubarrón, electrón. Así mismo, las funciones de onda pueden estar asociadas con objetos grandes, como personas. Ahora mismo, que estoy sentado en mi sillón de la mesa del despacho que tengo en mi casa para escribir sobre ciencia, sé que tengo una función de onda de probabilidad de Schrödinger. Si de algún modo pudiera ver mi función de onda, se parecería a una nube con una forma muy aproximada a la de mi cuerpo. Sin embargo, algo de la nube se extenderá por todo el espacio, más allá de Júpiter e incluso más allá del Sistema Solar, aunque allí sea prácticamente nula. Esto significa que existe una probabilidad muy grande de que yo esté, de hecho, sentado en mi sillón y no en el planeta Júpiter. Aunque parte de mi función de onda se extienda incluso más allá de la Vía Láctea, hay sólo una posibilidad infinitesimal de que yo este sentado en otra galaxia.

 

    ¿Qué no La nueva idea de Hawking consistía en tratar el universo entero Según algunas imágenes que han sido creadas,  la función de onda del universo se extiende sobre todos los universos posibles.

 

El objetivo al que se enfrentan los cosmólogos cuánticos es verificar matemáticamente Si tomamos a Hawking en serio, ello significa que debemos empezar nuestro análisis con un  

La cosmología cuántica de Hawking también supone que la función de onda del universo permite que estos universos colisionen. Pueden desarrollarse agujeros de gusano que unan estos universos. Sin embargo, estos agujeros de gusano no son como los que describí antes para viajar en el tiempo según dice Thorne y que conectan diferentes partes dentro del mismo espacio tetradimensional. Los nuevos agujeros de gusano conectan universos entre sí.

El físico Alan Harvey Guth dice francamente: “El principio antrópico es algo que la gente propone si no pueden pensar en algo mejor que hacer.”

Para Richard Feynman, el objetivo de un físico teórico es “demostrarse a sí mismo que está equivocado en cuanto sea posible”. Sin embargo, el principio antrópico es estéril y no puede ser refutado. Weinberg dijo: “aunque la ciencia es claramente imposible sin científicos, no está claro que el universo sea imposible sin ciencia.”

El debate sobre el principio antrópico estuvo en letargo durante muchos años, aunque fue reactivado recientemente por la función de onda del universo de Hawking. Si Hawking está en lo cierto, entonces existen en realidad un protones se desintegran con demasiada rapidez, o las estrellas no pueden fabricar los elementos pesados por encima del hierro, o el Big Crunch tiene lugar demasiado deprisa porque su densidad crítica sobrepasa en mucho a la ideal y no da tiempo a que pueda comenzar la germinación de la vida, y así sucesivamente. De hecho, un  Diferencias-entre-agujeros-negros-y-agujeros-de-gusano-2.jpg

                                                              ¿Cómo se pasará de un universo al otro?

En tal universo paralelo (el nuestro), las leyes de la física eran compatibles con la vida que conocemos. La prueba es que nosotros estamos aquí para tratar La segunda controversia estimulada por la función de onda del universo de Hawking es mucho más profunda y, de hecho, aun está sin resolver. Se denomina el Gato de Schrödinger.

La teoría cuántica, recordémoslo, afirma que para todo objeto existe una función de onda que mide la probabilidad de encontrar dicho objeto en un cierto punto del espacio y del tiempo. La teoría cuántica afirma también que nunca se conoce realmente el  

Cuando Einstein se revolvió contra ella. “¿Existe la luna sólo porque la mira un ratón?”, le gustaba preguntar. Según la teoría cuántica, en su más estricta interpretación, la Luna, antes de que sea observada, no existe realmente tal como la conocemos. “La Luna puede estar, de hecho, en uno cualquiera de entre un Einstein con ironía.

Edwin Schrödinger, autor de la ecuación con su función de onda, se disgustó con estas interpretaciones de su ecuación.  

Para decidir si el gato está vivo o muerto, debemos abrir la caja y observar al gato. Sin embargo, ¿cuál es el Para Schrödinger, la idea de pensar en gatos que no están ni muertos ni vivos era el colmo del absurdo, pero la confirmación experimental de la mecánica cuántica nos lleva inevitablemente a La paradoja del gato de Schrödinger es tan extraña que uno recuerda a menudo la reacción de Alicia al ver desaparecer el gato de Cheshire en el centro del cuento de Lewis Carroll: “Allí me verás”, dijo el Gato, y desapareció, lo que no sorprendió a Alicia que ya estaba acostumbrada a observar cosas extrañas en aquel lugar fantástico. Igualmente, los físicos durante años se han acostumbrados a ver cosas “extrañas” en la mecánica cuántica.

Existen varias maneras de abordar esta dificultad de lo incomprensible en mecánica cuántica. En primer lugar, podemos suponer que Dios existe. Puesto que todas las “observaciones” implican un observador, entonces debe haber alguna “conciencia” en el universo. Algunos físicos como el premio Nobel Eugene Wigner, han insistido en que la teoría cuántica prueba la existencia de algún tipo de conciencia cósmica universal.

La segunda  

El físico Richard Feynman dijo en cierta ocasión: “Creo que es justo decir que nadie comprende la mecánica cuántica. No siga diciéndose a sí mismo, si puede evitarlo, “¿pero cómo puede ser así?” porque usted se meterá “hasta el fondo” en un callejón sin salida del que nadie ha escapado. Nadie sabe como puede ser eso”. De hecho, a menudo se ha dicho que de todas las teorías propuestas en el siglo XX, la más absurda es la teoría cuántica. Algunos dicen que la única cosa que la teoría tiene a su Sin embargo, existe una tercera forma de tratar esta paradoja, denominada teoría de los muchos universos. Esta teoría (como el principio antrópico) no gozó de mucho I. B. S. Haldane nos decía: “La naturaleza no sólo es más extraña de lo que suponemos; es más extraña de lo que podamos suponer.”

Lo mismo llevaba razón.

emilio silvera