May
8
¡Las estrellas! Algo más que puntitos brillantes en el cielo
por Emilio Silvera ~ Clasificado en las estrellas y la Vida ~ Comments (2)
“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazon (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una region de la galaxia donde muchas estrellas se estan formando. IC 1805 (la nebulosa Corazon) es a menudo llamada tambien
Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de
Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de Lo que conocemos como estrella es una bola de gas luminosa que, protoestrellas, aún en formación y no lo suficientemente calientes
Seguimos en la Nebulosa del Corazón (otra región)
Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían
La estrella Sirio es la más brillante y
VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.
El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.
Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, El Color de las estrellas indican de qué materiales están conformadas y, así se compruena mediante el estudio de sus espectros.
- Color azul, Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.
La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en El Sol
De qué está hecho el Sol
La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman
Un equipo japones de astrónomos han descubierto una fuerte correlación La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie
La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck
, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.
Las fuerzas fundamentales
Fuerza relativa
Función
Nuclear fuerte <3×10-15
1041
Une Protones y Neutrones en el núcleo atómico por medio de Gluones. Nuclear débil < 10-15
1028
Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z– Electromagnetismo Infinito
1039
Une los átomos fotones. Gravitación Infinito
1
Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.
Las constantes fundamentales
Constante
Símbolo
Valor en unidades del SI
Aceleración en caída libre g
9,80665 m s-2
Carga del electrón e
1,60217733(49) × 10-19 C
Constante de Avogadro NA
6,0221367 (36) × 1023 mol-1
Constante de Boltzmann K=R/NA
1,380658 (12) × 10-23 J K-1
Constante de Faraday F
9,6485309 (29) × 104 C mol-1
Constante de los gases R
8,314510 (70) × J K-1 mol-1
Constante de Loschmidt NL
2,686763 (23) × 1025 mol-3
Constante de Planck h
6,6260755 (40) × 10-34 J s
Constante de Stefan-Boltzmann σ
5,67051 (19) × 10-8 Wm-2 K-4
Constante eléctrica ε0
8,854187817 × 10-12 F m-1
Constante gravitacional G
6,67259 (85) × 10-11 m3 Kg-1 s-2
Constante magnética μ0
4π × 10-7 Hm-1
Masa en reposo del electrón me
9,1093897 (54) × 10-31 Kg
Masa en reposo del neutrón mn
1,6749286 (10) × 10-27 Kg
Masa en reposo del protón mp
1,6726231 (10) × 10-27 Kg
Velocidad de la luz c
2,99792458× 108 m s-1
Constante de estructura fina α
2 π e2/h c
Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de
La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente.
Si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, ¡todo es igual en todas partes!: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas.
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a Einstein
Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Arte que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partierndo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.
Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en relatividad general de Einstein y fue el responsable de la expedición que relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.
emilio silvera
el 8 de mayo del 2014 a las 18:46
Sin embargo la expansión hace que la energía del Universo, su densidad en el espacio, sea menor. Las masas, las macro sobre todo,no sufriran una variación pues las fuerzas que las unen en sus elementos son internas: electromagnéticas y fuerza fuerte. (1 de gravedad frente al bloque de las otras, 10^98). Por tanto ellas se alejan entre sí “por grupos” porque la gravedad, extensa a todo el Universo, va disminuyendo. Las grandes uniones en cúmulos serían el resultado de que si las masas se alejan entre sí acabarán reuniéndose “donde los alejamientos coincidan”
Saludos para tod@
el 9 de mayo del 2014 a las 5:21
Si, tenemos cada vez un Universo más grande y también, más frío.
Sólo en grupos locales se mantendrá unida la materia en forma de galaxias.
A no ser que resulte cierto, el resultado obtenido por un grupo de astrofísicos y cosmólogos que, según nos dicen, han atisbado una gran conglomeración material situada mucho más allá del “borde” de nuestro universo y, eso, sólo podría ser debido a la existencia de otro universo similar o parecido al nuestro y, si eso es así, podría caber la posibilidad de que, con el paso del tiempo (muchísimo tiempo), al igual que las galaxias se fusionan, también lo hicieran estos universos, el nuestro y ese otro que nos ronda.
En tal caso, se evitaría la muerte térmica del Universo y al univero con ese otro conformarían uno mucho mayor que, de nuevo, recompuestos los objetos que ambos aportarían, tendríamos un universo de nuevo diseño y, quién sabe, si también como el nuestro con la presencia de criaturas.
Saludos.