martes, 21 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Monopolos magnéticos? ¿Hasta dónde podemos imaginar?

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

 

el LHC se ponía en marcha, algunos hablaron de que se podían crear monopolos magnéticos.

“ Desde el punto de vista teórico, uno se siente inclinado a creer que los monopolos han de existir, debido a la belleza matemática de su concepción. Aunque se han hecho varias tentativas de hallarlos, ninguna ha tenido éxito. Debiera deducirse de ello que la belleza matemática en sí no es razón suficiente que la naturaleza aplique una teoría. Nos queda aún mucho que aprender en la investigación de los principios básicos de la naturaleza.”

P. A. M. DIRAC, 1981

 

En los treinta del pasado siglo Paul Dirac realizó unos cálculos teóricos que indicaban que si existieran los monopolos magnéticos, entonces se podría cuantizar fácilmente la carga del electrón. Bastaría que existiera un sólo monopolo magnético en el Universo para que los electrones tuvieran la carga que tienen y no otra.

Foto

La imagen de arriba vino acompañada de la noticia siguiente: “Afirman haber podido detectar por primera vez monopolos magnéticos como un de la materia que se daría a partir de una disposición especial de los momentos magnéticos dentro de un cristal a baja temperatura. “

 

En realidad, cohabitamos una naturaleza llena de fenómenos enigmáticos. Uno de estos fenómenos es la asimetría insólita que se observaba en el magnetismo y la electricidad: no hay cargas magnéticas comparables a las cargas eléctricas. Nuestro mundo está lleno de partículas cargadas eléctricamente, los electrones o los protones, pero nadie ha detectado jamás una carga magnética aislada. El objeto hipotético que la poseería se denomina monopolo magnético.

Foto

         Montaje experimental. Foto: HZB, D.J.P. Morris y A. Tennant.

El grupo de investigadores dispuso un montaje experimental especial poder detectar estas cuerdas de Dirac. Hicieron que un chorro de neutrones impactara sobre una muestra a la que aplicaban un campo magnético. En el interior de la muestra se formaban cuerdas de Dirac que dispersaban los neutrones con un patrón específico que delataba su presencia.

La muestra era un cristal de titanato de disprosio. La estructura cristalina de compuesto tiene una geometría notable, de tal modo que los momentos magnéticos de su interior se organizan en lo que se llama un “espagueti de espines”. El viene de la ordenación de los dipolos, que forman una red de tubos contorsionados (cuerdas) por los que se transporta flujo magnético.

Estos tubos pueden “hacerse visibles” los neutrones interaccionan con ellos; pues los neutrones, aunque no tienen carga eléctrica, sí tienen magnético. El patrón de dispersión de los neutrones obtenido es una representación recíproca de las cuerdas de Dirac contenidas en la muestra. Con el campo magnético aplicado los investigadores podían controlar la simetría y orientación de las cuerdas. A temperaturas de entre 0,6 a 2 grados Kelvin los investigadores pudieron ver pruebas de la existencia de monopolos magnéticos (la temperatura suele ser la peor enemiga del magnetismo, pues tiene a desordenarlo todo) en de este de cuerdas según se acaba de describir.

Además pudieron ver la firma que en la capacidad calorífica dejada el gas de monopolos, viendo que estas cuerdas interaccionan de manera similar a como lo hacen las cargas eléctricas, lo que era de prever para el caso de monopolos magnéticos. En este resultado los monopolos no son partículas, sino que emergen como un de la materia, en concreto a partir de un arreglo especial de los dipolos que forman del material.

hacernos una idea de cómo sería un monopolo magnético si existiera, imaginemos una barra imantada que, como sabemos, posee en cada extremos un «un polo magnético» por el cual se atraen o se repelen. Estos polos son de dos tipos, llamados «norte» y «sur», y se comportan como las cargas eléctricas, positiva y negativa. Esa configuración del campo es un ejemplo de «campo bipolar», y sus líneas de campo no paran: giran y giran interminablemente. Si partimos por la mitad la barra imantada, no tenemos dos polos, el norte y el sur, separados, sino dos imanes. Un polo norte o sur aislado (un objeto con líneas de campo magnético que sólo salgan o que sólo entren) sería un monopolo magnético. De hecho, es imposible aislar una de estas cargas magnéticas. Nunca se ha detectado monópolos magnéticos, es decir partículas que poseyeran una sola carga magnética aislada. que ello se deba a razones no aclaradas, o la naturaleza no creó monopolos magnéticos o creó poquísimos.

En cambio, los monopolos eléctricos (partículas que llevan carga eléctrica) son muy abundantes. chispa de materia contiene un increíble número de electrones y protones que son auténticos monopolos eléctricos. Podríamos imaginar las líneas de fuerza del campo eléctrico surgiendo de una partícula cargada eléctricamente o convergiendo en ella y empezando o acabando allí. Además, la experiencia ha confirmado la ley de conservación de la carga eléctrica: la carga monopólica eléctrica total de un sistema cerrado no puede ni crearse ni destruirse. Pero en el mundo del magnetismo, no existe nada similar a los monopolos eléctricos, aunque un monopolo magnético sea fácilmente concebible.

La teoría electromagnética unifica la fuerza eléctrica y la fuerza magnética. La fuerza eléctrica es generada por la presencia de cargas eléctricas (el electrón, por ejemplo), mientras que la fuerza magnética surge por el movimiento de estas mismas cargas. El campo magnético de un imán proviene del movimiento de los electrones alrededor de los núcleos de hierro.

James Clerk Maxwell, el físico escocés que unificó matemáticamente los campos magnético y eléctrico en 1864, incluía en sus ecuaciones electromagnéticas fundamentales la existencia de cargas eléctricas, no incluyó la posibilidad de cargas magnéticas. Le habría resultado fácil hacerlo; la inclusión, a nivel estético, habría hecho sus ecuaciones bellamente simétricas respecto a la electricidad y el magnetismo. Pero al igual que otros físicos, Maxwell no halló prueba alguna de que hubiera en la naturaleza cargas magnéticas y las excluyó, por principio, de sus ecuaciones. Los físicos consideran entonces extraña la asimetría natural de la electricidad y el magnetismo.

Siguieron profundizando en sus estudios del campo electromagnético maxwelliano. Sabían que las ecuaciones de Maxwell podían simplificarse si se derivaban matemáticamente los campos eléctrico y magnético de otro campo aún más básico: un campo de medida. El campo de medida electromagnético es el ejemplo primero y más simple de la concepción general de campo de medida que descubrirían mucho después Yang y Mills. Curiosamente, al aplicar las ecuaciones de Maxwell al campo simple de medida, los físicos comprobaron que la ausencia de carga magnética se explicaba matemáticamente. Recíprocamente, pudieron demostrar que la ausencia de carga magnética entrañaba matemáticamente la existencia de un campo de medida. El campo de medida introdujo así una asimetría los campos eléctrico y magnético.

       En realidad, ¿quién sabe lo que puede haber en el Universo?

la introducción del campo de medida estructura subyacente del electromagnetismo se consideraba entonces una novedad matemática, un truco conceptual y no verdadera física. De la idea del campo de medida sacabas exactamente (ninguna carga magnética) lo que ponías en ella (ninguna carga magnética). Luego, en los años veinte, el matemático Hermann Weyl demostró que la incorporación de los campos eléctrico y magnético en la nueva teoría cuántica exigía concretamente una interpretación en términos del campo de medida. Y se empezó así a comprobar que el campo de medida electromagnético era físicamente importante, además de interesante matemáticamente. La mecánica cuántica parecía hecha a la medida de los campos de medida, y, curiosamente, los campos de medida presuponían la ausencia de monopolos magnéticos. planteamiento teórico coincidía tan absolutamente con la experiencia que la idea del campo de medida electromagnético se asentó con mucha firmeza. Pero luego, llegó Paul Dirac.

En 1931, Dirac empezó a examinar las consecuencias físicas de la «belleza matemática» del campo de medida electromagnético en la teoría cuántica. Según él: « realicé este , tenía la esperanza de encontrar una explicación de la constante de estructura fina (la constante relacionada con la unidad fundamental de carga eléctrica). Pero no fue así. Las matemáticas llevaban inexorablemente al monopolo.» En contra del punto de vista teórico predominante, Dirac descubrió que la existencia de un campo de medida electromagnético y la teoría cuántica unidas presuponían que en realidad los monopolos magnéticos podían existir… siempre que la unidad fundamental de carga magnética tuviese un valor específico. El valor de la carga magnética que halló Dirac era tan grande que si en realidad existiesen monopolos magnéticos en la naturaleza, tendrían que ser fácilmente detectables, debido a los efectos de sus grandes campos magnéticos.

Entender mejor las consecuencias de las investigaciones de Dirac imaginemos una barra imantada delgada de kilómetro y medio de longitud, con un campo magnético en extremo. En este caso, el campo magnético se parece al de un monopolo magnético porque el imán es muy delgado y los extremos están muy alejados. Pero no es un auténtico monopolo, porque las líneas del campo magnético no terminan realmente en la punta ,del imán; se canalizan a través de éste y surgen por el otro extremo.

Imaginemos luego que un extremo de delgado imán se extiende hasta el infinito, reduciéndose su grosor matemáticamente a cero. El imán parece una línea matemática, o una cuerda, con un campo magnético radial que brota de su extremo: un auténtico monopolo magnético puntiforme: Pero, ¿y esa cuerda infinitamente delgada (llamada cuerda de Dirac) que canaliza el flujo del campo magnético el infinito? Dirac demostró que si la carga magnética del monopolo, con un valor g, cumplía la ecuación

ge = n/2

n = 0, ± 1, ± 2…

en la que e es la unidad fundamental de carga eléctrica (una cantidad conocida experimentalmente), la presencia de esa cuerda no podría detectarse nunca físicamente. Según Dirac, la cuerda se convierte entonces sencillamente en un artilugio matemático descriptivo sin realidad física, igual que las coordenadas de los mapas son artilugios matemáticos que utilizamos describir la superficie de la Tierra, carentes de significado físico. La cuerda de Dirac con un monopolo magnético en la punta era matemáticamente una línea en el espacio, a lo largo de la cual el campo de medida electromagnético no estaba definido. Pero sorprendentemente falta de definición no tenía consecuencias mensurables, siempre que la carga del monopolo magnético cumpliese la condición de Dirac. Otra consecuencia más del monopolo de Dirac era que la carga magnética se conservaba rigurosamente la carga eléctrica.

paul dirac 1907 250x212 Paul Dirac cuando era niño

¿Quién diría, viendo a niño, que de mayor, desarrollaría un trabajo sobre el electrón que nada que envidiar a las teorías de Einstein? Es Paul Dirac de niño, allá por el año 1907. Después de los importantes trabajos de Dirac, los físicos teóricos aceptaron la posible existencia de monopolos magnéticos, pensando que si ninguna ley física rechazaba su existencia, quizá existiesen.

Resumiendo, nada se opone, a priori, a la existencia de cargas magnéticas aisladas. Estos monopolos magnéticos producirían una fuerza magnética, mientras que sus movimientos engendrarían una fuerza eléctrica. , por una razón misteriosa, la naturaleza no parece haberse jugado aquí por la simetría, pues creó «monopolos eléctricos» y aparentemente no monopolos magnéticos.

¿Causa problemas tal asimetría?, ¿Deberían existir los monopolos magnéticos? La respuesta tradicional de los físicos es: No necesariamente. La teoría sugiere su existencia, pero no la exige, y se acomoda muy con su ausencia.

Mas en el marco de la teoría del Big Bang la situación es diferente. En el del quiebre de la simetría de gran unificación, se engendraron cantidades de monopolos magnéticos. Estas partículas, casi tan masivas como las X y las Y, ¡deberían ser tan numerosas como los protones! Masas tan gigantescas deberían poder señalarse fácilmente. ¿Por qué no se dejan percibir por nuestros detectores?

De hecho, con la masa de los monopolos magnéticos, si existiesen, otorgarían al universo una densidad bastante superior que la densidad crítica. Bajo su efecto gravitatorio, ¡el universo se habría cerrado hace mucho tiempo! Y ¿de nosotros?…  ¡Ni hablar!

No están aquí y tanto mejor. Pero, ¿por qué? El problema de los monopolos ausentes es otra de las patologías de las debilidades del Big Bang.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

«

 

Cuando pienso en aquel pensamiento de Leibniz y miro la Nebulosa de Orión, puedo comprender ese Principio que en la Física llamamos causalidad:
“Todo presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro”.
Así, un día muy lejano ya en el pasado, una Supernova sembró el espacio interestelar con una Nebulosa que conocemos como Orión, en ella se han ido produciendo transiciones de fase como consecuencia del nacimiento de estrellas y mundos, y, la materia que en el pasado era simple, en el presente es más compleja y se está preparando que en el futuro pueda llegar hasta ¡la vida! Ahí, en esa Nebulosa que arriba podemos contemplar, están todos los ingredientes de las estrellas, los mundos, la Vida y… ¡los pensamientos! Que suregirán dentro de algunos miles de millones de años.
Los finales del siglo XX quizá sean recordados en la de la Ciencia como la época en la que la Física de partículas, el estudio de las estructuras más pequeñas de la Naturaleza (al menos hasta donde sabemos), unió sus fuerzas a la cosmología, el estudio del Universo como un todo. Juntas estas dos disciplinas esbozarían el esquema de la historia cósmica, investigando el pasado de las estructuras naturales en un çambito de escala enorme, los núcleos de los átomos hasta los cúmulos de galaxias.
La evolución de Darwin comienza en el inmenso Cosmos, donde las estrellas fabrican los materiales de la Vida.
El Hubble nos llevó los confines del Universo profundo para ver viejas  galaxias de 13.000 millones de años de edad, y, cercanas al del Universo primitivo. C on la nueva generación de Telescopios espaciales, podremos contemplar el Universo aún no existían estrellas y, la materia, se estaba formando.
decimos, la física y la cosmología hicieron un matrimonio de conveniencia y apresurado, se juntaron dos disciplinas muy diferentes. Los cosmólogos son solitarios y mantienen sus miradas fijas en ese horizonte lejano y profundo de los cúmulos de galaxias situados en el espacio-tiempo profundo y, acumulan, amorosamente sus mensajes construidos de hilillos de antigua luz estelar que les traen noticias y les cuentan las historias pasadas del universo.
Los físicos de partículas, en contraste con ellos, son relativamente gregarios -tienen que serlo, pues ni siquiera un Einstein sabe suficientemente de física como para hacerlo todo el sólo. Los físicos son por tradición transmitida estudiosos del aquí y , inclinados a curvar cosas, volar cosas y desmontar cosas. Los físicos trabajan dura y rápidamente, obsesionados por la leyenda de que es improbable que tengan muchas ideas nuevas útiles después de cumplir los cuarenta, mientras que los cosmólogos son más a menudo jugadores de finales, adeptos a las visiones de vasto alcance, de quienes cabe esperar que realicen investigaciones productivas cuando sus cabellos blanquean por la edad. Los físicos son los zorros de los que Arquiloco decía que saben muchas cosas, los cosmólogos son más afines a los erizos, que saben una sóla .
Claro que, como nos decía Marco Aurelio:
“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido la eternidad y todo lo que ocurrirá en el tiempo sin fin: pues todas las cosas son de la misma clase y la misma forma.”

Leyendo ese pensamiento, me digo yo: sólo el paso del tiempo las transforma finalmente, hacerlas desaparecer para que, de inmediato, puedan surgir otras nuevas que, en realidad, serán las mismas cosas que ya fueron.

 

 

 

 

                          Lo que arriba vemos, un día fue nuestro Sol

 

A finales de los setenta, los físicos de partículas se aventuraron a acudir a seminarios de cosmología a estudiar las galaxias y los quásars, mientras que los cosmólogos alquilaron del CERN y el Fermilab para trabajar en física de altas energías en instalaciones subterráneas donde se veína las estrellas. Algún famoso físico de aquellos tiempos dijo: “La física de partículas elementales y el estudio del universo primitivo, las dos ramas fundamentales de la ciencia de la Naturaleza, se han fundido esencialmente”.
         ¡Si Demócrito levantara la cabeza! Al ver el inmenso LHC se volvía a morir del susto
Son muchas las disciplinas científicas que hoy día, se están uniendo en la de objetivos comunes. Se investiga de manera conjunta y cada uno de esos apartados científicos, finalmente aunan los resultados llegar a un todo que, nos mostrará la verdadera naturaleza del Universo, la materia que contiene y…¿por qué no? también de la vida misma.
El de encuentro físicos y cosmólogos fue el Big Bang. los físicos identificaron simetrías en la naturaleza que hoy están rotas pero que estuvieron intactas en un entorno de altas energías. Los cosmólogos informaron que el universo estuvo antaño en tal de alta energía, durante las etapas iniciales del big bang. Unidas ambas cosas, aparece el de un universo perfectamente simétrico cuyas simetrías se quebraron a medida que se expandió y se enfrió, creando las partículas de materia y energía que encontramos hoy a nuestro alrededor y estampándoles las pruebas de su genealogía.

Claro que si no existieran simetrías, en la Tierra habría días de 24 horas y otros de cinco ; viviríamos en un planeta deforme en la gravedad proyectaría objetos en todas direcciones; habría explosiones inexplicables. Sería un mundo peligrosamente caprichoso. Sin embargo, por muy atrás que podamos mirar en el tiempo, siempre podremos ver como se ha ido conformando un universo simétrico en el que las figuras se repiten una y otra vez. Lo que no quiere decir que todo sea igual, toda vez que, nuestro universo, dentro de esa simetría creadora que podemos contemplar en la Naturaleza, es al mismo tiempo diverso y de una belleza sin igual. ¡Cuanta grandeza!

 Por fortuna, hay simetrías, hay reglas que nos dicen que los planetas son esféricos, que los rostros son simétricos, que todos los días duran lo mismo, que hay frío y calor, día y noche, que hay positivo y negativo, que todo en el universo se rige por el equilibrio que se consigue en la igualdad de fuerzas contrapuestas, y, de esa manera, se llega a la simetría que nos rodea y podemos contemplar por todas partes. Sin embargo, nuestro Universo es el de simetrías rotas.

Tres Físicos recibieron el Nobel por las “simetrías rotas de la Naturaleza”.  Dos japoneses y un estadounidense. Ganaron el Premio Nobel de Física del 2008 por cosas que ayudan a explicar el comportamiento de las partículas más pequeñas de materia.

Makoto Kobayashi, Toshihide Masukaway el japonés nacido estadounidense, Yoichiro Nambu

En física, la idea de simetría refiere a un de igualdad o equivalencia en una situación. En el nivel subatómico, por ejemplo, no deberías poder decir si estás viendo desplegados directamente en un espejo, o si una película de esos eventos está corriendo adelante o atrás. Y las partículas deberían comportarse justo sus alter egos, llamadas antipartículas.

Si cualquiera de estas reglas es violada, la simetría se rompe.

Una gran simetría rota surgió inmediatamente después del Big Bang,  cuando sólo una infinitesimal fracción más de materia que antimateria fué creada. Debido a que estos dos tipos de partículas se aniquilan sí al encontrarse, ese exceso de materia fue el que prevaleció, en forma de bariones, es decir, la materia que emite radiación y podemos ver. En el suceso tuvo lugar  la rotura de la simetría de la “fuerza única” que contenía todos los mecanismos y leyes de aquel primer universo. Sin embargo, no cabe ninguna duda de que existe un ingrediente más elemental e invisible que permea el universo entero, es la sustancia cósmica que nadie sabe explicar y a la que le dan raros nombres que coinciden con la realidad.

El universo primitivo, en una espectacular imagen en 3D

                        Nadie pudo estar allí tomar una instantánea de aquel Universo primitivo

Al principio, el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para y formar protones y neutrones los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de más tarde, tras la evolución, apareciéramos nosotros.

El Universo está lleno de información que debemos buscar para tratar de entender qué mensajes nos envíay  lo que nos quieren decir. Sabemos que el Universo es todo lo que existe la materia, las fuerzas que con ella interaccionan y el Espacio y el Tiempo pero, seguimos preguntándonos ¿qué hacemos nosotros aquí?

Spitzer revela la existencia de los fulerenos en el espacio por primera vez

La materia evolucionada llegó hasta nosotros valiéndose del Carbomo, ese elemento esencial la vida que conocemos

Las estrellas evolucionan que en su núcleo se comienza a fusionar hidrógeno en helio, berilio, carbono, xígeno, nitrógeno… De los elementos más ligeros a los más pesados.  Avanza creando en el “corazón” termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de el proceso de fusión llevando consigo materiales complejos de aquella supernova.

    ¿Qué sabemos de la Energía ? Sí, formamos parte del Universo inmenso que podemos contemplar. Sin embargo, son muchas las cosas que no sabemos explicar y las contemplamos con asombro y algo de miedo. La ignorancia es la madre del temor y no pocas veces, de la velentía malentendida. A veces, como ñiños inconscientes, jugamos con cosas que no hemos llegado a comprender.

Claro que si hablamos de la energía en el Universo, no debemos dejar de prestar atención a que,  la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos aquí y, muy posiblemente, será también el factor determinante para que lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie , se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, nosotros, se interesen por el destino que nos espera en el futuro.

alguien oye por vez primera la historia de la vida de las estrellas, cómo nacen, viven y mueren,  generalmente, no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como ser testigo de su evolución.

http://1.bp.blogspot.com/_hSuCohawC_Q/S_bNuIosk2I/AAAAAAAAAAk/SuxTbAI96VY/s1600/ciclo+de+vida+de+las+estrellas.jpg

          En cualquier Nebulosa podemos cúmulos de estrellas

Cuando mentalmente me sumerjo en las profundidades inmensas del universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos en realidad con relación al universo. una colonia de bacterias que habitan en una , allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno. Y, sin embargo, por otra , al pensar en la Mente de la que somos poseedores, me paso a otro pensamiento que es, totalmente opuesto y me dice que, algo más que simples seres vivientes sí que somos. El simple hecho de ser conscientes del Universo que nos da cobijo, es ya un síntoma de una más elevada categoría.

Igualmente, nosotros nos creemos importantes de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados. Podemos decir que hemos dado los primeros pasos para dar el salto otros mundos, pero aún nos queda un largo recorrido por delante. Uno de los principales problemas con los que tenemos que luchar, es el hambre en el mundo, la igualdad de los pueblos, y, seguidamente, tendremos que pensar en nuevas fuentes de energías que cubran las exigencias de una población creciente y exigente.

En todo galimatias de conocimientos restringidos por una enorme ignorancia, lo conveniente sería poder saber lo que realmente son los fotones y los electrones, esas dos minúsculas partículas elementales de las que sospecho, que pueden encerrar las verdades del mundo, es decir, los secretos más profundos de la Naturaleza. (¿Os acordáis de aquel número puro y adimensional? El 137 que surge del enlace con e, h, y c, donde pueden estar escondidas las cuestiones más profundas de lo que no sabemos: ahí está la esencia de la relatividad, nos habla de cuanto de acción de Planck y, por si fuera poco, el electromagnetismo está representado por el electrón.

¿Sabremos alguna vez? Hilbert, en su tumba, tiene grabado que sí, en su epitafio nos dice: “Tenemos que saber , ¡sabremos!”.

Me gustaría que tal predicción fuera cierta.

emilio silvera