martes, 29 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Las estrellas! Algo más que puntitos brillantes en el cielo

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

WISE: Nebulosas Corazón y Alma en Infrarrojo

“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazon (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una region de la galaxia donde muchas estrellas se estan formando. IC 1805 (la nebulosa Corazon) es a menudo llamada tambien  http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de  

Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de Lo que conocemos como estrella es una bola de gas luminosa que, protoestrellas, aún en formación y no lo suficientemente calientes  En el centro de la Nebulosa del Corazón ¿Qué poderes

                                                                                                        Seguimos en la Nebulosa del Corazón (otra región)

Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían

La estrella Sirio es la más brillante y  

           Eta Carinae (NGC 3372)  

 Betelgeuse  

                              VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.

El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.

 

Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, El Color de las estrellas indican de qué materiales están conformadas y, así se compruena mediante el estudio de sus espectros.

Siempre es bueno recordar

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosas curiosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Ciencia avanza sin cesar

El triángulo de verano sobre Cataluña

La madre Naturaleza que, si da un suspiro a destiempo, nos podría alejar de la faz de la Tierra para siempre y, ahí se acabó nuestro histórico recorrido por el este Valle de Lágrimas que, aunque nos ha dado la posibilidad de conocer la Belleza, algo de Felicidad, el Amor y el placer de para saber…no nos ha entretgado un Certificado de Garantías de nuestra permanencia para siempre en este bello planeta que, no siempre hemos sabido tratar como se merece.

En el siglo XX hemos podido ser testigos de múltiples y maravillosos descubrimientos científicos que han cambiado la concepción que del mundo podíamos tener: La teoría de Planck del cuanto que nos llevó directamente a la Mecánica Cuántica, el Relatividad de Einstein que nos lleva a un espacio-tiempo de cuatro dimensiones, nos dijo que la luz marcaba el límite de transmitir la información y, nos dijo que la masa y la energía eran una misma cosa, así que, el Tiempo, era relativo y no absoluto. Más tarde, en su ampliación de la teoría en 1916, nos dijo que la presencia de grandes masas distorsionaba el espacio-tiempo.

Estos dos claros exponentes de aquella revolución científica nos abrieron los ojos y la mente a un Universo distinto que , después de dichas teorías, tenía más sentido.

Otro de aquellos descubrimientos explosivos, fue la teoría cosmológica del big bang, que surgió como combinación de ambas, y, justo es que, se digan quienes fueron sus protagonistas que, no por sabido, estará demás dejar aquí un pequeño homenaje.

Cuando Einstein publicó en 1916 la teoría de la relatividad general era consciente de que ésta modificaría la ley de la gravedad de Newton: la solución a sus ecuaciones no sólo sustituyo el planteamiento dinámico de fuerza de atracción por otro geométrico de deformación del espacio-tiempo, sino que permitía explicar el universo en su conjunto.

 Fue él el primer sorprendido al encontrar que dicha solución global traía como consecuencia un mundo cambiante, un universo que inicialmente estimó en contracción. Como esto no le cabía en la cabeza introdujo un término en las ecuaciones que contrarrestara el efecto gravitatorio: una fuerza repulsiva, a la que llamó constante cosmológica (Λ) constante dotaba al espacio vacío de una presión que mantenía separados a los astros, logrando así un mundo acorde a sus pensamientos: estático, finito, homogéneo e isótropo.

El Universo se expande y las galaxias se alejan las unas de las otras. Eso no ocurre en el ámbito local

Años más tarde, Einstein comentaría que la introducción de esta constante, había sido el mayor error de su vida, porque (con una mejor estimación de la densidad) podía haber predicho la expansión del universo de que fuera observada experimentalmente. Claro que, su excusa era admisible, cuando el introdujo la constante cosmológica, nadie sabía que el universo estaba en expansión.

Con todo y a pesar de su enorme importancia, la teoría de la relatividad no llegó a tener verdadera importancia que, en 1919, Arthur Eddintong confirmó la predicción del físico alemán con respecto a la curvatura de la luz, aprovechó el eclipse solar de Sol de ese año. De la noche a la mañana, Einstein se convirtió en el físico más popular del mundo al predecir con su ingenio y con su enorme intuición fenómenos que eran reales antes de que éstos fueran comprobados. Así, con carácter desenfado, expresándose en términos sencillos y muy distintos (menos estirados) que los de sus colegas, había dado respuesta a preguntas que habían sido formuladas , que nadie hasta entonces, había sabido contestar.

Entre tanto, el astrónomo holandés Willem de Sitter obtuvo en 1917 una solución a las ecuaciones del sabio alemán, sugiriendo la posibilidad de que el universo fuera infinito, aparentemente estático y de densidad prácticamente nula en el que tan solo había energía. Por otro lado, el matemático ruso Alexander Friedmann consiguió en 1922 varias soluciones a las ecuaciones proponiendo universos que se contraían o que se expandían, según los valores que tomara la constante cosmológica. Cuando su se publicó en Alemania, Einstein respondió con una nota en la misma revista presumiendo un error matemático. El error resultó finalmente inexistente, pero Einstein tardó en rectificar, por lo que la respuesta de Friedmann quedó en un segundo plano.

 

Alexander Friedman

Los dos grandes retos que los Astrónomos habían tenido siempre habían sido medir las distancias a las estrellas y averiguar su composición. Como sabéis, el primero de los problemas se solucionó al utilizar las Cefeidas, estrellas de brillo variable, como estándares. Estas estrellas habían sido estudiadas por la astrónoma americana Henrietta Leavitt, y en 1912 había conseguido relacionar la magnitud absoluta (brillo intrínseco de una estrella) con el período de su oscilación luminosa.

Teniendo en esta Ley, Edwin Hubble había detectado en 1925 en el Mount Wilson Observatory doce cefeidas en la “Nebulosa” de Andrómeda que las situaban a una distancia mayor que el tamaño de nuestra Galaxia. Esto rompía todas las expectativas, ya que en ese se pensaba que todo el Universo estaba contenido en la Vía Láctea.

Clark dome.jpg

   Lowell Observatory de Flagstaff

El segundo reto había llevado a los astrónomos a estudiar el espectro de la luz que emiten las estrellas. Aunque en esa época la técnica espectroscópica era muy rudimentaria, comenzó a dar sus frutos. Uno de ellos vino de la mano de Vesto Slipher, quien en la conferencia que impartió en el Lowell Observatory de Flagstaff (Arizona), en junio de 1925, anunció que el espectro de la luz que había recogido en la mayor de las galaxias estaba desplazado hacia el rojo. No se sabía a ciencia cierta lo que esto podía significar, pero Harlow Shapley, apoyado en el Efecto Doppler, consideró que e4se corrimiento hacia el rojo era consecuencia de que las galaxias se desplazaban.

Un Universo eterno en evolución

Georges Lamaìtre irrumpió en ese escenario tímidamente, como un estudiante de postgrado. Había nacido a finales del siglo XIX en el sur de Bélgica. Era el mayor de cuatro hermanos. Su padre había estudiado Derecho en la Universidad de Louvain y tenía una fábrica de vidrio. Georges comenzó la carrera de Ingeniero de Minas en Lovaina, pero sus estudios se vieron interrumpidos al estallar la Primera Guerra Mundial, en la que participó como artillero. Al acabar el conflicto bélico, regreso a las Aulas, pero no para sus estudios de Ingeniería, sino que, se matriculó de en el segundo ciclo de Física y Matemáticas. A su término, ingresó en el Seminario de Malinas y en 1923 recibió las Órdenes sagradas.

Lemaitre.jpg

Georges Lemaître en 1933, una de sus exposiciones.

Su condición de sacerdote no le impidió en su carrera científica y pidió ser admitido como estudiante investigador de Astronomía en el Royal Observatory de Greenwich para el curso 1923-24. Allí fue alumno de Eddintong, que le enseñó a conjugar la Astronomía con la Teoría de la Relatividad. No dejó de estar al día con todos y cada uno de los adelantos y experimentos que se realizaban en aquel campo de la Astronomía Cosmológica.

En 1926, el Jurado de su Doctorado le comunicó que su tesis contenían todos y cada uno de los requisitos exigidos para su admisión y, resaltaban su grado de madurez matemática. En 1927, publicó un en el que presentaba una solución a las ecuaciones de la Relatividad general y que explicaba el Universo en su Conjunto.

Cuando escribió el trabajo no tenía noticias de trabajos previos de Friedmann, pues estaban escritos en ruso o alemán, y ninguno de los modelos ni soluciones que conocía entonces le convencían: el de Einstein contenía materia, pero era estático; el de De Sitter ajustando la constante cosmológica: un universo de simetría esférica era dinámico pero carecía de materia. Al considerar que la densidad de materia podía variar en el tiempo, Lamaítre propuso una solución intermedia la de Einstein y la de De Sitter ajustando la constante cosmológica: un universo de simetría esférica, eterno y en evolución. Con ese modelo no sólo buscaba una solución matemática correcta, sino que fuera compatible con la Física, al dar explicación a las observaciones astronómicas.

       Edwin Hubble

Años más tarde, Hubble hizo la misma propuesta que hoy conocemos con Constante de Hubble. Así que, el trabajo de Lamaítre pasó muy desapercibido y ello, le obligó a darlo a conocer para que, al menos, se le diera el mérito a que era acreedor por justicia. Lamaítre consideró que el universo estaba en expansión exponencial con un pasado infinito, donde su tamaño, era casi constante en un primer momento, para luego crecer rápidamente.

La celebración del V Congreso Solvay de Física, que tuvo lugar en Octubre de 1927 en Bruselas, le facilitó a Lemaítre la oportunidad de reivindicarse. Acudió y al término de una de ellas, se entrevistó con Einstein, que le comentó: “He leído su artículo. Sus cálculos son correctos, pero su física es abominable”. A pesar de todo, Lemaítre no se desanimó y esperó otra oportunidad. se presentó en Enero de 1930, con motivo de la Reunión habitual de la Royal Astronomical Society. En ella, DE Sitter mostró sus dudas sobre el modelo estático de Einstein, opinión que era compartida por Eddintong. Cuando Lemaítre leyó las Actas de la reunión, volvió a escribir a Eddintong, su antiguo profesor para recordarle que hacía tiempo que había propuesto una solución a ese problema. Su Profesor cayó en la del “olvido” y rectificó dando una conferencia titulada “La inestabilidad del universo esférico de Einstein”, en la que aplicó la solución de Lemaítre.

Allí quedó reconocido el mérito debido al primero que expuso un universo en expansión que, por motivos misteriosos de la historia, se llevó Hubble. De la misma manera, Copérnico se adjudicó lo que propuso, muchos años , Aristarco de Samos.

¡Qué cosas!

emilio silvera

El Universo cada día nos enseña algo nuevo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Gran Nebulosa de Orión
No pocas veces he podido pensar en la materia presente en el Universo y, como cualquier otro, en mi mente se crean teorías encaminadas a poder explicar su presencia y, no puede alejar de mis pensamientos esa idea que bulle vigorosa: Cuando se creó el universo y nacieron el espacio y el tiempo, allí había algo, una especie de “sustancia cósmica” que, estaba por todas partes y que, con el calor intenso se transformaba en materia, es decir, de aquella sustancia que todo lo permea (también ahora), surgen las partíoculas primarias que conforman la materia.
Es “sustancia cósmica” es como la semilla primera que en las adecuadas condiciones provoca el tránsito de sustancia simple, incola y transparente hacia otras formas más complejas en forma de Quarks y Leptones que, unidos en la adecuada manera, conforman los átomos de materia que más tarde lo conforma todo, desde oceános en los mundos a inmensas galaxias.
Cuando explota una estrella masiva en Supernova, se sabe que arroja sus capas exteriores al espacio interestelar y forman nebulosas pero, la inmensa masa de la estrella se contrae para convertirse en agujero negro o estrella de neutrones. Si eso es así (que lo es), ¿cómo pueden ser tan grandes las Nebulosas y contener tan ingentes cantidades de materia? Es posible que, si existe esa sustancia cósmica invisible”, cuando se produce esa enorme temperatura de la explosión de Supernova, una gran parte de esa sustancia haga la transición de fase para convertirse en materia sencilla como lo es el hidrógeno. De otra manera, no me explico cómo puede contener tanta materia una Nebulosa.
File:Trapezium cluster optical and infrared comparison.jpg
            Las estrellas del cúmulo del Trapecio en Orión son jóvenes estrellas de reciente nacimiento (dos millones de años)

“La nebulosa de Orión contiene un cúmulo abierto de reciente formación denominado cúmulo del Trapecio, debido al asterismo de sus cuatro estrellas principales. Dos de ellas pueden observarse como estrellas binarias en noches con poca perturbación atmosférica, efecto denominado seeing, lo que hace un total de seis estrellas. Las estrellas del cúmulo del Trapecio acaban de formarse, son muy jóvenes, y forman parte de un masivo cúmulo estelar con una masa calculada en 4.500 masas solares dentro de un radio de 2 parsecs llamado Cúmulo de la Nebulosa de Orión,9 una agrupación de aproximadamente 2.000 estrellas y con un diámetro de 20 años luz. Este cúmulo podría haber contenido hace 2 millones de años a varias estrellas fugitivas, entre ellas AE Aurigae, 53 Arietis, o Mu Columbae, las cuales se mueven en la actualidad a velocidades cercanas a los 100 km/s.10

Los observadores se han percatado de que la nebulosa posee zonas verdosas, además de algunas regiones rojas y otras azuladas con tintes violetas. La tonalidad roja se explica por la emisión de una combinación de líneas de radiación del hidrógeno, , con una longitud de onda de 656,3 nanómetros. El color azul-violeta es el reflejo de la radiación de las estrellas de tipo espectral O (muy luminosas y de colores azulados) sobre el centro de la nebulosa. El color verdoso supuso un auténtico quebradero de cabeza para los astrónomos durante buena parte de comienzos del siglo XX, ya que ninguna de las líneas espectrales conocidas podía explicar el fenómeno. Se especuló que estas líneas eran causadas por un elemento totalmente nuevo, y a dicho elemento teórico se le acuñó el nombre de “nebulium”. Más tarde, cuando ya se poseía mayor profundidad en el conocimiento de la física de los átomos, se llegó a la conclusión de que dicho espectro verdoso era causado por la transición de un electrón sobre un átomo de oxígeno doblemente ionizado. Sin embargo, este tipo de radiación es imposible de reproducir en los laboratorios, ya que depende de un medio con unas características concretas solo existentes en las entrañas del espacio.”

 

 

 

El origen de la materia  y la energía en el universo no ha podido ser bien explicado por la teoría del big bang que, en algunos aspectos, tiene algunas regiones oscuras que no dejan ver, con claridad, lo que allí pudo pasar y, en esa estamos cuando preguntamos: ¿De dónde vino la masa y la energía del Universo? Existen algunos fenómenos inexplicables por la gran explosión e incluso, predicen efectos que contradicen la experiencia. Tales son el problema del horizonte y la planitud. Para poder justificarlo se introdujo el modelo inflacionario.
Algunas de la teorías que nos sirven de base a nuestros actuales conocimientos, puede ser que con el tiempo y con los nuevos datos que van surgiendo de la observación y el experimento, puedan ir cambiando para revolucionarlo todo. Podemos leer noticias como esta:
                               La nueva teoría descarta que el Universo comenzara con una gran explosión

“En un estudio publicado en arXiv.org, Shu explica que el nuevo modelo responde a una nueva perspectiva sobre algunos de los conceptos básicos que se utilizan en astrofísica, como son el tiempo, el espacio, la masa y la longitud. En su propuesta, bastante difícil de entender la gran mayoría de los mortales que no tenemos un título en Física o en Astronomía, el tiempo y el espacio se pueden convertir el uno en el otro, y la velocidad de la luz es el factor de conversión entre ambas. Como el Universo se expande, el tiempo se transforma en el espacio, y la masa, en longitud. A medida que el Universo se contrae, ocurre lo contrario. En resumen, la propuesta de Shu tiene cuatro características distintivas. La primera es que la velocidad de la luz y la gravitación no son constantes, sino que varían con la evolución del Universo.
En segundo lugar, el tiempo no tiene principio ni fin, es decir, que ni estalló el Big Bang ni se producirá nunca un Big Crunch (el Gran Colapso, una teoría que predice que el Universo irá frenándose poco a poco comprimiéndose que todos sus elementos vuelvan al punto original, destruyendo toda la materia en un único punto de energía). Punto tercero: la sección espacial del Universo es de tres dimensiones curvadas en una cuarta, lo que descarta una geometría plana o hiperboloide, y por último, existen fases de aceleración y desaceleración.La idea, además de complicada puede parecer arriesgada, pero Shu asegura que sus encajan perfectamente con las observaciones realizadas por los astrónomos en la Tierra. Para entender el funcionamiento del Cosmos, su teoría no necesita de la energía oscura, una misteriosa fuerza que, según los científicos, componen el 74% del Universo y cuya existencia es discutida por algunos investigadores. Sin embargo, tiene un punto flaco, y es que sus ideas no pueden explicar la existencia de fondo cósmico de microondas, que se supone la evidencia más sólida de los restos del Big Bang.”

Otras noticias surgidas en los medios nos hablan ya de manera diferente de cuestiones que antes tenían otras perspectivas. Los nuevos ingenios con los que podemos mirar hacia el Universo más o menos lejano, nos dicen y hablan de cosas que antes, no conocíamos, y, por ejemplo, mirad esta noticia:
Avistan por primera vez la red cósmica que une al Universo

“Madrid. (Europa Press).- Astrónomos, dirigidos por expertos de la Universidad de California, en Santa Cruz, Estados Unidos, han descubierto un quásar distante que ilumina una gran nebulosa de gas difusa, revelando por primera vez de la malla de filamentos que se cree que conecta las galaxias en una red cósmica.

Mediante el uso del telescopio de 10 metros Keck I en el Observatorio W.M. Keck en Hawái, Estados Unidos, estos expertos detectaron una gran nebulosa luminosa de gas que se extiende cerca de dos millones de luz a través del espacio intergaláctico, según explican los investigadores en un artículo en Nature.

“Se trata de un objeto muy excepcional: es enorme, por lo menos dos veces mayor que cualquier nebulosa detectada , y se extiende mucho más allá del entorno galáctico del quásar”, explica el primer autor, Sebastiano Cantalupo, becario postdoctoral en la Universidad de California Santa Cruz.

El modelo cosmológico estándar de formación de estructuras en el universo predice que las galaxias están incrustadas en una red cósmica de la materia, la mayoría de las cuales (aproximadamente el 84 por ciento) son la materia oscura invisible.

Esta red se ve en los resultados de las simulaciones por ordenador de la evolución de la estructura del universo, que muestran la distribución de la materia oscura en grandes escalas, incluyendo los halos de materia oscura en los que las galaxias se forman y de la red cósmica de filamentos que los conectan. La gravedad hace que la materia ordinaria siga a la distribución de la materia oscura, por lo que se espera que los filamentos de gas ionizado difuso tracen un patrón similar al observado en las simulaciones de materia oscura. Hasta , sin embargo, nunca se han visto estos filamentos.

El gas intergaláctico ha sido detectado por su absorción de luz a partir de fuentes de fondo brillante, pero los resultados no revelan cómo se distribuye el gas. En este estudio, los investigadores detectaron el brillo fluorescente del gas de hidrógeno que resulta de su iluminación por la intensa radiación del quásar. “Este quásar ilumina gas difuso en escalas mucho más allá de cualquiera de los que hemos visto antes, lo que nos da la primera imagen de gas extendido entre las galaxias. Proporciona una visión excelente de la estructura general de nuestro universo”, subraya el coautor J. Xavier Prochaska, profesor de Astronomía y Astrofísica en la Universidad de California Santa Cruz.

El gas hidrógeno iluminado por el quásar emite luz ultravioleta conocida como radiación Lyman alfa. La distancia al quásar es tan grande (unos diez millones de años luz) que la luz emitida se “estira” por la expansión del universo a partir de una longitud de onda ultravioleta invisible hacia un tono más visible de color violeta en el en que llega al telescopio Keck.

Conociendo la distancia al quásar, los científicos calcularon la longitud de onda de la radiación Lyman alfa desde esa distancia y construyeron un filtro especial para el espectrómetro del telescopio LRIS con el fin de obtener una imagen en esa longitud de onda. “Hemos estudiado otros quásares de esta manera sin la detección de este gas prolongado -resalta Cantalupo-. La luz del quásar es como un rayo de luz y, en este caso, tuvimos la suerte de que la linterna esté apuntando la nebulosa y haciendo al gas resplandecer. Creemos que esto es parte de un filamento que puede ser aún más extendido, pero sólo vemos la parte del filamento que se ilumina por la emisión de haces del quásar”.

 

Núcleos galácticos y agujeros negros

 

 

 

 

Un quásar es un de núcleo galáctico activo que emite una intensa radiación alimentado por un agujero negro supermasivo en el centro de la galaxia.

En una investigación anterior de quásares distantes usando la misma técnica buscar gas brillante, Cantalupo y otros detectaron las llamadas “galaxias oscuras”, los nudos más densos de gas en la red cósmica. Se cree que estas galaxias oscuras son demasiado pequeñas o jóvenes para tener estrellas formadas.

“Las galaxias oscuras son piezas mucho más densas y pequeñas de la red cósmica. En esta nueva imagen, también vemos galaxias oscuras, además de la nebulosa mucho más difusa y extendida”, apunta Cantalupo. “Parte de gas caerá en las galaxias, pero la mayor parte seguirá estando difuso y nunca formará estrellas”, agrega.

Los expertos estimaron que la cantidad de gas en la nebulosa es por lo diez veces mayor de lo esperado en los resultados de las simulaciones por ordenador. “Creemos que puede haber más gas contenido en pequeños grupos densos dentro de la red cósmica de lo que se ve en nuestros modelos. Estas observaciones están desafiando nuestra comprensión de gas intergaláctico y dándonos un nuevo laboratorio para poner a prueba y perfeccionar nuestros modelos”, concluye este experto.”

 

 

Las Fotografías más Bellas del Universo

 

Lo cierto es que cada día nacen nuevas estrellas y explosionan otras que dejan material para que todo siga igual. A partir de lo que fue nace lo que hay y, en cuanto a eso que llamamos vacío, debemos saber que el vacío absoluto no existe y, si la materia del Universo surgió, es porque había, no pudo surgir de la nada. En el calor del Big Bang se formó la materia primera y, ahora mismo, en el calor de pequeños big bang en forma de explosiones supernovas, continúa surgiendo materia nueva a partir de la sustancia cósmica que todo lo permea. Todo el Universo está inundado por esa frágil y transparente sustancia que, más tarde, en las adecuadas condiciones, se transforma en la materia que conocemos.

emilio silvera

 

¿Habeis pensado por qué hay vida en el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

 

Cada día, elegimos una cuestión distinta que se relaciona, de alguna manera, con la ciencia que está repartida en niveles del saber denominados: Matemáticas, Física, Química,Astronomía, Astrofísica, Biología, Cosmología… y, de vez en cuando, nos preguntamos por el misterio de la vida, el poder de nuestras mentes evolucionadas y hasta dónde podremos llegar en nuestro camino  

Robert Henry Dicke (6 de mayo de 1916 – 4 de marzo de 1997) fue un físico experimental estadounidense, que hizo importantes contribuciones en astrofísica, física atómica, cosmología y gravitación. Hombre inquieto, muy activo y, sobre todo, curioso por saber todo aquello que tuviera alguna señal de misterio.

Me referiré ahora aquí al extraño personaje que arriba podeis ver. Se sentía igualmente cómodo como matemático, como físico experimental, como destilador de  

Paul Adrien Maurice Dirac (8 de agosto de 1902 – 20 de octubre de 1984) fue un físico teórico británico que contribuyó de forma fundamental al desarrollo de la mecánica cuántica y la electrodinámica cuántica. Su electrón, en nada tiene que envidiar a los de Einstein.

Dirac, que predijo la existencia del positrón, le dedicó un estudio a la Grabevedadpor al hilo de una serie de números y teorías propuestas  Eddintong en aquellos tiempos y decidió abandonar la constancia de la constante de gravitación de Newton, G. Sugirió que estaba decreciendo en proporción directa a la edad del universo en escalas de tiempo cósmicas. Es decir, la Gravedad en el pasado era mucho más potente y se debilitaba con el paso del tiempo.

Así pues, en el pasado G era mayor y en el futuro será menor que lo que mide hoy. veremos que  la enorme magnitud de los tres grandes números (1040, 1080 y 10120) es una consecuencia de la gran edad del universo: todas aumentan con el paso del tiempo.

La propuesta de Dirac provocó un revuelo un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

 

 

 

Siempre hemos estado obsesionados con algunos números en los que creímos ver significados ocultos

 

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de Gran [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

 

La propuesta de Dirac levantó controversias los físicos, y Edward Teller en 1.948, demostró que si en el pasado la gravedad hubiera sido como dice Dirac, la emisión de la energía del Sol habría cambiado y la Tierra habría mucho más caliente en el pasado de lo que se suponía normalmente, los océanos habrían hirviendo en la era precámbrica, hace doscientos o trescientos millones de años, y la vida tal como la conocemos no habría sobrevivido, pese a que la evidencia geológica entonces disponible demostraba que la vida había existido hace al menos quinientos millones de años.

 

 

               Las constantes de la Naturaleza han sido medida de mil maneras

Dicke, ya podéis imaginar que fue uno de los que de inmediato se puso manos a la obra Einstein que incluye una G variable. En efecto, Einstein no coincidían en lo referente o sobre el cambio de órbita de Mercurio que era distinta a las observaciones cuando se tenía en cuentra la Pero, antes de comenzar con el tema central, hagamos una parada para hablar del “ 

Placa tomada por Eddintong en Puerto Principe, en la que se corroboraba la predicción de Einstein de la Teoría de Relatividad General. El Sol se curvaba en presencia de grandes masas. Al margen iaquierdo y derecho los dos protagonistas.

El universo conocido, es aquel que podemos observar, osea, la luz que nos ha llegado hasta protones en esa zona a donde “alcanza nuestra vista” protones aproximadamente, es decir, un 1 seguido de 80 ceros. Este número es el cuadrado de “10 elevado a 40”

 

A lo largo del Siglo XX se observó que algunas de las cifras que se dan en la naturaleza coinciden de manera sorprendente, y más extraño aún resultó el hecho de que se refieren a ámbitos físicos aparentemente independientes. Otro elemento insólito consistía en que todas ellas giraban alrededor de un  

Como acabamos de ver, el tamaño del Universo visible varía con el tiempo. Si dividimos su tamaño actual electrón obtenemos Razón entre Gravedad y Electromagnetismo del Electrón y el Protón.

Un electrón y un protón se atraen de dos maneras, por un lado a causa de que el primero tiene carga eléctrica positiva y el segundo negativa, y ya se sabe que cargas contrarias se atraen. Por el otro, a causa de sus propias masas, como efecto de la fuerza de la gravedad. Se  

Cuando un objeto de masa específica se libera en el aire, seguramente se caerá al suelo. Este fenómeno es debido a la Gravedad ejercida fuerza gravitacional es de suma importancia  

EL magnetismo, a su vez, es resultado del movimiento y la composición del núcleo de la Tierra, que tiene una parte sólida y otra líquida, que comprende las aleaciones de hierro. Por lo tanto, la Tierra tiene un campo magnético muy fuerte, comportándose como un enorme imán, donde los polos del imán se encuentran cerca de los polos de la Tierra geográfica.

De Estos son los principales resultados, los cuales impulsaron interesantes especulaciones que veremos enseguida, pero podemos añadir que, operando con fenómenos físicos, ese 10 elevado a 40 ha sido encontrado más veces, ya sea el propio

           Creo que las constantes de la Naturaleza permiten la presencia de la Vida en el Universo

Robert Dicke, que este era el Einstein a inexactitudes de nuestros intentos de medir el diámetro del Sol que hacían que este pareciera tener una De todas las maneras, lo anterior no quita importancia al  

                                                                   Cadenas de ADN en el Universo

“El problema del gran tamaño de estos números es ahora fácil de explicar… Hay un único Cuatro años más tarde desarrolló esta importante intuición con más detalle, con especial referencia a las coincidencias de los grandes números de Dirac, en una breve carta que se publicó en la revista Nature. Dicke argumentaba que formas de vidas bioquímicas como nosotros mismos deben su propia base química a elementos tales como el carbono, nitrógeno, el oxígeno y el fósforo que son sintetizados tras miles de millones de años de evolución estelar en la secuencia principal. (El argumento se aplica con la misma fuerza a cualquier  

Todos los procesos de la Naturaleza, requieren su tiempo. Desde un ambarazo a la evolución de las estrellast(estrellas) ≈ (Gmp2 / hc)-1 h/mpc2 ≈ 1040 ×10-23 segundos ≈ 10.000 millones de No esperaríamos estar observando el universo en tiempos significativamente mayores que t(estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el universo en tiempos mucho menores que t(estrellas) porque no podríamos existir; no había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t(estrellas) Big Bang.

 

La escena de una estrella moribunda fue necesaria para que, los materiales biológicos que nos conformaron a los seres vivos, pudieran estar presentes en el Universo. Sin ese tiempo de t(estrellas) = a 10.000 millones de años, difícilmente podríamos estar Así pues, el valor que del gran Todo lo que la coincidencia de Dirac dice es que vivimos en un tiempo de la Historia Cósmica posterior a la formación de las estrellas y anterior a su muerte. Esto no es sorprendente. Dicke nos está diciendo que no podríamos dejar de observar la coincidencia de Dirac: es un requisito  [1269277012_g_0.jpg]

Transiciones de fase que son el pan de cada día de nuestro universo, posibilitan que, a partir de la muerte surja la nueva vida en toda su diversidad. Del casamiento de dos galaxias queda una sóla entidad, nueva, que suple a los dos existencias anteriores y, con los materiales, estrellas y mundos unidos De esta Big Bang contenga las ladrillos básicos necesarios para la evolución posterior de la complejidad biológica-química debe tener una edad al menos tan larga, Esto significa que el universo observable debe tener al ¿Por qué no hemos encontrado extraterrestres?

 

 

No parece tan difícil responder a esa pregunta si pensamos en el Tiempo y en la Distancia, es decir, el Espaciotiempo que habría que cubrir para encontrar a otros seres que pudieran ser, como nosotros, pobladores de mundos lejanos. Sin embargo, una duda siempre queda en el aire. Nuestros telescopios alcanzan galaxias situadas Un argumento hermosamente simple con respecto a la inevitabilidad del gran tamaño del universo Estimulado por las sugerencias Whitrow, escribe:

“Si tenemos tendencia a sentirnos intimidados sólo por el tamaño del universo, está bien recordar que en algunas teorías cosmológicas existe una conexión directa entre la cantidad de materia en el universo y las  

Claro que los procesos de la alquimia estelar necesitan tiempo: miles de millones de años de tiempo. Y debido a que nuestro universo se está expandiendo, tiene que tener un tamaño de miles de millones de años-luz para que durante ese periodo de tiempo necesario pudiera haber fabricado los componentes y elementos complejos para la vida. Un universo que fuera sólo del tamaño de nuestra Vía Láctea, con sus cien mil millones de estrellas resultaría insuficiente, su tamaño sería sólo de un mes de crecimiento-expansión y no habría producido esos elementos básicos para la vida.

 

                      La Alquimia estelar está aquí presente por todas partes

El universo tiene la curiosa propiedad de hacer que los seres vivos piensen que sus inusuales propiedades son poco propicias  

¡Somos tan pequeños! ¡¡Podríamos llegar a ser tan grandes!! Parece que seguimos en aquella Torre de Babel en la que nadie se entendía

Sabemos aún muy poco sobre sus misterios, nuestras capacidades son limitadas y al nivel de nuestra tecnología actual estamos soportando el peso de una gran ignorancia sobre muchas cuestiones que necesitamos conocer. Con sus miles de millones de galaxias y sus cientos de miles de millones de estrellas, si niveláramos todo el material del universo para conseguir un mar uniforme de materia, nos daríamos cuenta de lo poco que existe de cualquier cosa. La media de materia del universo está en aproximadamente 1 átomo por

  Los precesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será.

agujeros negros, estrellas de neutrones, galaxias y desconocidos planetas; la verdad es que casi todo el universo está vacío y sólo en algunas regiones tiene agrupaciones de materia en forma de estrellas y otros objetos estelares y cosmológicos; muchas de sus propiedades y características más sorprendentes (su inmenso tamaño y su enorme edad, la soledad y oscuridad del espacio) son  http://1.bp.blogspot.com/_uXKk8OXldZw/TKBNhPHG90I/AAAAAAAAHpk/QdQKGz0XB1k/s1600/ovni.jpg

Claro que, siempre tendremos la duda de cómo podrá ser esa posible vida extraterrestre. ¿Será mala Claro que, La baja densidad media de materia en el universo significa que si agregáramos material en estrellas o galaxias, deberíamos esperar que las distancias medias El universo visible contiene sólo: 1 átomo por metro cúbico 1 Tierra por (10 años luz)3 1 Estrella por (103 años luz)3 1 Galaxia por (107 años luz)3 1 “Universo” por (1010 años luz)3

El cuadro expresa la densidad de materia del universo de varias maneras diferentes que muestran el alejamiento que cabría esperar emilio silvera

Existen enigmas en el Sol que debemos conocer

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Gracias al Sol, podemos tener una serie de mejoras y tecnologías que aprovechan sus rayos de luz y su calor para obtener la energía limpia que necesitamos, y, cierto es que, teniendolo tan cerca (es la estrella más cercana a nosotros), aún nos quedan por desvelar muchos secretos que esconde. Pero veamoslo otras perspectivas.

Se han programado modelos donde la composición de la Corona del Sol ha sido alterada digitalmente y que, mediante la combinación de 30 fotografías se nos hace ver las periféricas olas y filamentos y, por mi , con el modelo por delante en la pantalla de mi ordenador, estoy viendo esa parte interior brillante de la corona (corona K), provocada por la luz del Sol difundida por electrones. Es la auténtica corona, al revés que la corona F, que es debida a la luz difundida por las partículas de polvo.

Debido a las velocidades extremadamente altas de los electrones libres (en promedio 10.000 Km/s para una temperatura coronal de unos 2 millones de K, las líneas de Fraunhofer del espectro fotosférico se encuentran difuminadas de manera que el espectro de la corona K es casi un puro continuo.

Yo, ante la imagen de arriba y las figuras que están presenten en ese resplandor de la corona del Sol, estoy viendo la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitacionales son intensos, es el caso de la fuerza de Gravedad que produce la inmensa masa de nuestro Sol y, a su alrededor, el espacio se curva y el tiempo se distorsiona.

En relatividad general la geometría del espacio-tiempo está íntimamente relacionada con la distribución de materia. En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría euclidea se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvarán. Esto es, en esencia, lo que ocurre en relatividad general.

Es un hecho comprobado que, la presencia de grandes masas como la de planetas (La Tierra) o estrellas (El Sol), distorsionan el espacio y dibujan la geometria del Universo gracias a la fuerza de Gravedad. Así nos lo explica la relatividad general de Einstein largamente comprobada.

En los modelos cosmológicos más sencillos, basados en el universo de Friedman, la curvatura del espacio-tiempo está relacionada simplemente con la densidad media de materia, y se describe por una función matemática exacta denominada métrica de Robertson-Walker.

     Métrica de Robert-Walker

Si un universo una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio tiempo está curvado sobre sí mismo, la superficie de una esfera; la suma de los ángulos de un triángulo dibujados sobre la esfera es entonces mayor que 180º. Dicho universo tiene tamaño y vida finita; se trata de un universo cerrado.

Un universo con menor densidad que la crítica se dice que tiene curvatura negativa, como la superficie de una silla de montar, en la que la suma de los ángulos de un triángulo es menor que 180º. Dicho universo sería infinito y se expandiría siempre, se trata de un universo abierto. El Universo del Einstein-de Sitter tiene densidad crítica y es, por consiguiente, especialmente plano (euclideo) e infinito tanto en el espacio como en el tiempo.

la distorsión del tiempo y la curvatura espacial no la podemos ver (sólo se dejan sentir sus efectos) al ver la Imagen distorsionada de la Corona me vino a la mente la curvatura espaciotemporal que producen las grandes masas en el espacio circundante, y, de ahí llegue a los tres modelos del universo abierto, cerrado y plano que arriba quedan significados.

En realidad, lo que aquí arriba estamos viendo es la corona visible en luz blanca, la Corona del Sol observada en longitudes de onda visibles los eclipses totales de Sol y con corónografos. La emisión en luz blanca tiene su origen en la luz de la fotosfera del Sol que se difunde por los electrones libres (la corona K) y el polvo (la corona F). Una pequeña cantidad de luz visible procede de las líneas de emisión (la corona E).

En presencia de grandes masas de materia, tales planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea. También, es la gravedad la que hace que se fusionen las galaxias vecinas que, con el tiempo, se unen en un matrimonio indisoluble.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

Es difícil imaginar que una partícula subatómica genere gravedad

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Cuando hablamos de la Corona del Sol nos estamos refiriendo a un gas altamente ionizado y extremadamente caliente (alrededor de los 2 millones de K) que rodea al Sol. Existen otras estrellas que presentan coronas. La corona solar (como podemos comprobar arriba) son visible durante los eclipses totales como una región blanca que se extiende varios radios solares, mostrando filamentos, penachos, plumas y burbujas o bucles.

La radiación de la corona en luz blanca componentes debidas a líneas de emisión (la corona E) a la difusión de electrones (la corona K) y a partículas de polvo (la corona F). La extensión externa de la corona es el viento solar.

Las imágenes de rayos X de la corona solar muestran estructuras complejas con bucles cerca de los grupos de manchas solares, y cerca de los puntos brillantes de rayos X, más pequeños. La emisión de rayos X, además de las líneas de emisión de los átomos altamente ionizados (líneas coronales), indican que la temperatura es de 2 millones de K; pueden ser encontradas temperaturas incluso mayores de 4 millones K en las condensaciones coronales.

Los campos magnéticos con una intensidad de 10 exp. -3 tesla, gobiernan la de la corona. Los campos magnéticos forman bucles cerrados en las regiones activas, y en la mayor parte de la corona tranquila (es decir, regiones no activas), si bien en los agujeros coronales las líneas de campo magnéticos son abiertas y se extienden por el espacio, no volviendo al Sol.

Por el , se desconoce como se calienta la corona, aunque el mecanismo probablemente está conectado con los fuertes campos magnéticos allí presentes. De todas las maneras de millones de K en la corona a 5.770 K en la superficie, 4.400 K en el mínimo de temperatura de la fotosfera y, una cromosfera de 20.000 K, nos da a entender que existe un aumento de temperatura con la altitud –en la región de transición- hacia la corona donde la tempera llega al máximo antes expresado de millones de K.

Está claro que, sobre el Sol debemos procurar profundizar en esas lagunas que se forman en nuestro entendimiento de los fenómenos que allí ocurren y, la temperatura de la Corana Solar, es una de ellas.

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene encuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 tonelada.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 654 millones de toneladas por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.

Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás. Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

      La radiación solar incide en la Tierra y produce una serie de fenómenos que contribuyen a que las cosas sean tal las podemos ver

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.

La complejidad que encierra los mecanismos de una simple estrella es tan profunda que, conocer los entrecijos de la más cercana a nosotros (el Sol, del que por cierto depende la vida en la Tierra), necesitamos investigar más, hacer nuevos midelos y nuevas observaciones que, a través de sondas espaciales robóticas nos puedan decir lo que realmente allí ocurre.

emilio silvera