jueves, 21 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Comentario sobre Lovejoy y sobre la idea del Alma

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Recordemos aquí algunos pasajes que pude encontrar en fuentes diversas, sobre todo, en el Libro Ideas de cuyo autor PETER WATSON, podríamos decir que aquí, nos dejó un enorme estudio del saber del mundo y de aquellos acontecimientos del pasado que, desde luego, no deberíamos olvidar. Aquí os dejo algunos pasajes que, de vez en , apostillo con alguna que otra frase mía.

Arthur Oncken Lovejoy, historian and philosopher of science

 

Lovejoy era en todos los sentidos una figura impresionante.  Leía libros en inglés, alemán, fránces, griego, latín, italiano y español, y sus estudiantes contaban anécdota que, había pasado su año sabático de la Johns Hopkins dedicado a leer “los pocos libros de la biblioteca del Museo Británico que aún no había leído.  Sin embargo, se le reprochó por tratar las ideas como “unidades” entidades subyacentes e inalterables, como los elementos químicos.

¡Qué cosas!

                                 Beltrand Russell

Lovejoy fue ciertamente quien dio el impulso inicial a la historia de las ideas al convertirse en elprimer director del Journal of the History of  ideas, fundado en 1.940 ( los primeros colaboradores estaban Bertrand Russell y Paul  O. Kristeller).  En el primer ejemplar, Lovejoy expuso el objetivo primordial del Journal: explorar la influencia de las ideas clásicas en el pensamiento moderno.

Lo curioso del caso es que, en los años transcurridos desde su fundación (hace más de 70 años), el Journal of the History of  ideas ha continuado explorando la sutil en que una idea lleva a otra a lo largo de la historia.  He aquí algunos de los temas tratados en números recientes: El efecto de Platón en Calvino; la admiración que Nietzsche profesaba por Sócrates; el budismo en el pensamiento alemán del siglo XIX; la relación de Newton y Adam Smith; el vínculo de Emerson con el hinduismo; Bayle precursor de Kart Popper;  el paralelismo entre la antigüedad tardía y la Florencia del Renacimiento; etc.

En  su ensayo aparecido en el Journal celebrar el cincuentenario de su publicación, el colaborador que lo escribía identificaba tres fallos dignos de ser señalados.

Uno de ellos era la incapacidad de los historiadores para comprender el verdadero significado de una de las grandes ideas  modernas, la “secularización”.

Otro, la generalizada decepción  respecto a la “psicohistoria”, existían santísimas figuras que reclamaban una comprensión psicológica profunda: Erasmos, Lutero, Rousseau, Newton, Descartes, Vico, Goethe, Emerson, Nietzche…

                                                                                                            Descartes –  Nietzche  –  Goethe

Y, por último, el fracaso de historiadores y científicos dar cuenta de la “imaginación” como una dimensión de la vida en general y, especialmente, de la producción de ideas.

¡Las ideas, qué peligro!

Es la única libertad que nos podemos permitir.  El pensar libremente y para nosotros mismos, otra cosa es el exponer nuestros pensamientos a los demás.  Unas veces por inconveniente, otras por pudor, otras por temor a las críticas, y otras por parecernos a nosotros mismos indignas de ser conocidas, así, se pierden grandes ideas.

Alguna vez he comentado  sobre el Laboratorio Cavendish, y me viene a la memoria que fue allí, donde Thomson, en 1.897, realizó el descubrimiento que vino a coronar anteriores ideas y trabajos de Benjanmin Franklin, Euge Goldstein, Wilhelm Röntgen, Henri Becquernel y otros.

la antigüedad tardía y la Edad Media, la tecnología del Alma…

Pero, ¿qué es el Alma? Acaso un invento de los hombres tener la esperanza de que, todavía pueden salvar algo. Su relación con la “otra vida”, con la divinidad y, en especial, con el clero, permitió a las autoridades religiosas ejercer un poder extraordinario.

No se puede negar que, la idea del Alma, enriqueció inmensamente la mente de los seres humanos a lo largo de los siglos, pero tampoco se puede negar que también es cierto que durante ese mismo tiempo mantuvo a raya el pensamiento y la libertad. ¿Os acordáis de Giordano Bruno y Galileo? Aquello retrasó el progreso y contribuyó a mantener el pueblo (en su mayor ) ignorante y sometido al clero educado y culto.

 

Si él mirara atrás, hasta la Edad Media, vería con verguenza como sus iguales, vendían indulgencias. Es decir, cobraban por salvar las “Almas” de los pecadores que, con riquezas, no con arrepentimientos, se creían a salvo de sus maldades. ¿habrá mirado y, al ver aquello, ha decidido marcharse?

Sólo tenemos que pensar en la desfachatez con que el fraile Tetzel afirmaba que era posible comprar indulgencias para las “almas” del purgatorio, y que estas saldrían volando al cielo tan pronto las monedas golpearan el plato.  Los abusos como estos, aún persisten hoy en día, nada más claro como ejemplo el ver la cantidad de ancianos y viudas que solos en la vida y enfermos, dejan sus fortunas a la Iglesia que, por cierto, tienen situadas sus propiedades en las mejores enclaves de las ciudades.

Los abusos a que se prestaba lo que algunos llaman “tecnologías del alma” fueron uno de los principales factores que condujeron a la Reforma, la cual, a pesar de lo ocurrido con Juan Calvino en Ginebra, fundamentalmente despojó al clero del control de la fe e impulsó la duda y el descreimiento.

Sí, de muchas maneras nos pintaron el Alma que, muchos, abusando de la ignorancia del pueblo, supuso un gran negocio “su salvación”. Aun hoy, desgraciadamente, prevalece mucho de aquel mundo.

Las diversa transformaciones del alma (la idea de que estaba contenida en el semen en la Grecia de Aristóteles,  el alma tripartita del Timen platónico, la concepción medieval y renacentista del Homo duplex, la idea del alma como mujer, o como ave, el diálogo el alma y el cuerpo de Marvell, “las monadas” de Leibniz) pueden resultar hoy bastante pintorescas, pero en su época fueron cuestiones muy serias, y constituyeron importantes etapas en la ruta hacia la idea moderna del ser.

En mi anterior os hablé de manera bastante extensa sobre estas cuestiones del ser, el alma, la conciencia y, en definitiva, del cerebro que es habitad natural de todas estas cuestiones.  La filosofía y la metafísica están presentes haciendo compañía a lo que entendemos por ser consciente.

Las profundidades del ser (nuestro complejo de interioridad) se manisfestó en la llamada Era Axial, en términos aproximados, entre los siglos VII y IV a. de C.

       Repartían oraciones como placebos mitigar las penas a cambio de prebendas

Por aquella época, más o menos de manera simultánea, ocurrió algo similar en Palestina, la India,  China, Grecia y muy posiblemente también en Persia.  En uno de estos casos, la religión establecida se había vuelto en extremo ritualista y exhibicionista.  En particular, en todas partes habían surgido sacerdotes que se habían adjudicado una posición de altísimos privilegios, con lo cual, Vivian de manera totalmente opuesta a lo que predicaban.

Aquella casta privilegiada, controlaba el acceso a Dios o a los Dioses (según los casos), y se beneficiaba de su elevado estatus que, sobre todo, ponían al servicio de los poderosos de turno.

Pero en todas estas culturas, surgieron profetas molestos que, al pregonar la salvación del Alma otro prisma distinto, dejaban al descubierto las mentiras interesadas de estos sacerdotes y falsas religiones.

                                                                                                     Buda

Surgieron profetas (en Israel) u hombres sabios (Buda y los autores de los Upanishads en la India, Confusio en China,  etc.)  que denunciaron al clero y recomendaron la introspección, a sostener que la ruta hacia la auténtica santidad implicaba algún de abnegación y de estudio íntimo.  Platón sentó las bases de la supremacía de la mente sobre la materia.

                                                                                Confucio

Todos estos hombres mostraron el camino a través del ejemplo , y su mensaje es muy similar al que más tarde predicaron Jesús y,  más tarde, San Agustín y algún otro.

De éstos auténticos hombres buenos  que incluso sacrificaron sus vidas para dedicar todo su esfuerzo al bien de los demás, se han aprovechado, tiempos inmemoriales, la legión de espabilados que amparados y enmascarados en las distintas religiones han utilizado toda esa bondad para el propio lucro, engañando a los fieles de buena fe de manera inmisericorde y en ausencia total de conciencia, moral y ética. ¡Que gentuza!

Prefiero no seguir por este camino y dejo aquí el comentario, ya que, de seguir este sendero espinoso estaría recorriendo un escabroso historial lleno de barbaridades e injusticias del ser humano y, todo ello, en el de Dios.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://www.iac.es/img/prensa/prensa668_826_hi.jpg

La misión Kepler busca planetas extrasolares y estudia el interior de las estrellas a través de sus vibraciones. En composición se observa una de estas estrellas con un planeta orbitando entorno a ella. La estrella oscila debido a ondas acústicas resonantes.

Las trazas en rojo representan las oscilaciones que recorren el interior de la estrella. En la representación se ven los caminos recorridos por las ondas entre la superficie y un punto de su interior y que hay ondas que llegan el núcleo del Sol y otras que quedan atrapadas más cerca de su superficie.  (Fuente: Gabriel Pérez Díaz, Instituto de Astrofísica de Canarias).

Mientras  en el núcleo del Sol quede suficiente hidrógeno mantener las reacciones termonucleares, la estrella que nos alumbra inundará la Tierra con radiación solar, que suministra la energía necesaria para mantener la mayoría de los procesos físicos y químicos que se producen en nuestro planeta.

radiación calienta la atmósfera y el océano, genera vientos y lluvias y sostiene el inexorable proceso de la denudación. De todas las conversiones generadas de las energías globales que se producen en la Tierra, las geotectónicas (la lenta modificación del fondo oceánico y de los continentes, acompañada de terremotos y las espectaculares liberaciones energéticas de los volcanes), son las únicas que no proceden de la radiación solar, sino de la gravedad y de la liberación gradual del calor terrestre.

La luz solar también suministra la energía necesaria para la fotosíntesis, la más importante transformación bioquímica, creando nueva biomasa en bacterias, fitoplancton, plantas superiores y, sobre todo, en bosques y praderas. Esta síntesis es el fundamento de la cadena alimenticia necesaria para el metabolismo heterótrofo de animales y personas, a los cuales la nutrición les permite desarrollar actividades que van una simple carrera a trabajos más elaborados, como la ocupación laboral y el ocio.

Así de importante es la luz. Las sociedades humanas, desde los pequeños grupos de cazadores o pastores hasta las sociedades más complejas que dependen de los enormes flujos de combustibles fósiles y electricidad, han ineludiblemente ligadas al continuo flujo de energía solar y a los almacenamientos energéticos procedentes de la misma.

El proceso de formación de carbón a partir de restos vegetales acumulados en zonas acuáticas y sumergidos, de tal manera que estaban aislados de la atmósfera, sufrieron una transformación por efecto de las bacterias anaeróbicas, que aumentan la concentración de carbono de los azúcares y desprenden gases, como metano y anhídrido carbónico. Así se forma una masa gelatinosa de turba. Posteriormente, ésta se hunde y sobre ella se van depositando nuevas capas. Las más inferiores pueden sufrir transformaciones metamórficas debido a la elevada presión y temperatura que soportan, convirtiéndose en grafito. Las biológicas, climáticas y estructurales más favorables para que tenga lugar esta serie de transformaciones se dieron durante el periodo carbonífero, que en Eurasia y Norteamérica se encontraban situadas en posición tropical y cubiertas de grandes bosques próximos al mar, que se inundaron debido a los movimientos verticales causados por la orogenia hercínica. Los yacimientos de carbón de mayor antigüedad proceden del devónico y los más modernos del cuaternario inferior.

La materia orgánica se transforma, el moho aparece y las condiciones del ambiente lo transforman todo. De la misma manera, ocurre con los combustibles fósiles que, a partir de plantas y materia en anaeróbico, se producen esas transformaciones a lo largo de millones de años.

[Bacterias+metanogenas.jpg]

Bacterias metanógenas estas bacterias terrestres de la imagen podrían ser las responsables de la liberación de gas metano en Marte

La primera etapa del proceso de degradación de la materia orgánica es la formación de metano por la acción de las bacterias. Posteriormente, durante el enterramiento de la misma, se produce la transformación a un producto intermedio denominado kerógeno, que puede ser de distintos tipos dependiendo de la materia orgánica original presente en los sedimentos. Así, los denominados kerógenos de tipo I e II darán lugar a la generación de petróleo. Junto con la presión actúa la temperatura, que alcanza las más favorables para la producción entre los 70 y los 100 ºC. Estas temperaturas pueden alcanzarse, dependiendo del gradiente geotérmico, entre los 2 y los 3,5 km de profundidad. Con el aumento de la temperatura disminuye la producción de petróleo y aumenta la de gas “húmedo” (se llama así, ya que junto con el metano entran en la composición etano, propano y butano, que pueden condensarse, con facilidad a la fase líquida). A partir de los 150 ºC se genera gas seco (compuesto principalmente de metano), y si el enterramiento es más profundo, los residuos pueden llegar a convertirse en grafito.

El carbono es un elemento químico de atómico 6 y símbolo C. Es sólido a temperatura ambiente. Dependiendo de las de formación, puede encontrarse en la naturaleza en distintas formas alotrópicas, carbono amorfo y cristalino en forma de grafito o diamante. Es el pilar básico de la química orgánica.

el proceso de formación del petróleo se origina a partir de acumulaciones de plancton marino que sufre transformaciones, semejantes a la carbonización, por bacterias anaeróbicas, y que dan lugar a una materia denominada sapropel y posteriormente a la mezcla de hidrocarburos típica del petróleo. transformación de hidrocarburos suele tener lugar al mismo tiempo que el proceso de sedimentación de arenas y arcillas que se transformarán en areniscas y margas, y quedarán impregnadas por el petróleo, dando lugar a las rocas madre de éste. Cuando éstas sufren presiones orogénicas o simplemente quedan sometidas a una mayor presión al hundirse los sedimentos, el petróleo migra hasta encontrarse con rocas impermeables que impiden su avance y se acumula en el subsuelo, generando los verdaderos yacimientos petrolíferos.

Los hidrocarburos gaseosos están acumulados en la superior de estos yacimientos de petróleo (aceites de roca: del latín petram, “piedra” y oleum, “aceite”), que es un aceite mineral hidrocarbonato, oleaginoso, inflamable, de olor acre, densidad inferior a la del agua y cuyo color varía el negro al incoloro. Consta principalmente de hidrocarburos líquidos, en los que se encuentran disueltos hidrocarburos sólidos (asfaltos y betunes) y gaseosos (metano, butano y acetileno); también contiene pequeñas porciones de nitrógeno, azufre, oxígeno, colesterina, porfirinas, vanadio, níquel, cobalto y molibdeno. De todo esto, mediante procesos industriales de refinado, se obtienen los productos de todos conocidos como la gasolina, nafta, queroseno, gasóleo, etc.

Su combustión es una de las fuentes más importantes de contaminación por los elevados porcentajes de azufre y otras materias que contiene. Sin embargo, por obtener fuente de contaminación y “riqueza” se crean conflictos que desembocan en las guerras que azotan nuestro mundo.

Ahora, después de esta breve explicación, sabemos un poco más sobre esta materia prima que ha servido, y continuará aún algún tiempo sirviendo de base a muchas generaciones pasadas y alguna menos futura: civilizaciones del combustible sólido, con su profesión de servicios energéticos, transporte generalizado y exceso de información (no siempre deseable, ya que si elimináramos el 80% de las programaciones televisivas, el mundo sería algo más culto y estaría menos embrutecido).

File:Blackeyegalaxy.jpg

Un observador extraterrestre no podría encontrar nada extraordinario que le permitiera distinguir el Sol los millones de estrellas similares que existen en la nuestra y en otras galaxias, y que a su vez representan una fracción de cientos de miles de millones de cuerpos radiantes que las forman. Como se ha dicho otras veces, nuestro Sol pertenece a una clase común de estrella localizada aproximadamente en el centro de la secuencia principal del esquema de clasificación conocido como de Herzsprung-Russell, denominada enana G2, que posee un característico color amarillo y una magnitud estelar poco importante (+4’83). Así que, después de 4.500 millones de años, el Sol está a la mitad de su vida y va camino de transformarse de enana en gigante roja. Cuando esto ocurra, su luminosidad será mil veces mayor que la actual, y su diámetro, enormemente expandido, alcanzará (probablemente) la Tierra. Durante algún tiempo el planeta girará dentro de una órbita en el interior de la ligera cubierta de la estrella, pero final e inevitablemente caerá describiendo una espiral ser engullida por el núcleo de la gigante roja.

Mucho de que el Sol se transforme en una gigante roja la vida en la Tierra desaparecerá. Según se contraiga el núcleo solar, las reacciones termonucleares calentarán su capa externa; el diámetro de la estrella se expandirá unas diez mil veces y la radiación de la subgigante roja evaporará los océanos y mares de la Tierra generando fortísimos vientos calientes en la convulsa atmósfera del planeta.

Sin embargo, mientras haya hidrógeno en el núcleo de la estrella, los inexorables cambios de su luminosidad serán graduales y el Sol continuará suministrando la energía necesaria, tanto la vida en la Tierra como para la mayoría de las transformaciones físicas que ocurren en ella.

Las primeras explicaciones científicas de la radiación solar, cálculo basado en la gravitación de Hermann Helmholtz, conducen a una estimación de la vida de la estrella de treinta millones de años. La famosa ecuación de Einstein relacionando la materia y la energía abrió el camino hacia un modelo más preciso que, por sí sólo, tampoco nos ofrece una solución completamente satisfactoria. Por otra , no parece probable que la transformación total de materia solar, convirtiendo los núcleos atómicos y los electrones en radiación (según teorizaba Sir Arthur Eddington), pueda producirse ni siquiera a temperaturas superiores a los diez mil millones de grados Kelvin (K). La idea hoy aceptada de que la producción de la energía en el núcleo del Sol obedece a reacciones nucleares fue propuesta a finales de los treinta por Hans Bethe, Charles Critchfield y Carl Friedrich von Weizsäcker.

Sol

La fusión de hidrógeno en helio, en el ciclo protónprotón, se inicia la temperatura alcanza los trece millones de grados Kelvin. Justo por encima de los 16 millones Kelvin empieza a dominar el ciclo carbono-nitrógeno que genera C12. No podemos estar seguros, de acuerdo con los mejores modelos, el ciclo C-N genera solamente un 1’5% de la energía total del Sol.

Las reacciones en el núcleo solar consumen entre 4’3 y 4’6 millones de toneladas de materia cada segundo, de manera que de 4.654.000 t de hidrógeno, 4.650.000 se transforman en helio, y las 4.000 toneladas que faltan son lanzadas al espacio en de radiación termonuclear (luz y calor) de la que una pequeña parte nos llega a la Tierra para hacer posible la vida.

De acuerdo a la relación masa-energía de Einstein, liberan 3’89×1026 J de energía nuclear. Este inmenso flujo de energía es rápidamente transformado en energía térmica, que es transportado, isotrópicamente, el exterior, primero por irradiación aleatoria y luego más rápidamente por convección direccional.

Sol

Suponiendo (como antes apuntaba) que la radiación es isótropa, la potencia de la luz visible que atraviesa metro cuadrado de la capa emisora de la fotosfera es aproximadamente de 64 MW. Como en el espacio no hay prácticamente atenuación de la radiación solar, cuando ésta alcanza la órbita de la Tierra tiene una densidad de potencia igual al cociente entre la luminosidad total del Sol (3’89×1026 W) y el área de una esfera de radio orbital (que, como promedio, es de unos 150 millones de kilómetros).

Este flujo, tradicionalmente conocido como la constante solar, es la tasa máxima de energía que llega a la parte superior de la atmósfera terrestre. A principios de los años setenta, la NASA utilizó el diseño de las naves espaciales un valor de la constante solar igual a 1.353 W/m2. El flujo ha sido medido directamente en el espacio 1979, cuando el satélite Nimbus 7 obtuvo un valor de 1.371 W/m2. En el más reciente satélite de la Solar Maximum Mission lanzado en 1980 se obtuvo una media ponderada de 1.368’3 W/m2.

Las observaciones continuadas desde el espacio han revelado la existencia de una compleja regularidad de pequeñas fluctuaciones de corta duración que, debido a la interferencia de la atmósfera, no habían podido ser observadas anteriormente. Estas fluctuaciones de poca duración (del orden de días a semanas) y de hasta un 0’2 por ciento son debidas al paso de manchas oscuras y fáculas brillantes que arrastra el Sol en su rotación; el ciclo medido es de 11 años, en el que la radiación solar disminuye en un 0’1 por ciento entre el valor máxima y el mínimo.

 electromagnetic spectrum

Una onda electromagnética está formada por muy pequeños de energía llamados fotones. La energía de paquete o fotón es directamente proporcional a la frecuencia de la onda: Cuanta más alta es la frecuencia, mayor es la cantidad de energía contenida en cada fotón.

El efecto de las ondas electromagnéticas en los sistemas biológicos está determinado en por la intensidad del campo y en parte por la cantidad de energía contenida en cada fotón.

La longitud de onda de la energía electromagnética emitida por el Sol y que llega a la Tierra varía en más de diez órdenes de magnitud. Va la longitud de onda más corta, que corresponde a los rayos gamma y rayos X de menos de 10-10 m, hasta la longitud de ondas de radio que superan el metro.

El aspecto del espectro de la radiación solar es similar al de un cuerpo negro a 6.000º K. Ambos espectros son especialmente parecidos en el rango de la longitud de onda mayor que la del amarillo, pero longitudes de onda menores, el espectro solar cae notablemente por debajo de la línea de los 6.000º K. De acuerdo con la ley de desplazamiento de Wien, la emisión máxima a esta temperatura es de 483 nm, cerca del final de la zona azul del espectro visible y próximo al verde.

El flujo de energía se reparte desigualmente las tres grandes categorías espectrales: radiación ultravioleta (UV), cuya longitud de onda va desde las más cortas hasta los 400 nm y contribuye con menos del 9 por ciento de la radiación total; la luz visible, que va desde los 400 nm del violeta más lejano hasta los 700 nm del rojo más oscuro y representa un 39 por ciento; y la radiación infrarroja (IR), que representa cerca del 52 por ciento.

 Espectro de la irradiancia solar en la parte superior de la atmósfera y espectro de la radiación solar por encima de la atmósfera y a nivel del mar.

No todos los puntos de la superficie terrestre reciben la misma cantidad de radiación solar. La posición relativa de la Tierra respecto al Sol, y el movimiento de la misma alrededor del astro condicionan, por ejemplo, que en el ecuador se reciba más energía que en los polos y que en verano llegue más que en invierno.

Los valores más altos de radiación a nivel del suelo se registran en algunos desiertos, donde se han llegado a medir 220 kcal/(cm2/año). Los mínimos se dan en los polos, donde hay estimaciones inferiores a 80 kcal/(cm2/año). En España, los valores aumentan de norte a sur y oscilan 110 y 150 kcal/(cm2/año)

La radiación que llega a la superficie de la Tierra es muy diferente de la radiación extraterrestre, tanto cualitativa como cuantitativamente. Las razones físicas de esta diferencia son varias: que la órbita de la Tierra es elíptica, la propia del planeta, la inclinación del eje de rotación, la composición de la atmósfera y la reflectividad (albedo) de las nubes y superficies terrestres. Consecuentemente, la radiación solar que llega a la superficie de la Tierra presenta una compleja pauta espacial y temporal. La media anual global es ligeramente inferior a 170 W/m2 en los océanos y de 180 W/m2 en los continentes. La diferencia más importante del valor esperado, según la latitud de la zona, se encuentra en la disminución que se presenta en los trópicos y los monzones subtropicales, debido a la alta nubosidad. Grandes regiones de Brasil, Nigeria y el sur de China reciben menos insolación que Nueva Inglaterra o las regiones de Europa occidental. Es aún más sorprendente que no haya diferencia entre el flujo máximo que se recibe al mediodía durante el verano en Yakarta, situada en el ecuador, y el que se recibe en ciudades subárticas como Edmonton en Canadá o Yakutsk en Liberia. Quizás el mejor ejemplo sea el de Oahu, donde la casi siempre nublada cordillera Koolau, que intercepta las nubes y las lluvias arrastran los alisios, tiene una media anual de radiación de 150 W/m2, mientras que en Pearl Harbor, a 15 Km de distancia en la dirección del viento, la media es de 250 W/m2.

Viendo el mapa me explico que los del norte de Europa se vengan a nuestras playas

La radiación solar media de 170 W/m2 representa anualmente una energía de 2’7×1024 J, que equivale a 87 PW. Esta cantidad es casi 8.000 veces mayor que el consumo mundial de combustibles sólidos y electricidad durante los primeros años noventa. Sólo una pequeña fracción de este inmenso flujo es absorbida por los pigmentos de las plantas realizar la fotosíntesis, y una parte algo mayor, pero también pequeña, se utiliza para calentar las plantas, los cuerpos de los animales y las personas, así como sus refugios.

La radiación también sustenta la vida porque al calentar los océanos, las rocas y los suelos, impulsa funciones fundamentales en la biosfera, tales el ciclo del agua, la formación de los vientos, el mantenimiento de la temperatura adecuada para que funcionen los procesos metabólicos y la descomposición orgánica. Además, es la causante de la erosión que transporta los nutrientes minerales para la producción primaria de materia orgánica.

seccion_transversal_sol

                                                  Sección transversal del Sol

A la larga, mantener el equilibrio térmico del planeta, la radiación solar absorbida debe emitirse al espacio, pero la longitud de onda está drásticamente desplazada hacia el infrarrojo. A diferencia de la radiación de longitud de onda corta emitida por el Sol, que está determinada por la temperatura de la fotosfera (5.800º K), la radiación terrestre corresponde muy aproximadamente a las emisiones electromagnéticas de un cuerpo negro a 300º K (27ª C). El máximo de emisión de esa esfera caliente está en la zona del IR a 966 μm. Como el 99% de la radiación solar llega en longitudes de onda menores de 4 μm y el espectro terrestre apenas alcanza los 3 μm, el solapamiento de frecuencias entre estos dos grandes flujos de energías es mínimo.

helio4energia

          Reacción protónprotón formar helio 4 liberando energía.

Así, de los mecanismos que se producen en el Sol, la estrella más cercana a la Tierra, surgen energías inmensas de las que, una pequeña fracción nos llega al planeta y nos ofrece la luz y el calor que necesitamos para vivir, para que la fotosíntesis sea posible y para que nuestro habitat permita la vida que en otros mundos está ausente.

emilio silvera

Las moléculas portadoras de información

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Tenemos que saber!    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Representación esquemática de la molécula de ADN, la molécula portadora de la información genética. Las moléculas se forman por la Asociación de dos o más átomos, que se mantienen juntas por medio de químicos. Podríamos decir que algunas moléculasd de vida serían:

huevoscerealeshortalizas

– Agua.
– Hidratos de carbono.
– Lípidos.
– Proteínas.
– Acidos Nucleicos.

pescado

Principios inmediatos o biomoléculas: una de las sustancias que componen la materia viva.

– Simples: O2
– inorgánicos: agua…

– Compuestos:
– orgánicos: glúcidos, lípidos,
proteínas, ac. nucleicos

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Refiriéndonos al silicio, señalaremos que las “moléculas” que dicho átomo con el oxígeno y otros átomos, generalmente metálicos poseyendo gran nivel de información, difieren en varios aspectos de las moléculas orgánicas, es decir, de las que poseen un esqueleto de átomos de carbono.

El mundo de los silicatos es de una gran diversidad, existiendo centenares de especies minerológicas. Esas diferencias se refieren fundamentalmente a que el enlace químico en el caso de las moléculas orgánicas es covalente, y cuando se forma la sustancia correspondiente (cuatrillones de moléculas) o es un líquido, como es el caso de los aceites, o bien un sólido que funde fácilmente. Entre las moléculas que lo forman se ejercen unas fuerzas, llamadas de Van der Waals, que pueden considerarse como residuales de las fuerzas electromagnéticas, algo más débiles que éstas. En cambio, en los silicatos sólidos (como en el caso del topacio) el enlace covalente o iónico no se limita a una molécula, sino que se extiende en el espacio ocupado por el sólido, resultando un entramado particularmente fuerte.

Al igual que para los cristales de hielo, en la mayoría de los silicatos la información que soportan es pequeña, aunque conviene matizar este punto.  Para un cristal ideal así sería en efecto, ocurre que en la realidad el cristal ideal es una abstracción, ya que en el cristal real existen aquí y allá los llamados defectos puntuales que trastocan la periodicidad espacial propia de las redes ideales. Precisamente esos defectos puntuales podían proporcionar una mayor información.

El cristal ideal no existe, en su natural, todos tienen inperfecciones y, sólo el elaborado, se podría decir que son cristales perfectos y, sin embargo, la mano del hombre lo que ha producido con tal intervención es perder una valiosa información inserta en ese cuerpo natural.

Si prescindimos de las orgánicas, el resto de las moléculas que resultan de la combinación los diferentes átomos no llega a 100.000, frente a los varios millones de las primeras. Resulta ranozable suponer que toda la enorme variedad de moléculas existentes, principalmente en los planetas rocosos, se haya formado por evolución de los átomos, como corresponde a un proceso evolutivo. La molécula poseería mayor orden que los átomos de donde procede, esto es, menor entropía. En su formación, el ambiente se habría desordenado al ganar entropía en una cierta cantidad tal, que arrojarse un balance total positivo.

No puedo dejar pasar la oportunidad, aunque sea de pasada, de mencionar las sustancias.

Las así llamadas, son cuerpos formados por moléculas idénticas, entre las cuales pueden o no existir enlaces químicos. Veremos varios ejemplos.  Las sustancias como el oxígeno, cloro, metano, amoníaco, etc, se presentan en estado gaseoso en ordinarias de presión y temperatura. Para su confinamiento se embotellan, aunque existen casos en que se encuentran mezcladas en el aire (os podéis dar una vueltecita por el polo químico de Huelva en España).

En cualquier caso, un gas como los citados consiste en un enjambre de las moléculas correspondientes. Entre ellas no se ejercen fuerzas, salvo cuando colisionan, lo que hacen con una frecuencia que depende de la concentración, es decir, del de ellas que están concentradas en la unidad de volumen; número que podemos calcular conociendo la presión y temperatura de la masa de gas confinada en un volumen conocido.

                                         Nubes moleculares en Orión

Decía que no existen fuerzas entre las moléculas de un gas. En realidad es más exacto que el valor de esas fuerzas es insignificante porque las fuerzas residuales de las electromagnéticas, a las que antes me referí, disminuyen más rápidamente con la distancia que las fuerzas de Coulomb; y distancia es ordinariamente de varios diámetros moleculares.

Podemos conseguir que la intensidad de esas fuerzas aumente tratando de disminuir la distancia media entre las moléculas. Esto se puede lograr haciendo descender la temperatura, aumentando la presión o ambas cosas.  Alcanzada una determinada temperatura, las moléculas comienzan a sentir las fuerzas de Van der Waals y aparece el líquido; si se sigue enfriando aparece el sólido. El orden crece desde el gas al líquido, siendo el sólido el más ordenado. Se trata de una red tridimensional en la que los nudos o vértices del entramado están ocupados por moléculas.

Todas las sustancias conocidas pueden presentarse en cualquiera de los tres estados de la materia (estados ordinarios y cotidianos en nuestras vidas del día a día).

El Plasma de las estrellas y otros cuerpos estelares forman el estado más común de la materia en nuestro Universo -al la que podemos observar-, se sospecha que existe alguna clase de materia cósmica que está presente por todas partes, no se ve pero se deja sentir, así nos lo dicen algunos indicios cuando se miden y observan los comportamientos de los objetos estelares y del conjunto de grandes estructuras que conocemos.

Si las temperaturas reinantes, son de miles de millones de grados, el estado de la materia es el plasma, el material más común del universo, el de las estrellas (aparte de la materia oscura, que no sabemos ni lo que es, ni donde está, ni que “estado” es el suyo).

En ordinarias de presión, la temperatura por debajo de la cual existe el líquido y/o sólido depende del tipo de sustancia. Se denomina temperatura de ebullición o fusión la que corresponde a los sucesivos equilibrios (a presión dada) de fases: vapor ↔ líquido ↔ sólido. Estas temperaturas son muy variadas, por ejemplo, para los gases nobles son muy bajas; también para el oxígeno (O2) e hidrógeno (H2). En cambio, la mayoría de las sustancias son sólidos en condiciones ordinarias (grasas, ceras, etc).

Compuestas:

Las sustancias pueden ser simples y compuestas, según que la molécula correspondiente tenga átomos iguales o diferentes. El de las primeras es enormemente inferior al de las segundas.

El concepto de molécula, como individuo físico y químico, pierde su significado en ciertas sustancias que no hemos considerado aún. ellas figuran las llamadas sales, el paradigma de las cuales es la sal de cocina.

Es requerida por el organismo para mantener la volemia y procurar el adecuado equilibrio electrolítico. Además, isotonicidad entre plasma e intersticio, así también mantiene equilibrio con la célula. Implicada directa en el mantenimiento de la presión arterial media y en el equilibrio osmolar. Su disociación en sangre es parcial (sólo un 93 porciento).

Se trata de cloruro de  sodio, por lo que cualquier estudiante de E.G.B. escribiría sin titubear su fórmula: Cl Na. Sin embargo, le podríamos poner en un aprieto si le preguntásemos dónde se encontrar aisladamente individuos moleculares que respondan a esa composición. Le podemos orientar diciéndole que en el gas Cl H o en el vapor de agua existen moléculas como individualidades. En realidad y salvo casos especiales, por ejemplo, a temperaturas elevadas, no existen moléculas aisladas de sal, sino una especie de molécula gigante que se extiende por todo el cristal. Este edificio de cristal de sal consiste en una red o entramado, como un tablero de ajedrez de tres dimensiones, en cuyos nudos o vértices se encuentran, alternativamente, las constituyentes, que no son los átomos de Cl y Na sino los iones Cl y Na+.  El primero es un átomo de Cl que ha ganado un electrón, completándose todos los orbitales de valencia; el segundo, un átomo de Na que ha perdido el electrón del orbital s.

Por zona de Huelva, conocida como Marismas del Odiel, llevaba con frecuencia a mis hijos pequeños que, jugando por aquellos parajes, se lo pasaban estupendamente, y, de camino, tenía la oportunidad de despertarles la curiosidad de cómo se producía la Sal.

los átomos de Cl y Na interaccionan por aproximarse suficientemente sus nubes electrónicas, existe un reajuste de cargas, porque el núcleo de Cl atrae con más fuerza los electrones que el de Na, así uno pierde un electrón que gana el otro. El resultado es que la colectividad de átomos se transforma en colectividad de iones, positivos los de Na y negativos los de Cl. Las fuerzas electromagnéticas esos iones determinan su ordenación en un cristal, el Cl Na. Por consiguiente, en los nudos de la red existen, de manera alternativa, iones de Na e iones de Cl, resultando una red mucho más fuerte que en el caso de que las fuerzas actuantes fueran de Van der Waals. Por ello, las sales poseen puntos de fusión elevados en relación con los de las redes moleculares.

emilio silvera