Jun
16
Las constantes universales y, ¡tántas cosas más!
por Emilio Silvera ~ Clasificado en números adimensionales ~ Comments (2)
En estas nubes se fraguan los mundos merced a la dinámica del universo que lo hace cambiante y evolutivo. Nada permanece y todo se transforma. Las cosas ocurren de cierta manera que puede ser prvista al aplicar esas fuerzas y esas constantes que hacen de nuestro “mundo” lo que podemos observar y, de esa manera, porque esas constantes univerdsales son como las conocemos, la vida está presente y, si la carga del electrón o la masa del protón cambiara aunque solo fuese una diezmillonésima, ya la vida no sería posible tal como la conocemos.
“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, los experimentadores dicen que no es un entero, de modo que podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión ella y los neutrinos, pero esto ha fracasado.”
Extraños mundos que pudieran ser
Está muy claro que nuestro Universo es es debido a una serie de parámetros que poco a poco hemos ido identificando y hemos denominado Constantes de la Naturaleza. colección de números misteriosos son los culpables, los responsables, de que nuestro Universo sea tal como lo conocemos y que, a pesar de la concatenación de movimientos caóticamente impredecibles de los átomos y las moléculas, nuestra experiencia es la de un mundo estable y que posee una profunda consistencia y continuidad.
En mecánica cuántica, el comportamiento de un electrón en un átomo se describe por un orbital, que es una distribución de probabilidad más que una órbita. En la figura, el sombreado indica la probabilidad relativa de «encontrar» el electrón en punto se tiene la energía correspondiente a los números cuánticos dados. Pensemos (como digo antes), que si la carga del electrón variara, aunque sólo fuese una diezmillonésima , los átomos no se podrían constituir, las moléculas consecuentemente tampoco y, por ende, ni la materia… ¡Tampoco nosotros estaríamos aquí! ¡Es tan importante el electrón!
Sí, nosotros también hemos llegado a saber que con el paso del tiempo aumenta la entropía y las cosas cambian. Sin embargo algunas cosas no cambian, continúan siempre igual, sin que nada les afecte. Ésas precisamente, son las constantes de la naturaleza que desde mediados del siglo XIX, comenzó a la atención de físicos como George Johnstone Stoney (1.826-1.911, Irlanda).
Parece, según todas las trazas, que el universo, nuestro universo, alberga la vida inteligente porque las constantes de la naturaleza son las que aquí están presentes; cualquier ligera variación en alguna de éstas constantes habría impedido que surgiera la vida en el planeta que habitamos. El universo con las constantes ligeramente diferentes habría nacido muerto, no se hubieran formado las estrellas ni se habrían unido los quarks para construir nucleones (protones y neutrones) que formarán los núcleos que al ser rodeados por los electrones construyeron los átomos, que se juntaron para formar las células que unidas dieron lugar a la materia. Esos universos con las constantes de la naturaleza distintas a las nuestras estarían privados del potencial y de los elementos necesarios para desarrollar y sostener el de complejidad organizada que nosotros llamamos vida.
Nadie ha sabido responder a la pregunta de si las constantes de la naturaleza son realmente constantes o llegará un momento en que comience su transformación. Hay que tener en cuenta que para nosotros la escala del tiempo que podríamos considerar muy grande, en la escala de Tiempo del Universo podría ser ínfima. El universo, por lo que sabemos, tiene 13.500 millones de años. Antes que nosotros, el reinado sobre el planeta correspondía a los dinosaurios, amos y señores durante 150 millones de años, hace de ello 65 millones de años. Mucho después, hace apenas 2 millones de años, aparecieron nuestros antepasados directos, que después de una serie de cambios evolutivos desembocó en lo que somos hoy.
Representación artística del aspecto que debió tener unos 770 millones después del Big Bang el quásar más distante descubierto hasta la fecha. La Imagen la proporcionó ESO/M. Kornmesser
, unos investigadores de los institutos tecnológicos de Massachusetts (MIT) y California (Caltech), y de la Universidad de California en San Diego, han oteado el pasado remoto del universo, retrocediendo hasta la época de las primeras estrellas y galaxias, y han encontrado materia que no posee vestigios apreciables de elementos pesados. Para realizar esta medición crucial, el equipo analizó la luz del quásar más distante conocido, un núcleo galáctico a más de 13.000 millones de años-luz de la Tierra.
Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.
Todo ello pudo suceder como consecuencia de que unos 500 millones de años después del Big Bang se formaron las primeras estrellas que, a su vez, dieron lugar a las primeras galaxias. El material primario del universo fue el hidrógeno, el más sencillo y simple de los elementos que componen la tabla periódica. Hoy día, 13.500 millones de años después, continúa siendo el material más abundante del universo junto al helio.
hacer posible el resurgir de la vida, hacían falta materiales mucho más complejos que el hidrógeno. Éste era demasiado simple y había que fabricar otros materiales que, como el carbono, el hidrógeno pesado, el nitrógeno, oxígeno, etc, hicieran posible las combinaciones necesarias de materiales diferentes y complejos que al ser bombardeados por radiación ultravioleta y rayos gammas provenientes del espacio, dieran lugar a la primera célula orgánica que sería la semilla de la vida.
¿Quién, entonces, fabricó esos materiales complejos si en el universo no había nadie?
Buena pregunta. Para contestar tengo que exponer aquí algunas características de lo que es una estrella, de cómo se formar, como puede ser y cuál será su destino final. Veamos:
El nacimiento de una protoestrella
Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.
Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo unidas a las de los gases se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma. Su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno, que se transforman en un material más complejo, el helio, y ése es el en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.
Con la imagen de arriba como ilustración, hace algún tiempo que se publicó la noticia en la página web de la ESO, se muestra la masa determinada de una estrella que supera el límite anterior (152-150 masas solares) por un factor de 2, usando una combinación de obtenidos en el observatorio Paranal y con el telescopio espacial Hubble. Se trata de la estrella R136a1 en el centro de la nebulosa “Tarántula” en la Gran Nube de Magallanes. Esto es muy interesante, porque hasta ahora se creyó que cualquier estrella mayor que 150 masas solares se desintegra por el efecto de la presión de radiación que supera a la gravedad. En realidad, también R136a1 está desintegrándose, teniendo ahora “sólo” 260 masas solares, después de una vida corta de 1,5 millones de años. Pero los autores calculan que reunió, cuándo nació, un total de 320 masas solares.
Mucho tiempo ha pasado que esta imagen era el presente, y, sin embargo, el Universo supone una ínfima fracción marcada por el Tic Tac cósmico de las estrellas y galaxias que conforman la materia de la que provenimos. Es un gran misterio para nosotros que sean las estrellas las que fabrican los materiales que, más tarde, llegan a conformar a seres vivos que, en algunos caso, tienen consciencia.
“La ciencia no resolver el misterio final de la Naturaleza. Y esto se debe a que, en el último análisis, nosotros somos del misterio que estamos tratando de resolver”.
Max Planck
De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que lleva el de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Se conocen las Unidades de Planck.
Planck con sus unidades nos llevo al extremo de lo pequeño
Mp = | (hc/G)½ = | 5’56 × 10-5 gramos |
Lp = | (Gh/c3) ½ = | 4’13 × 10-33 centímetros |
Tp = | (Gh/c5) ½ = | 1’38 × 10-43 segundos |
Temp.p = | K-1 (hc5/G) ½ = | 3’5 × 1032 ºKelvin |
Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.
“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales sean medidas por las inteligencias más diversas con los métodos más diversos.”
Las estrellas viven el tiempo que sus masas le permiten. Una estrella masiva devora tanto material nuclear que sólo puede realizar la fusión durante un tiempoo corto de unos millones de años en el mejor de los casos. Son las estrellas enanas rojas las que más tiempo de vida pueden tener al fusionar el hidrógeno de manera lenta en “pequeñas proporciones. Invcluso nuestro Sol, que fusiona 4.654.600 Tn cada segundo de Hidrógeno en 4.654.000 mTn de Helio, llegará a durar 10.000 millones de años.
Salvo excepciones raras como la más arriba comentada de la estrella R136a1 en el centro de la nebulosa “Tarántula” en la Gran Nube de Magallanes. La masa máxima de las estrellas para que sean estables puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.
Dependiendo de la temperatura de la estrella y de los materiales que contiene…
he dicho antes, el brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E=mc2) por medio de reacciones nucleares. Las enormes temperaturas de millones de grados de su núcleo hace posible que los protones de los átomos de hidrógeno se fusionen y se conviertan en átomos de helio.
Por cada kilogramo de hidrógeno quemado de esta manera se convierten en energía aproximadamente siete gramos de masa. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo cuando al final la estrella explota en súper NOVA, lanzando sus capas exteriores al espacio que de esta , deja “sembrado” de estos materiales el “vacío” estelar.
Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Éstas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en Novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones y, si aún son mayores, su final está en agujeros negros.
emilio silvera
el 19 de diciembre del 2014 a las 14:52
Gracias, gracias por hacernos sencillo, asequible a nuestro conocimiento mínimo del universo, tan magnificente universo.-
Él nos atrae, nos llama y tú nos lo entregas vibrante, comprensible. Gracias.-
Las formulas, no explicas cuál es su procedencia se podría?-
Anamaría.-
el 20 de diciembre del 2014 a las 7:55
Estimada anamaría, las fórmulas que aquí puedes contemplar, y las unidades llamadas de Plancl, son todas el lenguaje que utilizan los físicos para explicar aquellas cosas que las palabras no pueden, con estos números, la Naturaleza queda al decubierto y todo se comprende mejor, son ellas, las ecuaciones de la física la que nos llevan a comprender, las complejidades de la Naturaleza y el por qué de sus comportamientos.
En cualquier parte que quieras mirar, sobre esta ecuación de la constante de estructura fina que se ha formulado de muchas maneras, podrás ver el origen que está en:
“La constante de estructura fina de Sommerfeld (símbolo ) es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.
La expresión que la define y el valor recomendado por CODATA 2002 es:
donde:
También las llamadas Unidades de Planck, tienen una larga historia que habría que comenzar por Stoney, el primero que hizo el intento de formularlas.
Planck con sus unidades nos llevo al extremo de lo pequeño
Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.
Todos los buenos físicos aportaron sus propias fórmulas y ecuciaciones a su teorías, acuerdaté de E = mc2 en la Relatividad Espacial de Einstein que, con tan escasos signos, nos dicho tanto.
La Mente Humana es prodigiosa y, a veces, les llega ráfagas de iluminación que les hace ser superiores al poder “ver” cosas que otros, nunca pudieron, y, de esa manera, hemos podido ir avanzando en este Isla de ignorancia en la que nos ha tocado vivir y que, poco a poco, se va ensanchando gracias a los nuevos descubrimientos del comportamiento de la Naturaleza, del Universo y, algún día lejano del futuro… ¡También sobre nosotros! Unos grandes desconocidos de los que no aún, no se sabe lo que se puede esperar.
Saludos.