Jul
12
¿La Materia? Y, posiblemente…, algo más.
por Emilio Silvera ~ Clasificado en Los estados de la materia ~ Comments (0)
El Plasma, ese otro estado de la Materia (el cuarto dicen) que, según sabemos, resulta ser el más abundante del Universo. Todos desde pequeños aprendimos aquellos tres estados de la amteria que cantábamos en el patio del centro educativo durante el recreo, donde todos a una gritábamos como papagayos: “Sólido, líquido y gaseoso”. Nada nos decían del Plasma, ese estado que, en realidad, cubre el 99% del estado de la materia en nuestro Universo (bueno, hablamos de la materia conocida, esa que llamamos bariónica y está formada por átomos de Quarks y Leptones).
Según la energía de us partículas, los plasmas (como digo) constituyen el cuarto estado de agregación de la materia, tras los sólidos, liquidos y gases. Parqa cambiar de uno al otro, es necesario que se le aporte energía que aumente la temperatura. Si aumentamos de manera conasiderable la temperatura de un gas, sus átomos o moléculas adquieren energía suficiente para ionizarse al chocar entre sí. de modo que a ~ 20.000 K muchos gases presentan una ionización elevada. Sin embargo, átomos y moléculas pueden ionizarse también por impacto electrónico, obsorción de fotones, reacciones químicas o nucleares y otros procesos.
El Plasma está presente en el espacio exterior en muchas formas y objetos
Aquí podemos contemplar una enorme región ionizada en la Nebulosa del Pelícano. Estrellas nuevas emiten potente radiación ultravioleta que ataca el espesor de la Nebulosa molecular y hace que, el gas se ionice fuertemente creando una luminosidad que “viste” de azul claro todo el contorno que circunda el radio de acción de las estrellas.
Un plasma es un gas muy ionizado, con igual número de cargas negativas y negativas.Las cargas otorgan al Plasma un comportamiento colectivo, por las fuerzas de largo alcance existente entre ellas. En un gas, cada partícula, independientemente de las demás, sigue una trayectoria rectilinea, hasta chocar con otra o con las grandes paredes que la confinan. En un plasma, las cargas se desvían atraídas o repelidas por otras cargas o campos electromagnéticos externos, ejecutando trayectorias curvilineas entre choque y choque. Los gases son buenos aislantes eléctricos, y los plasmas, buenos conductores.
En la Tierra, los plasmas no suelen existir en la naturaleza, salvo en los relámpagos, que son trayectorias estrechas a lo largo de las cuales las moléculas de aire están ionizadas aproximadamente en un 20%, y en algunas zonas de las llamas. Los electrones libres de un metal también pueden ser considerados como un plasma. La mayor parte del Universo está formado por materia en estado de plasma. La ionización está causada por las elevadas temperaturas, como ocurre en el Sol y las demás estrellas, o por la radiación, como sucede en los gases interestelares o en las capas superiores de la atmósfera.
Así que, aunque escasos en la Tierra, el Plasma constituye la materia conocida más abundante del Universo, más del 99%. Abarcan desde altísimos valores de presión y temperatura, como en los núcleos estelares, hasta otros asombrosamente bajos en ciertas regiones del espacio. Uno de sus mayores atractivos es que emiten luz visible, con espectros bien definidos, particulares en cada especie. Algunos objetos radiantes, como un filamento incandescente, con espectro continuo similar al cuerpo negro, o ciertas reacciones químicas productoras de especies excitadas, no son plasmas, sin embargo, lo son la mayoría de los cuerpos luminosos.
Bombilla de incandescencia
Los Plasmas se clasifican según la energía media (o temperatura) de sus partículas pesadas (iones y especies neutras). Un primer tipo son los Plasmas calientes, prácticamente ionizados en su totalidad, y con sus electrones en equilibrio térmico con las partículas más pesadas. Su caso extremo son los Plasmas de Fusión, que alcanzan hasta 108 K, lo que permite a los núcleos chocar entre sí, superándo las enormes fuerzas repulsivas internucleares, y lñograr su fusión. Puede producirse a presiones desde 1017 Pa, como en los núcleos estelares, hasta un Pa, como en los reactores experimentales de fusión.
Los reactores de fusión nuclear prácticos están ahora un poco más cerca de la realidad gracias a nuevos experimentos con el reactor experimental Alcator C-Mod del MIT. Este reactor es, de entre todos los de fusión nuclear ubicados en universidades, el de mayor rendimiento en el mundo.
Los nuevos experimentos han revelado un conjunto de parámetros de funcionamiento del reactor, lo que se denomina “modo” de operación, que podría proporcionar una solución a un viejo problema de funcionamiento: cómo mantener el calor firmemente confinado en el gas caliente cargado (llamado plasma) dentro del reactor, y a la vez permitir que las partículas contaminantes, las cuales pueden interferir en la reacción de fusión, escapen y puedan ser retiradas de la cámara.
Otros Plasmas son los llamados térmicos, con e ~lectrones y especies pesadas en equilibrio, pero a menor temperatura ~ 103 – 104 K, y grados de ionización intermedios, son por ejemplo los rayos de las tormentas o las descargas en arcos usadas en iluminación o para soldadura, que ocurren entre 105 y ~ 102 Pa. Otro tipo de Plasma muy diferente es el de los Plasmas fríos, que suelen darse a bajas presiones ( < 102 Pa), y presentan grados de ionización mucho menores ~ 10-4 – 10-6. En ellos, los electrones pueden alcanzar temperaturas ~ 105 K, mientras iones y neutros se hallan a temperatura ambiente. Algunos ejemplos son las lámparas de bajo consumo y los Plasmas generados en multitud de reactores industriales para producción de películas delgadas y tratamientos superficiales.
El Observatorio Espacial Herschel de la ESA ha puesto de manifiesto las moléculas orgánicas que son la llave para la vida en la Nebulosa de Orión, una de las regiones más espectaculares de formación estelar en nuestra Vía Láctea. Este detallado espectro, obtenido con el Instrumento Heterodino para el Infrarrojo Lejano (Heterodyne Instrument for the Far Infrared, HIFI) es una primera ilustración del enorme potencial de Herschel-HIFI para desvelar los mecanismos de formación de moléculas orgánicas en el espacio. Y, para que todo eso sea posible, los Plasmas tienen que andar muy cerca.
En los Plasmas calientes de precursores moleculares, cuanto mayor es la ionización del gas, más elevado es el grado de disociación molecular, hasta poder constar solo de electrones y especies atómicas neutras o cargadas; en cambio, los Plasmas fríos procedentes de especies moleculares contienen gran proporción de moléculas y una pequeña parte de iones y radicales, que son justamente quienes proporcionan al Plasma su característica más importante: su altísima reactividad química, pese a la baja temperatura.
En la Naturaleza existen Plasmas fríos moleculares, por ejemplo, en ciertas regiones de las nubes interestelares y en las ionosfera de la Tierra y otros planetas o satélites. Pero también son producidos actualmente por el ser humano en gran variedad para investigación y multitud de aplicaciones.
En un número de la Revista Española de Física dedicado al vacío, el tema resulta muy apropiado pues no pudieron generarse Plasmas estables en descargas eléctricas hasta no disponer de la tecnología necesaria para mantener presiones suficientemente bajas; y en el Universo, aparecen Plasmas fríos hasta presiones de 10 ⁻ ¹⁰ Pascales, inalcanzable por el hombre.
Lo que ocurre en las Nubes moleculares es tan fantástico que, llegan a conseguir los elementos necesarios para la vida prebiótica que, tras los parámetros adecuados dan lugar al surgir de la vida.
El papel de las moléculas en Astronomía se ha convertido en un área importante desde el descubrimiento de las primeras especies poliatómicas en el medio interestelar. Durante más de 30 años, han sido descubiertas más de 150 especies moleculares en el medio interestelar y gracias al análisis espectral de la radiación. Muchas resultan muy exóticas para estándares terrestres (iones, radicales) pero buena parte de estas pueden reproducirse en Plasma de Laboratorio. Aparte del interés intrínseco y riqueza de procesos químicos que implican, estas especies influyen en la aparición de nuevas estrellas por su capacidad de absorber y radiar la energía resultante del colapso gravitatorio, y de facilitar la neutralización global de cargas, mucho más eficientemente que los átomos.
Su formación en el espacio comienza con la eyección de materia al medio interestelar por estrellas en sus últimas fases de evolución y la transformación de éstas por radiación ultravioleta, rayos cósmicos y colisiones; acabando con su incorporación a nuevas estrellas y Sistemas planetarios, en un proceso cíclico de miles de millones de años.
En las explosiones supernovas se producen importantes transformaciones en la materia que, de simple se transforma en compleja y dan lugar a todas esas nuevas especies de moléculas que nutren los nuevos mundos.
El H₂ y otras moléculas diatómicas homonucleares carecen de espectro rotacional. Detectando las débiles emisiones cuadrupolares del H₂ en infrarrojo, se ha estimado una proporción de H₂ frente a H abrumadoramente alto ( ~ 104) en Nubes Interestelares con densidades típicas de ~ 104 partículas /cm3; pero dada la insuficiente asociación radiativa del H para formar H2, ya mencionada, el H2 debe producirse en las superficies de granos de polvo interestelar de Carbono y Silicio, con diámetros ~ 1 nm — μm, relativamente abundantes en estas nubes.
Experimentos muy recientes de desorción programada sobre silicatos ultrafríos, demuestran que tal recombinación ocurren realmente vía el mecanismo de Langmuir-Hinshelwood, si bien los modelos que expliquen las concentraciones de H2 aún deben ser mejorados.
Por otro lado, ciertas regiones de las nubes en etapas libres de condensación estelar presentan grados de ionización ~ 10-8 – 10-7 a temperaturas de ~ 10 K. La ionización inicial corresponde principalmente al H2 para formar H2 +, que reacciona eficientemente con H2, dando H3 + + H (k = 2• 10-9 cm3 • s-1.
El H3, de estructura triangular, no reacciona con H2 y resulta por ello muy “estable” y abundante en esas regiones de Nebulosas intelestelares, donde ha sido detectado mediante sus absorciones infrarrojas caracterizadas por primera vez en 1980 en descargas de H2 en Laboratorio.
La constelación de Orión contiene mucho más de lo que se puede ver, ahí están presentes los elementos que como el H2 que venimos mencionando, tras procesos complejos y naturales llegan a conseguir otras formaciones y dan lugar a la parición de moléculas significativas como el H2O o HCN y una gran variedad de Hidrocarburos, que podrían contribuir a explicar en un futuro próximo, hasta el origen de la vida.
La detección por espectroscopia infrarroja de COH+ y N2H+, formados en reacciones con H3 + a partir de CO y N2, permite estimar la proporción de N2/CO existente en esas regiones, ya que el N2 no emite infrarrojos. Descargas de H2 a baja presión con trazas de las otras especies en Laboratorio conducen casi instantáneamente a la aprición de tales iones y moléculas, y su caracterización puede contribuir a la comprensión de este tipo de procesos.
Así amigos míos, hemos llegado a conocer (al menos en parte), algunos de los procesos asombrosos que se producen continuamente en el Espacio Interestelar, en esa Nebulosas que, captadas por el Hubble u otros telescopios, miramos asombrados maravilándonos de sus colores que, en realidad, llevan mensajes que nos están diciendo el por qué se producen y que elementos son los causantes de que brillen deslumbrantes cuando la radiación estelar choca de lleno en esas nubes en la que nacen las estrellas y los nuevos mundos…y, si me apurais un poco…, ¡también la vida!
Sin embargo, creer que hemos completado la relación de las formas que la materia puede adoptar en el Universo… ¡Sería un error! Toda vez que, hay formas de materia que ni podemos imaginar y, no me refiero precisamente a la mal llamada “materia oscura”, sino que, en situaciones muy especiales, la materia puede adoptar formas y maneras que no hemos llegado a descubrir. Por ejemplo, ¿qué clase de materia es la que conforma la singularidad de un agujero negro? Cuando la materia es presionada a densidades tan inmensas que nada puede frenar la contracción a la que la lleva la fuerza de gravedad que, hasta donde podemos saber, allí se crea un punto de energía y densidad infinito donde el espacio se ha curvado hasta dejar de exisitr y el tiempo se ha detenido. Qué clase de partículas pueden conformar ese misterioso y exótico objeto.
También se sospecha que pueden existir estrellas de Quarks-Gluones, es decir, estrellas formadas de plasma de de Quark-Gluon que sea la intermedia entre la de Neutrones y el Agujero Negro. Esto es un indicio de la existencia del condensado quark-gluon. Este condensado sería un de la materia en los que quarks y gluones estarían en equilibrio de color (estado neutro) y se alcanzaría a alta densidad y temperatura. Por así decirlo, las partículas hadrónicas se ‘fundirían’ y tendrían un comportamiento colectivo. Se piensa que el universo estuvo en fase al principio de su evolución. Estudiar este estado de la materia nos ayudaría a entender la estructura de los núcleos, la interacción fuerte y los estados iniciales del universo.
Hadrones, quarks, colores y gluones
Los hadrones son partículas no elementales, están formadas por constituyentes más básicos, que son capaces de interactuar bajo la interacción fuerte. Actualmente sabemos que los Hadrones están formados por Quarks. Y tenemos una subclasificación:
La interacción fuerte solo es sentida por partículas que tienen una carga específica que puede tomar tres valores. A esta carga la llamamos, color.
Todos sabemos que la carga eléctrica, que es la involucrada en la interacción electromagnética, tiene dos posibilidades, positiva y negativa. La carga de color puede ser de tres tipos:
- Rojo (R, de red en inglés)
- Azul (B, de azul en inglés)
- Verde (G, de green en inglés)
La teoría que describe las interacciones entre partículas elementales nos dice que dichas interacciones se deben al intercambio de unas partículas denominadas, bosones mensajeros. Para la interacción fuerte estos bosones son los gluones.
Hay un cierto revuelo en torno al tema este de las “gotas de líquido más pequeñas del mundo” generadas en el LHC. Esto es debido a un artículo reciente sobre colisiones de protones con núcleos de plomo y colisiones dichos núcleos. Este es un gran paso experimental y nos dará muchas pistas sobre el de plasma de quark-gluones y de la interacción fuerte. Sin duda, se han conseguido las gotas más pequeñas de la historia.
La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los modelos canónicos teóricos de las Estrellas de Neutrones ( ENs ). Decimos que son hipotéticas porque se conjetura que estarían formadas por Materia Extraña ( ME ). La comunidad astrofísica espera evidencias observacionales que permitan diferenciarlas de las ENs, ya que podrían explicar un conjunto de observaciones astronómicas que aún resultan una incógnita. Es sabido que una EN es el remanente del colapso de una estrella masiva. El colapso de la estrella, la supernova, da lugar a un núcleo compacto hiperdenso de hierro y otros metales pesados que sigue comprimiéndose y calentándose. Su densidad continúa aumentando, dando lugar a una “neutronización“ (recombinación de electrones con protones que resultan en neutrones) y el gas degenerado de neutrones frena el colapso del remanente.
Se especula con la posibilidad de que existan estrellas de Quarks que estarían hechas de materia extraña de Quaks y Gluones. Sabemos como se forman las estrellas enanas blancas, las de Neutornes y sus variedades en púlsares y magnétares, también creemos saber como una estrellas upermasiva llega a convertirse en un agujero negro. Sin embargo, no hemos podido obtener ninguna prueba de la existencia de estrellas de Quarks-Gluones, una forma de la materia que se viene sospechando pueda existir en el Universo.
Una EQ, a diferencia de una EN, no se originaría necesariamente de una evolución estelar después del agotamiento del combustible nuclear de una estrella normal. Sería, probablemente, producto de la transición de fase hadrón-quark a altísima densidad. La Cromodinámica Cuántica (CDC), la Teoría de las Interacciones Fuertes que ocurren dentro de los nucleones (protones y neutrones), concibe teóricamente la idea de la transición de fase hadrón-quark a temperaturas y/ o densidades extremadamente altas con el consecuente desconfinamiento de quarks y gluones, que formarían una especie de “sopa “. Sin embargo, los quarks libres no se han encontrado aún, en uno u otro límite, en ningún experimento terrestre.
El plasma de quark-gluones (QGP) es una fase de la cromodinamica cuántica (QCD) que existe cuando la temperatura y/o la densidad son muy altas. Este estado se compone de quarks y gluones (casi) libres que son los componentes básicos de la materia. Se cree que existió durante los primeros 20 a 30 microsegundos después de que el universo naciera en la Gran Explosión. Los experimentos en el Super Proton Synchrotron (SPS) del CERN trataron primero de crear QGP en los años ochenta y noventa, y pudo haber sido parcialmente conseguido. Actualmente, experimentos en el Colisionador de Iones Relativamente Pesados (RHIC) en el Laboratorio Nacional Brookhaven (Estados Unidos) continúan este esfuerzo. Tres nuevos experimentos se llevan a cabo en el Gran Colisionador de Hadrones (LHC) del CERN, ALICE, ATLAS y CMS, continuando con el estudio de las propiedades del QGP.
Claro que somos muy dados a tratar de descubrir todas estas cuestiones y, desde luego, la materia ha sido siempre uno de los objetivos más estudiados por los científicos de nuestra especie que, la ha observado y estudiado y experimentado con ella en todos los ámbitos habidos y por haber, tanto en los laboratorios como en el espacio interestelar, estudiando sus formas y sus transformaciones por temperaturas o químicas, o, por fuerzas inmensas… Sin embargo, yo me preguntaria: ¿Qué clase de materia tan especial conforma nuestras mentes para que puedan llegar a generar ideas?
Es al menos sorprendente de que la materia, tras evolucionar durante miles de millones de años por el Universo y en las Estrellas, viniera a parar a pequeños lugares, receptículos cerrados en los que se conforman en cerebros que maduran, reciben información y, finalmanete, son poseedores de un intelecto que les permite, a sus portadores, a poder comprender y entablar diálogos y discuisipones sobre todas estas cuestionres complejas.
¿Qué maravilla es esa?
emilio silvera