jueves, 23 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Noticias de lo que pasa por ahí

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Itziar Serrano, la simpática y eficiente funcionaria de la Real Sociedad Espoñola de Física, como de costumbre, me envía el Boletín Electrónico que emite la Entidad y correspondiente a Julio-Agosto 2.014.

Siempre es portador de noticias y comunicados muy interesantes, y, en esta ocasión, dados los temas que en este Blog tratamos, he elegido un par de noticias que nos vienen como anillo al dedo.

 

                                        Representación artística de una galaxia activa. ESA.

“Athena estudiará el Universo más caliente y energético La Agencia Espacial Europea ha seleccionado el
Telescopio Avanzado para la Astrofísica de Alta Energía, Athena, cuyo lanzamiento está previsto para el
año 2028 para estudiar el Universo más caliente y energético. Athena ocupa el puesto ‘L2’ del programa
Cosmic Vision 2015-­‐2025 de la ESA.

http://www.cosmonoticias.org/wp-content/uploads/2014/07/athena.jpg

Combinando un gran telescopio de rayos X con instrumentos científicos de última tecnología, Athena ayudará a encontrar respuestas a las grandes cuestiones de la astrofísica, entre las que destacan cómo y por qué la materia ordinaria se agrupa para formar las galaxias y los cúmulos de galaxias o cómo los agujeros negros crecen y afectan a su entorno. Los científicos piensan que los agujeros negros se esconden en el centro de casi todas las galaxias,jugando un papel fundamental en su formación y evolución.”

ALMA: el radiotelescopio más grande del mundo.
                                            ALMA: el radiotelescopio más grande del mundo.

“ALMA, el mayor radiotelescopio del mundo, ya ha quedado completo tras la instalación en la altiplanicie
chilena de Chajnantor en pleno desierto de Atacama, de la última de sus antenas, que en un futuro permitirán escuchar el origen del universo. Su objetivo es poder ver el comienzo del Universo, para que los científicos puedan comprender la física del Universo, cómo se expandió y cómo nacieron las estrellas
y galaxias. En un hecho muy importante contar con esta antena que representa una potencia muy importante para los futuros descubrimientos, destacó Pierre Cox en una conferencia de prensa. La totalidad de las antenas, instaladas a unos 5.000 metros de altitud sobre el nivel del mar, entrarán en funcionamiento a fines de 2015, en el último ciclo de operaciones del observatorio.”

El mayor Telescopio del mundo fue inaugurado el pasado día 13 de marzo de este mismo año, y, no creo que se tarde mucho en tener noticias de los “frutos” que a partir de estas instalaciones podremos recoger.

La instalación de la antena número 66 en el Sitio de Operaciones del Conjunto representa la etapa final de la construcción de ALMA”, anunció hoy el director de este observatorio astronómico, el francés Pierre Cox.

El mayor radiotelescopio del mundo comenzó a construirse en el año 2003 en el Llano de Chajnantor, a 50 kilómetros de San Pedro de Atacama y a 1.500 kilómetros al norte de Santiago, en una zona que parece más la superficie lunar que un paisaje del planeta Tierra.

Su objetivo era poder ver el comienzo del Universo, hace unos 14.000 millones de años, de manera que los científicos pudieran comprender la física del Universo, cómo se expandió y cómo nacieron las estrellas y galaxias.

“En un hecho muy importante contar con esta antena que representa una potencia muy importante para los futuros descubrimientos”, destacó Cox en una conferencia de prensa con medios internacionales.

La totalidad de las antenas, instaladas a unos 5.000 metros de altura sobre el nivel del mar, entrarán en funcionamiento a fines de 2015, en el último ciclo de operaciones del observatorio, indicó.

ALMA escudriña el universo usando antenas que no funcionan como los telescopios ópticos tradicionales, sino como radiotelescopios, lo que les permite detectar las longitudes de onda milimétricas y submilimétricas, aproximadamente mil veces más largas que la luz visible.

La observación de estas largas longitudes de onda permite a los astrónomos estudiar objetos muy fríos en el espacio, como las densas nubes de polvo cósmico y gas donde se forman estrellas y planetas, así como objetos muy fríos en el universo primitivo.

La Masa y la Energía ¿Qué son en realidad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo , tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto ; no se trata sólo del muón. Proporciona, por lo menos, una fuente común todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean no saben encontrar la respuesta al problema planteado.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs. ¡Que ahora parece haber sido puesto al desnudo!

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

La interacción débil, recordareis, fue inventada por E. Fermin describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Fabiola Gianotti, portavoz del experimento ATLAS, ofrece algunos avances:

“En nuestros observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.

¿Por qué, a pesar de todas las noticias surgidas el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo. A pesar de todo (Nobel incluido), habrá que dar muchas explicaciones sobre el Higgs “dadort de masas”.

                                                     Este gráfico de arriba me recuerda el “efecto frenado” de Ramón Marquez

El campo de Higgs, tal y como se lo concibe ahora, se destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente Higgs. Pero la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra una interacción electromagnética, llevada por los fotones. Es si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

Split Screens

Para cada suceso, la línea del haz es el eje común de los cilindros de ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011—.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, Wy Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que parece que va asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, tal como lo están planteando los del CERN,  se llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs.  Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.

¡La confianza en nosotros mismos, no tiene límites! el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas?

emilio silvera

Fuente: León Lederman

La Naturaleza está en nuestras Mentes

Autor por Emilio Silvera    ~    Archivo Clasificado en el Mundo y nosotros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

“Así fue ví el péndulo

La esfera, colgando de un largo cable fino al techo del

coro, oscilaba de un lado a otro con una majestád isócrona.

Yo sabía -pero cualquiera podía haberlo sentido en la

magia de ese sereno aliento- que el período estaba gobernado

por la raíz cuadrada de la longitud del cable y por π,

ese número que, por irracional que sea las mentes sublunares,

liga la circunferencia y el diámetro de todos los cículos posibles a

través de una racionalidad superior. El tiempo que necesitaba la

esfera para oscilar de un extremo a otro estaba determinado por una

conspiración arcana la más intemporal de las medidas: la singularidad

del punto de suspensión, la dualidad de las dimensiones del plano, el

comienzo triádico de π, la secreta Naturaleza cuadrática de la raíz y la

innumerada perfección del propio círculo.”

Uberto Eco

 

 

 

 

Después de haber utilizado un tiempo las ecuaciones y fórmulas de la física matemática, uno se acostumbra a una peculiaridad de la Naturaleza. Es muy comprensica con nuestra ignorancia de ciertos detalles. Las leyes de la Naturaleza tienen varios ingredientes: una máquina lógica para predecir el futuro a partir del presente, constantes especiales de la Naturaleza y un conjunto de simples números. Estos simples números aparecen junto a las constantes de la Naturaleza en casi todas las fórmulas físicas.

Einstein los supo apreciar muy y así lo reflejaba en las cartas que le envió a su amiga Ilse Rosenthal Schneider y los lamaba “constantes básicas”. Son solamente números. Por ejemplo, el período (“tic”) de un reloj de péndulo estaba dado con gran precisión por una sencilla fórmula:

Período = 2π √(L/g)

Donde L es la longitud del péndulo y g es la aceleración de la gravedad en la superficie de la Tierra. Aquí podemos notar la aparición de la “constante básica” 2π = 6,28. En todas las fórmulas que utilizamos para describir algún aspecto del mundo físico, aparece un factor numérico de este . Lo más notable es que casi siempre tienen un valor próximo a uno y pueden despreciarse, o aproximarse por 1, si sólo se está interesado en obtener una estimación razonablemente buena del resultado.

Éste es un premio importante, porque en un problema como la determinación  del período de un péndulo simple nos permite obtener la aproximada de la respuesta.. El período, que tiene dimensiones de tiempo, sólo puede depender de una manera de la longitud L y la aceleración g si la combinación resultante ha de ser un tiempo: esa combinación es la raíz cuadrada de L/g.

bonita característica del mundo físico, que parece estar bien descrito por leyes matemáticas en las que los factores puramente numéricos que aparecen no son muy diferentes de 1 en magnitud, es uno de los misterios casi desapercibidos de nuestro estudio del mundo físico. Einstein estaba muy impresionado por la ubicuidad de pequeños números adimensionales en las ecuaciones de la física y escribió sobre el misterio de que, aunque casi siempre parece ser así.

“…no podemos exigirlo rigurosamente, pues ¿por qué no debería aparecer un factor numérico (12π)3 en una deducción fisicomatemática? sin duda tales casos son rarezas.”

 

 

Es posible arrojar alguna luz sobre problema si reconocemos que casi todos los factores numéricos por los que Einstein estaba tan impresionado tienen un origen geométrico. Por ejemplo, el volumen de un cubo de arista R es R3, el volumen de una esfera de radio R es 4πR3/3. Los factores numéricos dan de la forma detallada cuando las fuerzas de la Naturaleza estan actuando. Puesto que las fuerzas fundamentales de la Naturaleza son simétricas y no tienen una preferencia por direcciones diferentes, hay una tendencia a la simetría esférica.

                                                   Nuestra Galaxia, el Sol y nuestro mundo y la Luna… ¡Todos tienden a ser esféricos!

Nos hemos podido dar cuenta de que a partir de todo lo que hemos podido aprender, hemos podido ver que las constantes de la Naturaleza tienen una influencia relativa mucho mayor  se trata de determinar los resultados de las leyes de la Naturaleza en tres dimensiones que la que tienen en universos con muchas más dimensiones espaciales.

Cuando consideramos mundos con dimensiones de espacio y tiempo distintas de 3 + 1 topamos con un problema sorprendente. Los mundos con más de una dimensión no permiten predecir el futuro a partir del presente. En este sentido son más bien como mundos sin dimensión temporal. Un sistema organizado complejo, como, por ejemplo, el necesario la vida, no podría utilizar la información recogida en su entorno para conformar su comportamiento futuro. Seguiría siendo simple: demasiado simple para almacenar información y evolucionar.

Si el número de dimensiones de espacio y tiempo hubiera sido escogido aleatoriamente y todos los números fueran posibles, entonces esperaríamos que el número fuera muy grande. Es muy improbable escoger un número pequeño. Sin embargo, las ligaduras impuestas por la necesidad de tener “observadores” para hablar del problema significa que no todas las posibilidades están disponibles y que se nos impone un espacio tridimensional. Todas las alternativas estarían privadas de vida. Si científicos de otro universo conocieran nuestras leyes no el número de dimensiones en que vivimos, podrían deducir su número simplemente a partir del hecho de nuestra existencia.

Así que, si queremos hacer una aproximación al problema de por qué el espacio tres dimensiones,  nos lleva a una estimación de gran alcance de cómo y por qué son peculiares los mundos tridimensionales con una única flecha del tiempo. Las alternativas son demasiado simples, demasiado inestables o demasiado impredecibles para que observadores complejos evolucionen y perduren dentro de ellos. Como resultado, no debería sorprendernos encontrarnos viviendo en tres dimensiones espaciales sujetos a los caprichos de un único tiempo. No par4ece que existan alternativas.

Y, a todo esto, ustedes se preguntarán: ¿Qué tiene que ver todo esto con el péndulo? Bueno, ya sabéis que todo evoluciona y, a medida que se va escribiendo parece que las ideas fluyen y también evolucionan en su transcurrir de manera tal que, de una cuestión se pasa a otra sin que lo podamos evitar.

Le doy desde aquí las gracias a John D. Narrow que, con sus ideas inspiró ésta página que todos pudiéramos disfrutar al acercarnos al conocimiento de las cosas, del mundo, del universo y de su Naturaleza que continuamente nos enseña por qué camino debemos seguir avanzando.

emilio silvera