Ago
7
¡Púlsares! Estrellas de neutrones pulsantes a velocidades increíbles
por Emilio Silvera ~ Clasificado en Púlsares y galaxias ~ Comments (1)
En el verano de 1967 Anthony Hewish y sus colaboradores de la Universidad de Cambridge detectaron, por accidente, emisiones de radio en los cielos que en nada se parecían a las que se habían detectado hasta entonces. Llegaban en impulsos muy regulares a intervalos de sólo 1 1/3 segundos. Para ser exactos, a intervalos de 1,33730109 segundos. La fuente emisora recibió el nombre de “estrella pulsante” o “pulsar”.
Esta es la imagen que de un púlsar tenemos pero…
¿QUE SON LOS PÚLSARES?
Un púlsar es una fuente de radio desde la que se recibe un tren de pulsos altamente regular. Han sido catalogados cerca de un millar de púlsares desde que se descubriera el primero en 1967. Los Púlsares son Estrellas de Neutrones en rápida rotación, con un diámetro de 20-30 Km. Las estrellas se hallan altamente magnetizadas (alrededor de 10 exp.8 tesla), con el eje magnético inclinado con respecto al eje de rotación.
La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a la luz de un faro. Los períodos de los pulsos son típicamente de 1 s pero varían desde los 1,56 ms (púlsares de milisegundo) hasta los 4’3 s
Los períodos de los pulsos se alargan gradualmente a medida que las estrellas de neutrones pierden energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas. Las medidas precisas de tiempos en los púlsares han revelado la presencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado por objetos de masa planetaria. Han sido detectados destellos ópticos procedentes de unos pocos púlsares, notablemente los Púlsares del Cangrejo y Vela.
La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutrones después de una acreción de masa de una estrella compañera. (Púlsar reciclado).
La gran mayoría de los púlsares conocidos se encuentran en la Vía Láctea y están concentrados en el plano galáctico. Se estima que hay unos 100.000 púlsares en la Galaxia. Las observaciones de la dispersión interestelar y del efecto Faraday en los púlsares suministran información sobre la distribución de electrones libres y de los campos magnéticos de la Vía Láctea.
Cuando un púlsar está en órbita con otra estrella, estamos hablando de un púlsar binario, cuya existencia es revelada por un cambio cíclico en el período de pulsación a medida que las dos estrellas orbitan la una en torno a la otra. Se conocen alrededor de 50 púlsares binarios, con períodos orbitales que varían entre menos de 1 hora y varios años, y períodos de pulsión entre 1,6 ms y más de 1 s.
Imagen más aclaratoria del PSR 1913+16
El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.
El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.
Otro púlsar binario destacable es PSR 1957 + 20, llamado en ocasiones púlsar de la viuda negra, en el que la intensa radiación procedente del pulsar está evaporando su pequeña estrella compañera. Algunos púlsares binarios se saben ahora que son púlsares reciclados que han adquirido altas velocidades de rotación debido a la acreción de gas procedente del compañero.
El púlsar del milisegundo brilla cada pocas milésimas de segundo. El primero en ser descubierto, PSR 1937 + 21, tiene un período de 1,56 ms, siendo aún el del período más corto conocido y próximo al mínimo teórico para una estrella de neutrones en rotación. Han sido descubiertos más de 60 púlsares con períodos de menos de 20 milisegundos, muchos de ellos en cúmulos globulares. Los púlsares de milisegundo poseen una rotación extremadamente estable y mantiene una regularidad mayor que la de los relojes atómicos.
También está el púlsar de rayos X. Aquí estamos hablando de una binaria de rayos X que tiene una variabilidad regular, en la que la pulsación está asociada al período de rotación de la compañera compacta, una estrella de neutrones magnetizada.
Los períodos varían desde unos pocos segundos hasta unos pocos minutos. Estas pulsaciones se piensa que están provocadas por el campo magnético que canaliza el gas en acreción hacia los polos de la estrella produciendo “manchas calientes” localizadas que se hacen visibles o no a medida que rota la estrella. Un ejemplo de dicho sistema es Hércules X-1.
La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutrones después de una acreción de masa de una estrella compañera. (Púlsar reciclado).
Otro tipo de púlsar es el llamado óptico que sufre pulsaciones en la parte visible del espectro, además de en longitudes de onda de radio y de otros tipos. El primer púlsar cuyas pulsaciones ópticas fueron descubiertas fue el Púlsar del Cangrejo, en 1969, seguido del Púlsar Vela en 1977.
El púlsar denominado “reciclado” es un púlsar con un campo magnético inusualmente bajo (1-100 tesla), un ritmo de frenado pequeño y un período de pulsos frecuentemente muy bajo, encontrándose a menudo en sistemas binarios.
Se cree que los púlsares reciclados son púlsares ordinarios que han perdido energía y se han debilitado, y que luego se han puesto a girar de nuevo por acreción del gas de la estrella compañera. Existe una alta proporción de púlsares reciclados en los núcleos de los cúmulos globulares, donde la alta densidad de estrellas hace más probable la captura de una vieja estrella de neutrones en un sistema binario. Los primeros púlsares reciclados en ser descubiertos tenían períodos de pulsos muy cortos y se conocen como “púlsares de milisegundo”, aunque más tarde se descubrieron otros con períodos mucho más largo.
Para poder llegar a estrella de neutrones, la estrella original que implosiona es más masiva que nuestro Sol. La estrella de Neutrones es muy densa, tan densa como el núcleo de un átomo y, cuando colapsa se convierte en un púlsar giratorio que es el resultado de una explosión de supernova como la presenciada en 1054.
Hasta donde podemos saber, estos objetos y otros más exóticos aún, están presentes en todas las galaxias del Universo que, como tantas veces se ha dicho aquí, son universos en miniatura en los que podemos encontrar todo aquello de lo que está conformado el Cosmos. La materia y las fuerzas fundamentales, el espaciotiempo y… ¡La vida!
emilio silvera
Ago
7
Venus (un planeta imposible)
por Emilio Silvera ~ Clasificado en Nuevos mundos ~ Comments (0)
El planeta Venus que es con diferencia el planeta más brillante del Sistema solar, está cubierto completamente de Nubes, su atmósfera está compuesta (en volumen) en un 96,5% de dióxido de carbono y un 3,5% de nitrógeno, con trazas de dióxido de azufre, vapor de agua, argón, hidrógeno y monóxido de carbono. Como no se deja ver por nuestros telescopios al estar oculto por esa atmósfera enrarecida, se han tenido que enviar ingenios espaciales a su superficie para que nos enviaran imágenes de cómo era en realidad.
Es un mundo abrasador, con temperaturas medias que rondan los 475 Cº que le convierten en el planeta más caliente del Sistema Solar, por delante incluso de Mercurio, pese a que este último se encuentra más cerca del Sol…, envuelto en una sofocante atmósfera, atrapa la mayor parte de la radiación solar, generando un efecto invernadero fuera de control , y aplasta la superficie con presiones equivalentes a 90 veces la que se registran en La Tierra a nivel del mar, todo en Venus parece estar sometido al calor más extremo, o, casi todo.
Tiene una cubierta de nubes blancas sin fracturas que ocultan la superficie
A 125 Kilómetros de altura, como desvelan ahora los datos acumulados por la Venus Express, encontramos lo impensable…una capa atmósférica extremadamente fría, con temperaturas que podrían situarse en los -175°C, o lo que es lo mismo 650 Grados centígrados inferior a las que se registran a nivel de la superficie. Tan gélida que incluso es posible que en ella exista, lo que es aún más sorprendente, nieve carbónica, Dioxido de Carbono helado como el que podemos ver en Marte. Pero Marte esta lejos de ser el “infierno planetario” que es Venus.
La Venus Express enviada para estudiar el planeta
A Venus han sido enviada muchas misiones por las distintas Agencias Espaciales de la Tierra: Sputnik 7, Venera 1, 2, 3, 4, 5. 6. 7, Mariner 1, 2, 5, Sputnik 19, 20, 21, Cosmos 27, 96, 167 y otras. No todas fueron un éxito y, la mayoría, dejaron de transmitir datos a los pocos minutos de su aterrizaje, otras fallaron en el lanzamiento y algunas sobrevolaron el planeta y tomaron datos valiosos.
Venera 9 fue el primer satélite artificial de Venus en órbita, desde donde descendió un Lander que aterrizó y recabó datos de temperatura y presión atmosférica, 50 min después se perdió contacto. Venera 10 Se puso en órbita y descendió un vehículo que recopiló datos 53 minutos después de aterrizar. Pionner Venus Orbiter (Pionner 12) Entró en órbita elíptica. Observó 6 cometas entre ellos el Halley. Recopiló datos de Venus. En 1992 se desintegró en la atmósfera. Pionner Venus Multiprobe (Pionner 13) Entró en órbita. Desde el orbitador descendió una sonda que a su vez portava 3 sondas más, entrando a la atmósfera las 4, una de ellas recabó datos 45 min después del aterrizaje.
Las misiones Venera 13 y 14: la 13 Aterrizó y tomó las primeras fotografías de la superficie de Venus. Taladró la superficie. Se perdió contacto 127 min después del aterrizaje. La 14 Aterrizó y estudió la composición química de la superficie de Venus, tomó fotografías y se perdió contacto 57 min después de haber aterrizado.
Venus tiene muchos volcanes. El 85% del planeta está cubierto por roca volcánica. La lava ha creado surcos, algunos muy largos. Hay uno de 7.000 km. En Venus también hay cráteres de los impactos de los meteoritos. Sólo de los grandes, porque los pequeños se deshacen en la espesa atmósfera. Las fotos muestran el terreno brillante, como si estuviera mojado. Pero Venus no puede tener agua líquida, a causa de la elevada temperatura. El brillo lo provocan compuestos metálicos.
En marzo de 1982, la nave Venera 13 resistió durante dos horas, enviando imágenes como esta. Ahí podéis ver, en la parte inferior derecha un trozo de la nave sobre el planeta Venus.
La superficie de Venus es relativamente joven, entre 300 y 500 millones de años. Tiene amplísimas llanuras, atravesadas por enormes rios de lava, y algunas montañas. Es el segundo planeta del Sistema solar y el más semejante a la Tierra por su tamaño, masa, densidad y volumen. Los dos se formaron en la misma época, a partir de la misma nebulosa.
Sin embargo, como hemos dicho, es diferente de la Tierra. No tiene océanos y su densa atmósfera provoca un efecto invernadero que eleva la temperatura hasta los 480 ºC. Es abrasador. Los primeros astrónomos pensaban que Venus eran dos cuerpos diferentes porque, unas veces se ve un poco antes de salir el Sol y, otras, justo después de la puesta. Venus gira sobre su eje muy lentamente y en sentido contrario al de los otros planetas. El Sol sale por el oeste y se pone por el este, al revés de lo que ocurre en La Tierra. Además, el día en Venus dura más que el año.
Son muchas y variadas las fotografías que ahora tenemos de la superficie de Venus y que han posibilitado que conozcamos mejor aquel planeta. Por ejemplo, la nave Venus Express envió mapas infrarrojos que muestran variaciones de calor entre las rocas de la superficie del planeta Venus. Los científicos dijeron que algunas zonas son ligeramente más frías, lo que sugiere que tienen una composición diferente. Los investigadores alemanes que trabajaron en la misión dijeron que estas rocas podrían ser similares a las rocas continentales que se encuentran en la Tierra. La naturaleza de tales rocas serían de granito. En nuestro planeta, el granito es creado durante el proceso de reciclado de las rocas que sucede en los bordes de las grandes placas geológicas que cubren la Tierra. En los límites de estas placas, las rocas antiguas son empujadas hacia el fondo del planeta, modificadas con el agua y luego vuelven a la superficie a través de los volcanes. Fundamentalmente, si hay rocas de granito en Venus, entonces, alguna vez hubo un océano y un proceso de movimiento de placas tectónicas en el pasado.
Ilustración de las altitudes y profundidades de la superficie de Venus
En 2009 se publicó que una sonda europea en la órbita de Venus enviaba nuevos datos indicadores de que una vez hubo en el planeta una gran cantidad de agua en su superficie, e incluso tuvo un sistema de placas tectónicas. La nueva evidencia fue obtenida a través del Visible and Infrared Thermal Imaging Spectrometer (VIRTIS), un instrumento a bordo del Venus Express. Los datos obtenidos por el instrumento han sido combinados con los mapas de elevación de la superficie obtenidos previamente. VIRTIS pudo ver a través de las espesas nubes que cubren la superficie de Venus y analizar detalladamente las variaciones de energía del calor que proviene de las rocas. Diferentes composiciones geológicas son irradiadas en longitudes de onda ligeramente diferentes.
Los nuevos mapas del hemisferio sur de Venus muestraron que las rocas de las mesetas de Alfa y Phoebe Regio son de un color más claro y mucho más viejas en comparación con las que se encuentran en el resto del planeta. En la Tierra, esas rocas de colores claros suelen ser de granito. Esto contrasta con las rocas de basalto – características de las cuencas oceánicas – vistas por las sondas rusas del programa Venera en las décadas del 1970 y 1980 respectivamente.
Impresionante imagen de la superficie de Venus, cortesía de la NASA/JPL.
Antes he mencionado la densa atmósfera de aquel planeta, su presión en la superficie es de unos 92 bares (es decir, 92 veces la presión al nivel del mar en la Tierra. Esa presión unida a una temperatura media de 460 ºC debido al efecto invernadero -los rayos son muy frecuentes-, hacen del planeta un lugar poco recomendable para pasar allí una temporada de vacaciones. Una capa gruesa de nubes situada a unos 45 km de la superficie envuelve todo el planeta y, la composición de esas nubes son el ácido sulfúrico y gotas de agua que oscurecen permanentemente la superficie.
A través de telescopios ópticos, Venus aparece prácticamente sin rasgos distintivos, aunque en longitudes de onda ultravioletas pueden observarse corrientes de nubes extendiendose directamente desde el ecuador hacia los polos.
Representación de Terra Instar
La superficie seca de Venus se asemeja más a la de la Tierra que a la del planeta Marte. El 70% de su total es básicamente plana, con desniveles inferiores a los 500 metros. Las depresiones reciben el nombre de Planicies y alcanzan hasta 2 Km por debajo del radio medio del planeta. Las más importantes son las planicies de Atalanta, Sedna, Guinevere y Niobe. El 10% del planeta está dominado por dos grandes mesetas; elevaciones en forma de continentes, a las que se les ha dado los nombres de las dos más grandes divinidades femeninas de la mitología griega y babilónica: Aphrodite e Isntar.
Hoy he querido dejar aquí algunos datos sobre un planeta que vemos brillar en el cielo y al que llamamos Lucero del Alba pero del que, en realidad, no se sabe mucho y se ha prestado desde siempre, mucha más atención a Marte, Júpiter o Saturno que a Venus y Mercurio del que hablaré otro día.
Alguna vez me he preguntado: ¿Habrá alguna clase de vida en aquel infierno?
emilio silvera
Ago
7
Nuestro Planeta: ¡Es tan complejo!
por Emilio Silvera ~ Clasificado en La Tierra y su energía ~ Comments (0)
Nuestro planeta, como nosotros mismos, es agua y luz
La biosfera y la hidrosfera están estrechamente relacionadas: el agua es el elemento esencial de todas las formas de vida, y la distribución del agua en el planeta (es decir, los límites de la hidrosfera) condiciona directamente la distribución de los organismos (los límites de la biosfera). El término biosfera, de reciente creación, indica el conjunto de zonas de la Tierra donde hay vida, y se circunscribe a una estrecha región de unos 20 Km de altura comprendida entre las cimas montañosas más elevadas y los fondos oceánicos más profundos. Sólo pueden hallarse formas de vida en la biosfera, donde las condiciones de temperatura, presión y humedad son adecuadas para las más diversas formas orgánicas de la Tierra.
En lo más hondo. Entorno de la sima Krubera en la que se halló el artrópodo.-DENIS PROVALOV
Un equipo de espeleólogos y científicos españoles ha sacado de las entrañas de la tierra al animal que vive a mayor profundidad del mundo. Se trata de una nueva especie de artrópodo de seis patas y color blanquecino hallado a casi dos kilómetros bajo tierra. organismo milimétrico supone una sorpresa monumental, ya que casi ningún científico esperaba encontrar nada vivo en un lugar tan inaccesible.
Obviamente, las fronteras de dicha “esfera” son elásticas y su extensión coincide con la de la hidrosfera; se superpone a las capas más bajas de la atmósfera y a las superficiales de la litosfera, donde se sumerge, como máximo, unos 2 Km. Sin embargo, si por biosfera se entiende la zona en la que hay vida así como la parte inorgánica indispensable para la vida, deberíamos incluir en este concepto toda la atmósfera, sin cuyo “escudo” contra las radiaciones más fuertes no existiría ningún tipo de vida; o la corteza terrestre entera y las zonas superiores del manto, sin las cuales no existiría la actividad volcánica, que resulta necesaria para enriquecer el suelo con nuevas sustancias minerales.
Por tanto, la biosfera es un ecosistema tan grande como el planeta Tierra y en continua modificación por causas naturales y (desgraciadamente) artificiales.
Las modificaciones naturales se producen a escalas temporales muy variables: en tiempos larguísimos determinados por la evolución astronómica y geológica, que influyen decididamente en las características climáticas de los distintos ambientes (por ejemplo, durante las glaciaciones), o en tiempos más breves, relacionados con cambios climáticos desencadenados por sucesos geológicos-atmosféricos imprevistos (por ejemplo, la erupción de un volcán, que expulsa a la atmósfera grandes cantidades de cenizas capaces de modificar el clima de extensas áreas durante periodos considerables).
Estos sucesos naturales van transformando el pasisaje y nos trae cambios y nueva vida
En cambio, las modificaciones artificiales debidas a la actividad humana tienen efectos rápidos: la deforestación producida en África por las campañas de conquista romanas contribuyó a acelerar la desertificación del Sahara, como tampoco hay duda de que la actividad industrial de los últimos siglos determina modificaciones dramáticas y repentinas en los equilibrios biológicos.
La biosfera es el punto de encuentro entre las diversas “esferas” en las que se subdivide la Tierra: está surcada por un flujo continuo de energía procedente tanto del interior del planeta como del exterior, y se caracteriza por el intercambio continuo de materia, en un ciclo incesante que une todos los entornos.
Muchas son las criaturas de especies ditintas que enriquecen la diversidad de la vida en la Tierra
Pero no por esta razón hay vida por todas partes, pues la vida requiere condiciones particulares e imprescindibles. Existen determinados elementos físicos y químicos que “limitan” el desarrollo de la vida. La presencia y disponibilidad de agua es el primero y el más importante. El agua es el disolvente universal para la química de la vida; es el componente primario de todos los organismos y sin agua la vida es inconcebible (Tales de Mileto fue el primero en darse cuenta de ello). Pero no sólo es eso: al pasar del estado sólido al líquido y al gaseoso y viceversa, el agua mantiene el “efecto invernadero natural”, capaz de conservar la temperatura del planeta dentro de los niveles compatibles con la vida (es decir, poco por debajo de los 0º C y poco por encima de los 40º C).
La presión, que no deberá superar mucho el kilogramo por centímetro cuadrado (como sucede alrededor de los 10 m de profundidad en el mar), así como una amplia disponibilidad de sales minerales y de luz solar (indispensable – como expliqué antes – para la vida de las plantas) son también factores que marcan las posibilidades de vida.
Está claro que se nos ha dado un lugar privilegiado, que reúne todas y cada una de las condiciones excepcionales para la vida, y somos tan ignorantes que aún siendo un bien escaso (en nuestro enorme Sistema Solar, parece que el único), nos lo queremos cargar. Pero sin querer, me marcho por las ramas y me desvío del tema principal, la evolución por la energía, y como está directamente implicada, hablemos un poco de nuestra casa.
El planeta Tierra
Las fuerzas que actúan sobre la Tierra, como planeta en el espacio, tiene profundas implicaciones energéticas. La gravitación ordena y orienta, y obstaculiza y facilita los flujos de energía cinética. La rotación genera la fuerza centrífuga y la de Coriolis: la primera achata el planeta por los polos ensanchándolo por el ecuador, y la segunda desvía los vientos y las corrientes de los océanos (a la derecha del hemisferio norte y a la izquierda en el hemisferio sur). La rotación es también la causa de los ritmos diarios de las plantas y animales, y de la desaceleración de la Tierra, que alarga el día un promedio de 1’5 ms cada siglo, lo que representa una pérdida de tres teravatios por fricción de mareas.
Pero ni la gravitación ni la rotación (fricción) hacen de la Tierra un planeta único entre los cuerpos celestes de nuestro entorno. Su exclusividad procede de sus propiedades térmicas internas, que causan los ciclos geotectónicos que modifican la superficie, y de su atmósfera, océanos y plantas que transforman la radiación solar que reciben. Los orígenes de estos procesos no están claros. Sin embargo, sabemos que todos esos complejos fenómenos y circuntancias han dado vía libre a la aparición de la vida.
Un disco proto planetario como este pudo formar nuestro sistema solar a partir de la Nebulosa
Podemos fijar la edad de la Tierra en algo más de los 4.000 millones de años por la desintegración de los isótopos radiactivos, pero poco podemos asegurar sobre la formación del planeta o sobre la energética de la Tierra primitiva. Sobre el tema circulan varias teorías, y es muy plausible que el origen del Sistema Solar planetario fuera una nube interestelar densa en la que el Sol se formó por una inestabilidad gravitatoria y que la posterior aglomeración del resto de esta materia dispersa, que giraba a distintas distancias, a su alrededor, diera lugar a los planetas. No está claro si al principio la Tierra estaba extremadamente caliente o relativamente fría. Me inclino por lo primero y estimo que el enfriamiento fue gradual con los cambios de atmósferas y la creación de los océanos.
Las incertidumbres geológicas básicas se extienden hasta el presente. Diferentes respuestas a cuestiones como la cantidad de 40K en el núcleo terrestre o sobre la convección del magma en el manto (hay una o dos celdas) dan lugar a diferentes explicaciones para el flujo de calor y la geotectónica de la Tierra. Lo que sí está claro es que el flujo interno de calor, menos de 100 mW/m2, tiene un efecto pequeño comparado con la reflexión, absorción y emisión de la radiación solar.
El balance de la radiación terrestre (Rp) en la capa alta de la atmósfera es la suma de la radiancia extraterrestre (la constante sola Q0) reducida por el albedo planetario y el flujo saliente de larga longitud de onda (Qi): Rp = Q0(1-ap) + Qi = 0. El flujo emitido es igual a la suma de la radiación atmosférica y la terrestre: Qi = Qea + Qes. Los balances de la radiación en la atmósfera (Ra) y en la superficie de la Tierra (Rs) son iguales, respectivamente, a la diferencia entre la correspondiente absorción y emisión: Ra = Qaa + Qea y Rs = Qas + Qes, de manera que Rp = Ra + Rs = 0. Hay que continuar explicando la radiación saliente con los flujos irradiados y emitidos por la superficie terrestre, el flujo de radiación medio absorbida, etc., etc., etc., con una ingente reseña de símbolos y tedioso esquemas que, a mi parecer, no son legibles para el lector normal y no versado en estos conocimientos. Así que, aunque sea mutilar el trabajo, desisto de continuar por ese camino y prosigo por senderos más amenos y sugestivos para el lector.
La fuente más importante del calentamiento atmosférico proviene de la radiación terrestre de longitud de onda larga, porque el flujo de calor latente es una contribución secundaria y el flujo de calor sensible sólo es importante en las regiones áridas donde no hay suficiente agua para la evaporación. Los océanos y los continentes también reciben indirectamente, irradiadas por la atmósfera, la mayor parte de su calor en forma de emisiones de longitudes de onda larga (4 – 50 μm). En este flujo de radiación reenviado hacia la superficie terrestre por los gases invernadero, domina a la radiación del vapor de agua, que con una concentración variable, emite entre 150 y 300 W/m2, y al que también contribuye el CO2 con unos 75 W/m2.
El intercambio de radiación de longitud de onda larga entre la superficie y la atmósfera sólo retrasa temporalmente las emisiones de calor terrestre, pero controla la temperatura de la biosfera. Su máximo es casi 400 W/m2 en los trópicos nubosos, pero es importante en todas las estaciones y presenta significativas variaciones diarias. El simple paso de una nube puede aumentar el flujo en 25 W/m2. Las mayores emisiones antropogénicas de gases invernadero han aumentado este flujo en cerca de un 2’5 W/m2 desde finales del siglo XIX.
Como era de esperar, las observaciones de los satélites confirman que el balance de energía de la Tierra está en fase con la radiación solar incidente (Q0), pero la radiación media saliente (Qi) está desfasada con la irradiancia, alcanzando el máximo durante el verano en el hemisferio norte. La distribución asimétrica de los continentes y el mar explica este fenómeno. En el hemisferio norte, debido a la mayor proporción de masa terrestre, se experimentan mayores cambios estacionales que dominan el flujo global de la radiación saliente.
Quizás el resultado más sorprendente que se deriva de las observaciones por satélite sea que, estacionalmente, se observan cierto déficit y superávit de radiación y el balance de la radiación en el planeta no es igual a cero, pero sin embargo, en cada hemisferio la radiación anual está en equilibrio con el espacio exterior. Además, la contribución atmosférica por transporte de energía hacia los polos es asimétrica respecto al ecuador con valores extremos de unos 3 PW cerca de los 45º N, y -3 PW cerca de 40º S.
Si la Naturaleza se enfada… ¡Nosotros a temblar!
Podría continuar hablando sobre los vientos, los terremotos, las lluvias y otros fenómenos atmosféricos, sin embargo, no creo que, por ser estos fenómenos naturales muy conocidos de todos, pudieran tener gran interés. Pasemos pues a comentar sobre los océanos.
Agua, mejor que Tierra, habría sido el nombre adecuado para el tercer planeta, puesto que los océanos cubren más del 70 por ciento de la superficie terrestre, con una profundidad media de 3’8 Km. Debido a las especiales propiedades térmicas del agua, éstas constituyen un extraordinario regulador del balance energético del planeta.
Este líquido tiene cinco ventajas termodinámicas importantes: un punto de ebullición inusualmente alto, debido a su capacidad para formar enlaces de hidrógeno intermoleculares; un calor específico de 2’5 a 3’3 veces más elevado que el del suelo; una capacidad calorífica (calor específico por unidad de volumen) aproximadamente seis veces mayor que la tierra seca; un altísimo calor de vaporización que le permite transportar una gran cantidad de calor latente; y su relativamente baja viscosidad, que le convierte en un eficiente transportador de calor en los océanos mediante miríadas de remolinos y caudalosas corrientes.
No es sorprendente, pues, que los océanos, que tienen cerca del 94 por ciento de toda el agua, sean determinantes en el balance energético del planeta. Cuatro quintas partes de la radiación solar que llega a la Tierra entra en la atmósfera que cubre los océanos, los cuales con un albedo superior al 6% absorben la energía con una tasa cercana a 65 PW, casi el doble de la absorción atmosférica total y cuatro veces mayor que la continental. Inevitablemente, los océanos también absorben la mayor parte, casi dos tercios, del calor rerradioirradiado hacia abajo por la atmósfera elevando su ritmo de calentamiento a los 175 PW.
Salvo en los océanos menos profundos, la interacción aire-mar no afecta directamente a las aguas profundas. Las oscuras y frías aguas de las profundidades marinas están aisladas de la atmósfera por la capa mixta, una capa de poca profundidad que va de pocos metros a pocos cientos de metros y que está afectada por los vientos y el oleaje.
A pesar de que el alto calor específico del agua limita el rango de variación, las temperaturas de esta capa sufren importantes fluctuaciones diarias y estacionales. Sin embargo, variaciones relativamente pequeñas de la temperatura de la superficie de los océanos tienen importantes consecuencias climáticas: quizás el mejor ejemplo de esta teleconexión climática sea el fenómeno del Niño, que consiste en una extensión en forma de lengua de las aguas superficiales calientes hacia el este, cuyos efectos se extienden desde Canadá hasta África del sur.
Debido a que la conductividad térmica del agua es muy baja, la transferencia de energía de la capa mixta hacia las profundidades se realiza fundamentalmente mediante corrientes convectivas. Estas corrientes compensan la extremadamente baja fuerza ascensional de las aguas profundas, más calientes, que son desplazadas por el movimiento hacia el ecuador de las corrientes frías provenientes de los polos. En contraste con el gradual ascenso general de las aguas oceánicas, la convección hacia abajo se produce en corrientes bien delimitadas que forman gigantescas cataratas oceánicas. Seguramente la mayor es la que fluye hacia el sur bajo el estrecho de Dinamarca, entre Islandia y Groenlandia, y se sumerge unos 3’5 Km transportando 5 millones de m3/s, un caudal veinte veces mayor que el del Amazonas.
Miríadas de corrientes oceánicas, que a menudo viajan cientos de kilómetros a diferentes profundidades, transportan considerables cantidades de energía y sal. Quizás el ejemplo más importante de estas combinaciones de transportes sea la corriente de agua caliente y salada que sale del Mediterráneo a través del estrecho de Gibraltar. Este flujo caliente pero denso desciende sobre la pendiente de la plataforma continental hasta alcanzar el equilibrio entre el peso y el empuje ascensional a unos mil metros de profundidad. Aquí se separa en dos celdas lenticulares que se mueven durante siete años hacia el este y hacia el sur, respectivamente, hasta que decaen o chocan contra alguna elevación marina.
Un mapa global de los flujos de calor desde la superficie oceánica hasta las capas profundas muestra claramente máximos longitudinales a lo largo del ecuador y a lo largo de aproximadamente 45º S en los océanos Atlántico e Índico. Esta transferencia es también importante en algunas áreas costeras donde se producen intensos flujos convectivos ascendentes que intercambian calor entre las aguas superficiales y las profundas, como ocurre en la costa de California y al oeste de África. Un flujo en dirección contraria, que calienta la atmósfera, se produce en las dos mayores corrientes oceánicas calientes, la corriente del Golfo en el Atlántico y la de Kuroshio en el Pacífico oriental.
El giro de la Tierra hacia el Este influye también en las corrientes marinas, porque tiende a acumular el agua contra las costas situadas al oeste de los océanos, como cuando movemos un recipiente con agua en una dirección y el agua sufre un cierto retraso en el movimiento y se levanta contra la pared de atrás del recipiente. Así se explica, según algunas teorías, que las corrientes más intensas como las del Golfo en el Atlántico y la de Kuroshio en el Pacífico se localicen en esas zonas.
Este mismo efecto del giro de la Tierra explicaría las zonas de afloramiento que hay en las costas este del Pacífico y del Atlántico en las que sale agua fría del fondo hacia la superficie. Este fenómeno es muy importante desde el punto de vista económico, porque el agua ascendente arrastra nutrientes a la superficie y en estas zonas prolifera la pesca. Las pesquerías de Perú, Gran Sol (sur de Irlanda) o las del África atlántica se forman de esta manera.
Imagen esquemática y conceptual de distintos fenómenos eléctricos y luminosos generados por ciertas tormentas intensas. Imagen tomada de Internet, en su versión inglesa, y adaptada al español. La imagen originaria es de Lyons et al. (2000) de la American Geophysical Union.
Todas la regiones donde se produce este ascenso de aguas calientes (a lo largo de las costas del continente americano, África, India y la zona ecuatorial del Pacífico occidental) se distinguen fácilmente por los elevados niveles de producción de fitoplancton, causados por un importante enriquecimiento de nutrientes, comparados con los que, de otra manera, corresponderían normalmente a las aguas superficiales oligotrópicas.
La radiación transporta la mayor parte (casi 4/5) de la energía que fluye desde la capa mixta hasta la atmósfera, y el resto del flujo calorífico se produce por calor latente en forma de vapor de agua y lluvias.
Aún no se ha realizado una valoración cuantitativa del transporte total para cada latitud, pero en el océano Atlántico hay transferencia de calor hacia el norte a lo largo de toda su extensión, alcanzando en el trópico un valor aproximado de 1 PW, flujo equivalente al que se produce en el Pacífico norte. En el Pacífico sur, el flujo de calor hacia el polo a través del trópico es de 0’2 PW. La parte occidental del Pacífico sur puede constituir la mayor reserva de calor del Atlántico sur, de igual modo que es probable que el océano Índico sur constituya una reserva del Pacífico.
Los rios refrescan amplias zonas de la Tierra y hacen posible la vida
Ahora tocaría comentar algo sobre los ríos del planeta, sin embargo, me parece que merece un capítulo aparte y especial por su significado para muchos pueblos y culturas y también, por su contribución para hacer posible muchos ecosistemas y formas de vida. Así que, me dirijo directamente a comentar sobre el calor de la Tierra.
Aunque la Tierra se formara inicialmente a partir de materia fría (material cósmico) que se contrajo por acción de la gravedad, durante la formación posterior del núcleo líquido y en los periodos de intensa actividad volcánica se ha liberado una enorme cantidad de calor. Los frecuentes impactos de objetos pesados también han contribuido al calentamiento de la superficie. Hay mucha incertidumbre sobre la historia térmica de la Tierra de los últimos 3.000 millones de años, durante los cuales el planeta se ha ido enfriando y una gran parte de este flujo de calor ha alimentado los movimientos geotectónicos globales, creando nueva corteza en las dorsales oceánicas; un proceso que ha ido acompañado de terremotos recurrentes y erupciones volcánicas de lava, cenizas y agua caliente.
Solamente hay dos posibles fuentes de calor terrestre, pero la importancia relativa de las respectivas contribuciones no está aún muy clara. El calor basal, liberado por un lento enfriamiento del núcleo terrestre debe representar una gran parte del flujo total, si bien cálculos basados en la desintegración radiactiva del U235, U238, Th232 y K40 sugieren que éste representa al menos la mitad y quizás hasta nueve décimos del flujo total de calor del planeta. Esta disparidad obedece a la incertidumbre en la concentración de K40 en la corteza terrestre. Pero sea cual sea la proporción, el flujo total, basado en miles de medidas realizadas desde los años cincuenta, está próximo a los 40 TW.
Aunque inicialmente se pensó que los flujos continentales y oceánicos eran aproximadamente iguales, en realidad difieren de forma sustancial. Las regiones del fondo oceánico más recientes contribuyen con más de 250 mW/m2, cantidad que supera hasta tres veces las zonas continentales más recientes. El flujo medio para todo el fondo marino es aproximadamente igual a 95 mW/m2, lo que representa un 70% más que el correspondiente a la corteza continental. El flujo medio global es de 80 mW/m2, unos tres órdenes de magnitud inferior al valor medio del flujo de calor de la radiación solar global.
emilio silvera