lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Una parte de la ciencia estudia la estructura y la evolución del Universo: La cosmología.

La cosmología observacional se ocupa de las propiedades físicas del Universo, como su composición física referida a la química, la velocidad de expansión y su densidad, además de la distribución de Galaxias y cúmulos de galaxias.  La cosmología física intenta comprender estas propiedades aplicando las leyes conocidas de la física y de la astrofísica.  La cosmología teórica construye que dan una descripción matemática de las propiedades observadas del Universo basadas en esta comprensión física.

La cosmología también tiene aspectos filosóficos, o incluso teológicos, en el sentido de que trata de comprender por qué el Universo tiene las propiedades observadas. La cosmología teórica se basa en la teoría de la relatividad , la teoría de Einstein de la gravitación.  De todas las fuerzas de la naturaleza, la gravedad es la que tiene efectos más intensos a escalas y domina el comportamiento del Universo en su conjunto.

El espacio-tiempo, la materia contenida en el Universo con la fuerza gravitatoria que , los posibles agujeros de gusano y, nuestras mentes que tienen conocimientos de que todo esto sucede o puede suceder. De manera que, nuestro consciente (sentimos, pensamos, queremos obrar con conocimiento de lo que hacemos), es el elemento racional de personalidad humana que controla y reprime los impulsos del inconsciente, para desarrollar la capacidad de adaptación al mundo exterior.

Al ser conscientes, entendemos y aplicamos nuestra razón natural para clasificar los conocimientos que adquirimos mediante la experiencia y el estudio que aplicamos a la realidad del mundo que nos rodea. Claro que, no todos podemos percibir la realidad de la misma manera, las posibilidades existentes de que el conocimiento de esa realidad, responda  exactamente a lo que  ésta es en sí, no parece .

Descartes, Leibniz, Locke, Berkeley, Hume (que influyó decisivamente en Kant), entre otros, construyeron una base que tomó fuerza en Kant, para quien el conocimiento arranca o nace de nuestras experiencias sensoriales, es decir, de los datos que nos suministra nuestros cinco sentidos, pero no todo en él procede de esos datos.  Hay en nosotros dos fuentes o potencias distintas que nos capacitan , y son la sensibilidad (los sentidos) y el entendimiento (inteligencia).  Esta no puede elaborar ninguna idea sin los sentidos, pero éstos son inútiles sin el entendimiento.

A todo esto, para mí, el conocimiento está inducido por el .  La falta y ausencia de interés aleja el conocimiento.  El interés puede ser de distinta índole: científico, social, artístico, filosófico, etc.  (La gama es tan amplia que existen conocimientos de todas las posibles vertientes o direcciones, hasta tal punto es así que, nunca nadie lo podrá saber todo sobre todo). Cada uno de nosotros puede elegir sobre los conocimientos que prefiere adquirir y la elección está adecuada a la conformación individual de la sensibilidad e inteligencia de cada cual.

Siempre sentimos curiosidad por saber como era el mundo y qué había en los cielos

También se da el caso de personas que prácticamente, por cuestiones genéticas o de otra índole, carecen de cualquier por el conocimiento del mundo que les rodea, sus atributos sensoriales y de inteligencia funcionan a tan bajo rendimiento que, sus comportamientos son casi-animales (en el sentido de la falta de racionalidad), son guiados por la costumbre y las necesidades primarias: comer, dormir…

El polo opuesto lo encontramos en múltiples ejemplos de la historia de la ciencia, donde personajes como Newton, Einstein, Riemann, Ramanujan y tantos otros (cada uno en su ámbito del conocimiento), dejaron la muestra al mundo de su genio .

Pero toda la realidad está encerrada en una enorme burbuja a la que llamamos Universo y que guarda todos los misterios y secretos que nosotros, seres racionales y conscientes, perseguimos para saber, ese preciado bien que no todos podemos alcanzar.

                                                                                        A la conciencia nos grita

Todo el mundo sabe lo que es la conciencia; es lo que nos abandona cada noche cuando nos dormimos y reaparece a la mañana siguiente cuando nos despertamos.  Esta engañosa simplicidad me recuerda lo que William James escribió a finales del siglo XIX sobre la atención:”Todo el mundo sabe lo que es la atención; es la toma de posesión por la mente, de una forma clara e intensa, de un hilo de pensamiento de entre simultáneamente posibles”.  Más de cien años más tarde somos muchos los que creemos que seguimos sin tener una comprensión de fondo ni de la atención, ni de la conciencia que, desde luego, no creo que se marche cuando dormimos, ella no nos deja nunca.

La falta de comprensión ciertamente no se debe a una falta de atención en los círculos filosóficos o científicos.  Desde que René Descartes se ocupara del problema, pocos han los temas que hayan preocuado a los filósofos tan persistentemente como el enigma de la conciencia.

Para Descartes, como para más de dos siglos después, ser consciente era sinónimo de “pensar”: el hilo de pensamiento de James no era otra cosa que una corriente de pensamiento. El cogito ergo sum, “pienso, luego existo”, que formuló Descartes como fundamento de su filosofía en Meditaciones de prima philosophía, era un reconocimiento explícito del papel central que representaba la conciencia con respecto a la ontología (qué es) y la epistemología (qué conocemos y cómo le conocemos).

Claro que tomado a pie juntillas, “soy consciente, luego existo”, nos conduce a la creencia de que nada existe más allá o fuera de la propia conciencia y, por mi parte, no estoy de acuerdo.   Existen muchísimas cosas y hechos que no están al alcance de mi conciencia.  Unas veces por imposibilidad física y otras por imposibilidad intelectual, lo es que son muchas las cuestiones y las cosas que están ahí y, sin embargo, se escapan a mi limitada conciencia.

Todo el entramado existente alrededor de la conciencia es de una complejidad enorme, de hecho, conocemos mejor el funcionamiento del Universo que el de nuestros propios cerebros. ¿Cómo surge la conciencia como resultado de procesos neuronales particulares y de las interacciones entre el cerebro, el cuerpo y el mundo? ¿Cómo pueden explicar estos procesos neuronales las propiedades esenciales de la experiencia consciente ?

Cada uno de los estados conscientes es unitario e indivisible, pero al mismo tiempo cada persona puede elegir entre un ingente de estados conscientes distintos.

                                    Sherrington

Muchos han los que han querido explicar lo que es la conciencia.  En 1.940, el gran neurofisiólogo Charles Sherrington lo intento y puso un ejemplo de lo que él pensaba sobre el problema de la conciencia.  Unos pocos años más tarde también lo intentaron otros y, antes, el mismo Bertrand Russell hizo lo propio, y, en todos los casos, con más o menos acierto, el resultado no fue satisfactorio, por una sencilla razón: nadie sabe a ciencia cierta lo que en verdad es la conciencia y cuales son sus verdaderos mecanismos; de hecho, Russell expresó su escepticismo sobre la capacidad de los filósofos para alcanzar una respuesta:

“Suponemos que un proceso fisico da comienzo en un objeto visible, viaja hasta el ojo, donde se convierte en otro proceso físico en el nervio óptico y, finalmente, produce algún efecto en el cerebro al mismo tiempo que vemos el objeto donde se inició el proceso; pero este proceso de ver es algo “mental”, de naturaleza totalmente distinta a la de los procesos físicos que lo preceden y acompañan.  Esta concepción es tan extraña que los metafísicos han inventado toda suerte de teorías con el fin de sustituirla con algo menos increíble”.

Está claro que en lo más profundo de ésta consciencia que no conocemos, se encuentran todas las respuestas a las preguntas planteadas o requeridas mediante interrogantes que nadie ha sabido despejar. Cada cual sigue en “su mundo” que, necesariamente, no tiene que coincidir con el mundo real en el que estamos. No todos percibimos las cosas de la misma manera.

Al comienzo mencionaba el cosmos y la gravedad junto con la consciencia y, en realidad, con más o menos acierto, de lo que estaba tratando era de hacer ver que todo ello, es la misma cosa.  Universo-Galaxia-Mente.  Nada es independiente en un sentido global, sino que son de un todo y están estrechamente relacionados.

Una Galaxia es simplemente una parte pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes.  Sin embargo, todo forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras.

Pocas dudas pueden caber a estas alturas de que, el hecho de que podamos estar hablando de estas cuestiones, es un milagro en sí .

Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales conciertas estructuras cerebrales de cierta (aunque limitadas) complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

La conciencia de orden (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras.  Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados.  Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.

Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata da tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas.  Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que ahora presentimos.

El carácter de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, desde este punto de , puede considerarse un ente digno del estudio científico perfectamente legítimo.

Es tan comùn y abundante que no le damos la importancia que realmente tiene para la vida

La conciencia plantea un problema especial que no se encuentra en otros dominios de la ciencia.  En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes.  Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica.  Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo.  Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.

En el caso de la conciencia, sin embargo, nos encontramos con una simetría.  Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca.  No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada.  Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes.  Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, qué se siente al ser un murciélago.  Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que no s hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales.  En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.

Ninguna descripción, por prolija que sea, logrará nunca explicar cabalmente la experiencia subjetiva.  Muchos filósofos han utilizado el ejemplo del color para explicar este punto.  Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactorio, bastaría para comprender cómo se siente el proceso de percepción de un color.  Ninguna descripción, ninguna teoría, científica o de otro tipo, bastará nunca para que una daltónica consiga experimentar un color.

En un experimento mental filosófico, Mary, una neurocientífica del futuro daltónica, lo sabe todo acerca del visual y el cerebro, y en particular, la fisiología de la discriminación del color.  Sin embargo, cuando por fin logra recuperar la visión del color, todo aquel conocimiento se revela totalmente insuficiente comparado con la auténtica experiencia del color, comparado con la sensación de percibir el color.  John locke vio claramente este problema hace mucho tiempo.

Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo un día soleado del mes de abril: El cielo despejado, limpio y celeste, el Sol allí arriba esplendoroso y cegador que nos envía su luz y su calor, los árabes y los arbustos llenos de flores de mil colores que son asediados por las abejas, el aroma y el rumor del río, cuyas aguas cantarinas no cesan de correr transparentes, los pajarillos de distintos plumajes que lanzan alegres trinos en sus vuelos por el ramaje que se mece movido por una brisa suave, todo esto lo contamos a nuestro amigo ciego que, si de pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que para hacer la descripción empleáramos.

La mente humana es tan compleja que, no todos ante la misma cosa, vemos lo mismo.  Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere.  De entre personas solo coinciden tres, los otro siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.

Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío para decidir.   Sin embargo, la misma , realizada en grupos de conocimientos científicos similares y específicos: Físicos, matemáticos, químicos, etc.  hace que el número de coincidencias sea más elevada, más personas ven la misma respuesta al problema planteado.  Esto nos sugiere que, la mente, está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.

¿ Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda para siempre fuera de nuestro alcance? ¿O es de manera posible romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?

                                                             Todavía no sabemos encajar las piezas

La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en este del conocimiento complejo de la mente, y, como en la Física cuántica, existe un principio de incertidumbre que, al menos de momento (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia y, aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, entre otras razones está el serio inconveniente que su nosotros mismos, ya que, con nuestro que hacer podemos, en cualquier momento, provocar la propia destrucción.

Una cosa si está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda .

¿ Cómo se podría comparar la descripción de un con sentirlo, vivirlo física y sensorialmente hablando ?

Hay cosas que no pueden ser sustituidas, por mucho que los analistas y especialistas de publicidad y márketin se empeñen,  lo auténtico siempre será único. Es curioso cómo funciona la Naturaleza. Si miramos unos millones de protones, electrones o neutrones, no podemos ver ninguna diferencia en ninguno de ellos, todos son exactamente iguales. Sin embargo, nosotros los Humanos, somos siete mil millones y, aunque parecidos, nunca podremos encontrar a dos seres iguales, ni físicamente ni mentalmente tampoco, Cada uno de nosotros tiene su propio mundo en su Mente.

emilio silvera

Nebulosas Planetarias y estrellas enanas blancas

Autor por Emilio Silvera    ~    Archivo Clasificado en Nebulosas y estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 File:Ngc2392.jpg

                    NGC 2392 es una nebulosa planetaria en la constelación de Gérminis

En la imagen del día del Blog, hoy aparece la Nebulosa del Esquimal o del Payaso, NGC 2392, que forma un conjunto vistoso. Por su curiosa apariencia, que recuerda a la cara de una persona rodeada por una capucha, recibe también los nombres de Nebulosa Esquimal. Se encuentra, según autores, a unos 3000 o 5000 años-luz de la Tierra.

La edad de NGC 2392 se estima en unos 10.000 años, y está compuesta por dos lóbulos elípticos de materia saliendo de la estrella moribunda. Desde nuestra perspectiva, unos de los lóbulos está delante del otro.

Se cree que la forma de la nebulosa se debe a un anillo de material denso alrededor del ecuador de la estrella expulsado durante la fase de gigante roja. Este material denso es arrastrado a una velocidad de 115.000 km/h., impidiendo que el viento estelar, que posee una velocidad mucho mayor, empuje la materia a lo largo del ecuador. Por el contrario, este viento de gran velocidad (1,5 millones de km/h) barre material por encima y debajo de la estrella, formando burbujas alargadas. Estas burbujas, de 1 año luz de longitud y la mitad de anchura, tienen filamentos de materia más densa. No obstante, las líneas que van de dentro a afuera en el anillo exterior (en la capucha) no tienen todavía explicación, si bien su origen puede deberse a la colisión entre gases de baja y alta velocidad.

La Nebulosa del Esquimal fue descubierta por William Herschel  el 17 de enero de 1787.

                                                               La Nebulosa Reloj de Arena

Una nebulosa planetaria es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado,  expulsada durante la fase de rama asintótica gigante que atraviesan las estrellas gogantes rojas  en los últimos momentos de sus vidas.

Las nebulosas planetarias son objetos de gran importancia en astronpmía,  debido a que desempeñan un papel crucial en la evolución química de las Galaxias,  devolviendo al medio interestelar metales pesados  y otros productos de la nucleosíntesis de las estrellas (como Carbono, Nitrógeno, xígeno, Calcio… y otros).  En galaxias lejanas, las nebulosas planetarias son los únicos objetos de los que se puede obtener información útil acerca de su composición química.

File:NGC6543.jpg

La gama y diseños de Nebulosas Planetarias es de muy amplio abanico y, en esa familia de Nubulosas podemos admirar y asombrarnos con algunas que, como la famosa Ojo de Gato (arriba), nos muestra una sinfonía de arquitectónica superpuesta que ni la mente del más avispado arquitecto habría podido soñar.

Enanas Blancas son estrellas misteriosas que, como residuos de otras que fueron, se resisten a “morir” y quedan envueltas en ese manto precioso de nebulosas planetarias durante siglos.
fisica

Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de todas las estrellas (por el ejemplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, modelos de simulación, etc., estas estrellas se forman cuando, al final de la vida de las estrellas medianas, agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas, cuando las partes exteriores de la estrella son expulsadas al espacio interestelar formar una Nebulosa Planetaria. En el centro de la Nebulosa, queda denudo un puntito blanco que es, la estrella enana blanca.

El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 10 ^8 Kg/m3) que sólo evita su propio colapso por la preseión de degeneración de los electrones ( saben los electrones son fermiones que estando sometidos al Principio de exclusión de Pauli, no pueden ocupar niguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se juntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, , incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).

Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.

estrellas

tipo de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades de 10 ^-3 – 10 ^-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener mucha masa, en un agujero negro.

energia
Visión artística de una enana blanca, Sirio B – Crédito: NASA, ESA y G. Bacon (STScl)

Las enanas blancas son estrellas calientes y pequeñas, generalmente del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.

El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.

Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su radio disminuye. A partir de esto es que se encuentra que hay un límite superior la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.

Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias. Sin embargo, existen otras posiblidades que se puedan dar en este tipo de estrellas que son muy densas. Por ejemplo, si cerca de alguna de ellas reside otra estrella que esté lo bastante cerca, la enana blanca, poco a poco, puede ir robándole masa a la estrela compañera hasta que, llegado a un punto, ella misma se recicla y se convierte en una estrella de Neutrones.

enanas
                              A esto dar lugar la unión de dos enanas blancas o una enana blanca colisionando con una estrella de neutrones

Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.

La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.


misteriosas
Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). enana blanca tiene una temperatura en la superficie de 35.500 K.

Allá por el año 1908, siendo Chandrasekhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó Ramanujan), y, estando en  aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.


blancas
                  El joven Chandrasekhar

Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecanocuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo ( este caso) en una estrella enana blanca.

A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían descuibiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la de cualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de alta densidad le obligaría fibnalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.

astrofisica

De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la séptima estrellas en orden de proximidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Sirio y la Tierra 1 año al Sol.

Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decir 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya hace algunos años -nos decía Eddintong-” Sin embargo, la mayoría de los astrónomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la verdad que conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.

teorica

Arriba la famosa Nebulosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio que, dentro de unos 100 millones de años vieja y fria, será más rojiza y se habrá convertido en un cadáver estelar.

Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguian el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electrones degenerados por causa del Principio de esclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.

De la misma manera, se repetía el proceso estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podia frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de manera, quedaba convertida, finalmente, en una Estrella de Neutrones.


Enanas Blancas, estrellas misteriosas



Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 10 ^12 kilogramos.

Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.

Son objetos extremadamente pequeños u densos que surgen cuando estrellas masivas sufren una explosión supernova del II, el núculeo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 10 ^17 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo . Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosor compuesta de elementos como el hierro. Los púlsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensan que contienen estrellas de neutrones.

universo

Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resuelta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dichas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enanas blancas como debida no al calor sino a un fenómeno mecanocuántico : los movimientos degenerados de los electrones, también llamado degeneración electrónica.

La degeneración electrónica es algo muy parecido a la claustrofia humana. Cuando la materia es comprimida hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes. Nada puede deternerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Principio de esclusión de Pauli que impide que dos fermiones estén juntos, así que, fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente, constituida estable como una enana blanca.

emilio silvera

¡La Curiosidad! La madre del saber

Autor por Emilio Silvera    ~    Archivo Clasificado en El saber del mundo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Buscando Historias del Pasado

 

                      ¡Qué bonito sería si las piedras pudieran hablar!  ¿Qué nos contarían éstas?

Todos los asiduos a este lugar, sabéis de mi curiosidad insaciable por las cosas, por lo que pasó, por las Civilizaciones antiguas, por los misterios que la materia encierra, y, en fin, por el Universo y las historias de las criaturas que lo pueblan y que, en la antigüedad,  estuvieran aquí.

Existen lugares en los que, se han conservado más vivos y realistas los recuerdos del pasado y, en la India, donde al contrario que en la China, no cruzan el cielo los Dragones, serpientes o Aves monstruosas, nos dicen que fueron máquinas, las que, para el asombro de todos, cruzaban el cielo.

luz-magica

James Churchward, el desconcertante estudioso inglés cuyas investigaciones no son nada desdeñables, siempre y cuando no se aproximan a las especulaciones teosofistas, nos habla de un manuscrito que contiene la descripción de una nave aérea de hace 20.000 años.

“La energía” –detalla en una obra redactada varios lustros antes de que se hablara de astronaves y satélites artificiales- se obtiene de la atmósfera de manera simple y poco costosa. En la obra daba una amplia explicación del motor y sus compartimentos y cámaras y de las increíbles propiedades que la nave tenía que, incluso, podía quedar estática en el aire, o, salir disparada como un rayo hacia lo más alto del cielo hasta desaparecer de la vista.

¿Fantasías? Escuchemos un relato de la Academia Internacional de Investigaciones sánscritas de Mysore: “Los manuscritos cuya traducción del sánscrito presentamos, describen varios tipos de “vimana” (naves que se mueven por sí mismas), capaces de viajar por su propio impulso por tierra, agua y aire, y, asimismo, de planeta a planeta. Parece que los vehículos aéreos podían detenerse en el cielo hasta quedar inmóviles, y que estaban dotados de instrumentos capaces de señalar, incluso a distancia, la presencia de aparatos enemigos.

(El relato fue publicado en la India por el especialista Maharshi Bharadaja con el título Aeronáutica del pasado prehistórico.)

Numerosísimos testimonios nos vienen a confirman ampliamente lo anterior. Por ejemplo tenemos una amplia muestra en  el Samaranganasutradhara que narra la historia de vuelos fantásticos realizados por el mundo, y hacia el Sol y las estrellas. Un documento de época precristiana nos suministra una detallada descripción del carro celeste de Rama. La narración nos dice: “…el carro se movía por sí solo y era grande y estaba bien pintado; tenía dos pisos, muchas habitaciones y ventanas…”, cuyas hazañas, canta Valmiki el Herodoto indio: “El carro celeste, que posee una fuerza admirable, alada de velocidad, dorado en su forma y en su esplendor… El carro celeste ascendió por encima de la colina y del valle boscoso…alado como el rayo, dardo de Indra, fatal como el relámpago del cielo, envuelto en humo y destellos flameantes, rápida proa circular” (del Ramayana, que narra la epopeya de Rama).

Centenares y centenares de historias semejantes nos podemos encontrar a lo largo de las tradiciones hundúes: “ahí va la divina Maya volando en un carro de oro circular, que mide 12.000 codos de circunferencia, capaz de alcanzar las estrellas”, y, hete aquí el “caballo metálico del cielo” del rey Satrugit y el “carruaje del aire” del rey Pururavas. También el siglo IV de nuestra era encontramos a un héroe aeronauta, el monje budista Gunarvarman, quien se va desde Ceylán a Java en un aparato similar a los antiguos, sacado quién sabe de dónde.

Según se deduce de estos antiquísimos manuscritos en sánscrito, aquellos hindúes prehistóricos (o lo que realmente pudieran ser), no utilizaban aquellos ingenios voladores para excursiones de placer, sino que, según nos cuentan los relatos, las acciones bélicas eran también cotidianas que describen terribles batallas.

File:Angkor Wat 005.JPG

Un bajorrelieve en Angkor Wat (Camboya) representa a Rávana  Rávana peleando en la batalla de Lanka, el clímax del Ramaiana.

Rávana, el rey de los demonios de Ceylán, enemigo mortal de Rama, “voló sobre los adversarios (según nos narra un manuscrito del año 500 a, de C.) haciendo caer ingenios que causaron grandes destrucciones. Finalmente, fue capturado y muerto, y su máquina celeste cayó en manos del capitán hindú Ram Chandra, quién, sirviéndose de ella, voló a la capital, Adjhudia…”

Y esto no son más que bagatelas. “El Bhisma Parva –recuerda Drake- menciona armas como la “verga de Brahma” y el “Rayo de Indra”, cuyos efectos se parecen a los producidos por la energía nuclear. El Drona Parva nos habla del “señor Mahadeva” y de sus terribles lanzas volantes (¿misiles?) capaces de destruir ciudades enteras fortificadas…, y describe las fantásticas armas de Agni, que aniquilaron ejércitos completos y devastaron la Tierra como bombas de Hidrógeno.”

¿Es posible que no se hayan conservado trazas de estos alucinantes conflictos? Los restos existen, y numerosísimos –responden los investigadores-. Basta que nos tomemos la molestia de ir en su busca. No es una empresa fácil, desde luego, puesto que, desde hace milenios la jungla se ha espesado sobre las ruinas, pero si consiguiéramos localizar todas las “ciudades muertas” de la gran península, constelaríamos el mapa de la India de tantos puntos como los que, en un Atlas, nos indican los centros de población actuales.

De vez en cuando aparecen descripciones a este respecto que nos dejan perplejos. El explorador De Camp, por ejemplo, refirió haber visto, en la zona que se extiende entre el Ganges y los montes Rajmahal, ruinas carbonizadas por algo que no podía ser un simple incendio, por violento que éste fuera. Algunas piedras gigantescas aparecían fundidas y desenterradas en varios puntos, “como bloques de estaño afectados por la salpicadura de una colada de acero”.

Más al Sur, el oficial británico J. Campbell se topó, en los años veinte, con ruinas similares, y quedó sorprendido por un extrañísimo detalle: en el pavimento semivitrificado de lo que debió de ser un patio interior, parecían haber sido impresas, por una fuerza desconocida, formas de cuerpos humanos.

Otros viajeros refieren haber descubierto en el corazón de los bosques indios ruinas de edificios nunca vistos, con paredes “semejantes a gruesas losas de cristal” asimismo perforadas, resquebrajadas y corroídas por agentes desconocidos. Y habiendo penetrado en una de estas construcciones, parecida a una cúpula baja, el explorador y cazador H. J. Hamilton se encontró con la mayor sorpresa de su vida.ç

“En una parte –recuerda-, el suelo cedió bajo mis pies con un extraño crujido. Me puse a seguro y, luego, ensanché con la culata del fusil el boquete que se había abierto, y me introduje en él. Me encontré en una estancia larga y estrecha que recibía luz por una grieta de la bóveda. Al fondo, vi una especie de mesa y un asiento del mismo “cristal” de que estaban hechas las paredes.

En el asiento, se enroscaba una forma extraña, e contornos vagamente humanos. Observándola de cerca, me pareció, al principio, que se trataba de una estatua deteriorada por la acción del tiempo, pero, luego, descubrí algo que me llenó de horror: bajo el “vidrio” que revestía aquella estatua, ¡se podían distinguir claramente los detalles del esqueleto!”.

Muros, muebles y seres humanos vitrificados… ¿Qué tremendos secretos se esconden entre las líneas del Mahabrata y del Drona Parva?

emilio silvera

La Fisica, ¡que maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

http://pijamasurf.com/wp-content/uploads/2011/09/cosmic-galaxy-.jpg

 

 

En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón puede trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).

http://www.elefantepedia.com/wp-content/uploads/2011/10/elefante_raton2.jpg

Cuando llegamos a los seres unicelulares, se ve que para ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala.

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. Esta fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia entre dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del estado líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este trabajo de Van der Waals.

Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido hacia las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

Caminos múltiples del electrón alrededor del núcleo

Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Radiación de Cuerpo Negro

 

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su nombre, el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.

La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en forma de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, pero esto lo veremos más adelante.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero para los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Cosas extrañas están presentes por todas partes. Nosotros estamos invadidos por una ingente cantidad de bacterias a las que no prestamos atención, y, sin embargo, sin ellas nos sería imposible vivir. Hace mucho tiempo ya que hicimos “ese convenio” con ellas y, formamos un binomio que nos permite seguir adelante con la mutua ayuda. ¿Os acordáis del trabajo que puse aquí sobre las mitocondrias?

Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que tipo de partícula es cada una.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

Existe una relación directa entre el espín de una partícula y la estadística que obedece en un sistema colectivo de muchas de ellas. Esta relación, conocida empíricamente, es demostrable en teoría cuántica de campos relativista.

 

 

La colisión de un quark (la esfera roja) desde un protón (la esfera naranja) con un gluon (la esfera verde) desde otro protón con espín opuesto. El espín está representado por las flechas azules alrededor de los protones y del quark. Los signos de interrogación azules alrededor del gluon representan la pregunta: ¿Están los gluones polarizados? Las partículas expulsadas de la colisión son una lluvia de quarks y un fotón (la esfera púrpura).

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

El principio de incertidumbre de Heisenberg representa uno de los pilares fundamentales de la mecánica cuántica por no decir el principal nuevos estudios señalan una estrecha relación entre este principio y otro principio de la mecánica cuántica el entrelazamiento cuántico.

La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro ininitesimal acontece.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a esta interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Es cierto que, existe otro universo dentro de este nuestro del que, aún, nos queda mucho por aprender.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos ahora se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

Fuente: Partículas de Gerard ´t Hofft

emilio silvera

Química: Alquimia y todavía más.

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

 

Antoine lavoisier color.jpg

El 16 de febrero de 1785 Antoine-Laurent de Lavoisier sintetiza agua a base de hidrógeno y oxígeno. Lavoisier fue un químico francés que junto a su esposa, la científica Marie Lavoisier, realizó grandes contribuciones a la química. Se le considera el “padre de la química” por sus detallados estudios, entre otros: el estudio del aire, el fenómeno de la respiración animal y su relación con los procesos de oxidación, el análisis del agua y el uso de la balanza para establecer relaciones cuantitativas en las reacciones químicas estableciendo su famosa Ley de conservación de la masa

Antoine-Laurent Lavoisier (1743-1794) fue un financiero. Estableció un sistema de pesos y medidas que condujo al sistema métrico, vivió los primeros momentos turbulentos de la Revolución Francesa y fue pionero en la agricultura científica. Se casó con una jovencita de catorce años y fue decapitado durante el Terror. Se le ha llamado padre de la química moderna y, a lo largo de su atareada vida, sacó a Europa de las épocas oscuras de esta ciencia.

[8426-004-BDD1097F.jpg]

Una de las primeras aportaciones de Lavoisier surgió cuando éste hizo el experimento de hervir agua durante largos períodos de tiempo. En la Europa del siglo XVIII muchos científicos creían en la transmutación. Pensaban, por ejemplo, que el agua podía transmutarse en tierra, entre otras cosas. Entre las pruebas, la principal consistía en hervir agua en una cazuela: en la superficie interior se formaban residuos sólidos. Algunos científicos proclamaron que esto se debía a que el agua se convertía en un nuevo elemento. Robert Boyle, el gran físico y químico británico del siglo XVII que llegó al apogeo de su actividad científica cien años antes que Lavoisier, creía en la transmutación. Después de observar cómo crecían las plantas absorbiendo agua, llegó a la conclusión – al igual que muchos antes que él – de que el agua podía transformarse en hojas, flores y bayas. Según dice el químico Harold Goldwhite, de la State University de California, en Los Ángeles, “ Boyle fue un activo alquimista ”.

El mérito que tuvieron aquellos pioneros…con tan pocos medios, agranda aún más los enormes logros y los descubrimientos que hiceron.

Lavoisier observó que el peso era la clave y que las mediciones eran fundamentales. Puso agua destilada en un hervidor especial en forma de tetera llamado pelícano, un recipiente cerrado con una tapa esférica que tomaba el vapor del agua y lo devolvía a la base del recipiente por dos tubos parecidos a unas asas. Hirvió el agua durante 101 días y encontró un residuo considerable. Pesó l agua, el residuo y el pelícano. El agua pesaba exactamente lo mismo. El pelícano pesaba algo menos, una cantidad exactamente igual al peso del residuo. Por lo tanto, el residuo no era producto de una transmutación, sino parte del recipiente: vidrio disuelto, sílice y otras sustancias.

Como los científicos seguían creyendo que el agua era un elemento básico, Lavoisier realizó otro experimento crucial. Inventó un aparato con dos boquillas e hizo pasar distintos gases de la una a la otra, para ver que sucedía. Un día mezcló oxígeno con hidrógeno, esperando conseguir algún ácido. Lo que obtuvo fue agua. Filtró el agua a través de un cañón de escopeta lleno de anillos de hierro calientes, para hacer que ésta se descompusiera de nuevo en hidrógeno y oxígeno, confirmando así que ésta no era un elemento.

Lavoisier Antoine Laurent De - Apparatus for Studying Fermentation

Lavoisier hizo mediciones de todo y observó que, cada vez que hacía este experimento, obtenía los mismos números. El agua siempre producía oxígeno e hidrógeno en una proporción de 8 a 1 en sus pesos. Lo que Lavoisier vio fue que la naturaleza era estricta en cuanto al peso y la proporción. Los gramos o los kilos de materia no desparecían o aparecían de forma aleatoria: tomando las mismas proporciones de gases, éstos producían los mismos compuestos. La naturaleza era predecible… y, por consiguiente, maleable.

La antigua alquimia china, aproximadamente entre los años 300 y 200 a.C., giraba en torno al concepto de dos principios opuestos. Estos principios podían ser, por ejemplo, uno activo y otro pasivo, masculino y femenino, o Luna y Sol. Los alquimistas consideraban que la naturaleza tenía un equilibrio circular. Las sustancias podían transformarse de un principio en el otro y luego volver a su estado inicial.

[alchemist.jpg]

Un ejemplo excelente es el del cinabrio, conocido actualmente en general como sulfuro de mercurio, un pesado mineral rojo que constituye la principal mena de mercurio. Utilizando el fuego, estos primeros alquimistas descomponían el cinabrio en mercurio y dióxido de azufre. Luego descubrieron que el mercurio se combinaba con azufre para formar una sustancia negra llamada metacinabrio, “que después, si se calienta una vez más, puede sublimarse volviendo a su estado original, el brillante cinabrio rojo”, según el historiador de la ciencia Wang Kuike. Tanto la calidad líquida del mercurio, como la transformación cíclica de cinabrio a mercurio y viceversa, daban a este elemento unas cualidades mágicas. Kuike llamaba al mercurio “huandan, un elixir regenerador transformado cíclicamente” asociado con la longevidad. Estos primitivos profesionales se familiarizaron con la idea de que era posible transformar las sustancias y luego cerrar el círculo haciendo que volvieran a su estado original. Llegaron a conocer las proporciones exactas de las cantidades de mercurio y azufre, así como las recetas para la duración e intensidad exactas del calentamiento requerido. Lo más importante, según Kuike, es que estas operaciones podían realizarse “sin la más mínima pérdida de peso total”.

En la primera época de la alquimia china, se confiaba en encontrar ese medicamento en una de las islas de la Inmortalidad. Existían tres de estas islas, las cuales recibían los nombres de: “P´en-Lai”, “Fang Chang” y “Jenchou”.

En la primera época de la alquimia china, se confiaba en encontrar ese medicamento en una de las islas de la Inmortalidad. Existían tres de estas islas, las cuales recibían los nombres de: “P´en-Lai”, “Fang Chang” y “Jenchou”.

Parece ser que los antiguos alquimistas chinos conocían de forma empírica la conservación de la masa mil quinientos años antes de los experimentos de Lavoisier. Este químico y sus precursores alquimistas descubrieron que en una reacción química el peso de los productos es igual al peso de los reactantes.

868

Aparece en China el Diamond Sutra, el primer libro impreso del que se tiene noticia.En ese tiempo, los alquimistas chinos desarrollan la polvora. En realidad, el texto Alquimista más antiguo es el…

Ts’an T’ung Ch’i (Unificación de los tres principios) de Wei Po-Yang, escrito alrededor del año 140 d. C. Esta obra describe un experimento que muy probablemente es la reacción cinabrio-mercurio-azufre. Es difícil saberlo con seguridad porque los productos químicos que se echan al fuego reciben nombres metafóricos: Tigre Blanco (probablemente mercurio), Dragón Azul y Dragón Gris (¿azufre?). Más importante es el recipiente que utilizaron. A los lados (del aparato) está el recinto cerrado, que tiene la forma de un recipiente peng-hu. Está cerrado por todos los lados y su interior consta de una serie de laberintos que comunican unos con otros. La protección es tan completa que hacer retroceder todo esto es diabólico e indeseable…Como la Luna yaciendo sobre su espalda, así es la forma del horno y el recipiente. En el se calienta el Tigre Blanco. El Sol Mercurio es la perla que fluye, y con el, el Dragón Azul. El este y el oeste se fusionan, y el huen y el po [dos tipos de almas] se consuelan mutuamente…El pájaro Rojo es el espíritu de fuego y dispensa con justicia una victoria o una derrota. Al ascender el agua, se produce la victoria sobre el fuego.

Este recipiente se utiliza para fundir y sublimar varios y distintos metales. Aun siendo más complejo, es un instrumento similar al aplicado por Lavoisier, diseñado para “devolver” todos los productos con el fin de garantizar la conservación de la masa.


Accesorios que utilizaban los químicos hace muchísimos años.

La Historia de la química, tanto occidental como no occidental, se desarrolla de forma contraria a la historia de la física. Esta última contiene gran abundancia de teoría, quedando la actividad experimental muy por detrás. En la química observamos una fascinación por el conocimiento empírico, por la experimentación con toda una variedad de sustancias (líquidos, sólidos, gases), utilizando todo tipo de métodos (el fuego, la ebullición, la destilación), pero sin un marco teórico sólido que guíe la experimentación. La imagen de película del científico de cabellera hirsuta metido en su laboratorio y mezclando el contenido de probetas llenas de productos químicos de colores brillantes no está muy lejos de la realidad. La química ha sido una ciencia de pruebas y tanteos. La teoría no siempre ha sido de máxima calidad.

Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer… (no podemos contar aquí todas las historias).

El mundo occidental desarrolló una teoría coherente que predice qué elementos se combinan entre sí y cuáles no, y también por qué algunos compuestos son imposibles y otros no lo son y qué es exactamente lo que va a suceder cuando una sustancia química se combina con otra. Además de Lavoisier, hubo dos grandes pioneros en esta materia.

En 1869, en la Universidad de San Petersburgo, el científico nacido e Liberia Dimitri Mendeleiev no pudo encontrar un buen libro de texto de química para asignarlo a sus clases. Por consiguiente, se puso a escribir su propio libro. Como Lavoisier y los antiguos chinos, consideró la química como la “ciencia de la masa”. Era aficionado a hacer solitarios, por lo que escribió los símbolos de los elementos con sus pesos atómicos en unas fichas de cartulina, una para cada elemento, con la lista de sus diversas propiedades (por ejemplo, sodio: metal activo; cloro: gas reactivo).

Busto de Tales de Mileto (una ilustración de la obra de Ernst Wallis, 1877)

Personajes ilustres como Tales de Mileto y Pitágoras fueron pioneros en la constitución de la ciencia matemática. (Quién no ha oído hablar de sus respectivos teoremas?), y figuran igualmente entre los creadores de la filosofía. Efectivamente, la ciencia y la filosofía nacieron a una en Grecia y no es extraño que así fuera, ya que constituyen el resultado conjunto de una nueva actitud ante el universo: la actitud consistente en buscar una explicación racional tanto de los acontecimientos de la naturaleza como de la conducta de los seres humanos. Para ello, Tales de Mileto comenzó dejando a un lado la Mitología para aplicar la Lógica. Toda la tarea de los pensadores griegos, científicos y filósofos, puede resumirse en estas palabras: búsqueda de una explicación racional, distinta y contrapuesta radicalmente a las explicaciones mitológico – religiosas heredadas de generación en generación. El surgimiento del pensamiento occidental se califica a menudo como paso del mito al logos. Si hablamos de logo lo hacemos de la razón.

Hacia el 600 a.C. se inicia en Grecia la ciencia y la filosofía del mundo occidental moderno; todo el conocimiento se englobaba dentro del término “filosofía natural”. Los filósofos griegos presocráticos se enfrentaron a las mismas preguntas eternas y esenciales. La que nos ocupa en este recorrido histórico es: ¿de qué está hecho el Universo?

Mucho más tarde, llegó…

Mendeleiev, y, ordenó estas fichas en orden ascendente según el peso atómico de los elementos. Observó una periodicidad evidente (de aquí que se diga “tabla periódica de los elementos”, que es como llegó a llamarse este ordenamiento). Los elementos que tenían propiedades químicas similares estaban a una distancia de ocho fichas. El litio, el sodio y el potasio, por ejemplo, son todos aquellos metales activos (se combinan fuertemente con otros elementos, tales como el oxígeno y el cloro) y sus posiciones son 3, 11 y 19. El hidrógeno, el flúor y el cloro son gases activos y ocupan las posiciones 1, 9 y 17. Mendeleiev reorganizó las fichas en una tabla de ocho columnas verticales. Leyendo la tabla horizontalmente, los elementos que aparecían eran cada vez más pesados. Leyéndola verticalmente hacia abajo, los elementos de cada columna mostraban unas propiedades similares.

Mendeleiev no se sintió obligado a rellenar todas las casillas de la tabla, sabiendo que, como un solitario, algunas de las cartas estaban aún ocultas en el mazo. Si una casilla de la tabla pedía un elemento con unas propiedades especiales y tal elemento no existía, lo dejaba en blanco. Muchos ridiculizaron a Mendeleiev por dejar esos huecos en la tabla periódica. Sin embargo, pocos años más tarde, en 1875, se descubrió el galio y este encajó en el hueco situado bajo el aluminio., con todas las propiedades que su lugar en la tabla predecía. En 1886 se descubrió el germanio y éste encajó en el espacio situado bajo el silicio. Nadie se ha reído desde entonces. Mendeleiev nunca ganó el premio Nobel de química, aunque seguía vivo y elegible durante los primeros años de este premio. No obstante, tres químicos que descubrieron nuevos elementos para “llenar” los huecos si lo ganaron: William Ramsay, que descubrió el argón, el criptón, el neón y el xenón; Henri Moissan, por el descubrimiento del fluor, y Marie Curie por descubrir el radio y el polonio.

No podría explicar el motivo real de que ocurra así pero, cuando veo una Tabla Periódica, me quedo mirándola como fascinado de lo que allí está encerrado y del mensaje que nos comunica: Todos los elementos naturales del Universo están allí.

http://1.bp.blogspot.com/-8uYGCC4hUgU/TZyrkHXKJtI/AAAAAAAAAC0/bIlFAdGesng/s1600/tabla+periodica+ilustrativa.jpg

Si por mi fuese, la Tabla Periódica se expondría por todas partes, para que la gente se familiarizara con ella y con lo que nos dice. Es una desgracia que no sea así, ya que el verla de manera constante inculca, hasta en la mente más lenta, la importancia del número atómico, que coincide con el lugar que ocupa el elemento en la Tabla Periódica. Las impactantes diferencias cualitativas entre elementos –el carbono se parece poco al hidrógeno, lo mismo que el plomo al helio- son, a un nivel básico, diferencias entre sus números atómicos, que actualmente equiparamos con la carga del núcleo.

El significado de la Tabla Periódica y sus regularidades y pautas repetitivas siguió estando oculto hasta principios del siglo XX, cuando se hizo la disección del átomo y los físicos encontraron dentro electrones y un núcleo que contenía protones y neutrones que tienen en su núcleo y al número de electrones que zumban en torno a estos núcleos. A partir de todo esto comenzó a surgir lo que hoy se llama teoría cuántica.

Ya he dicho muchas veces en mis escritos que, en un artículo de ocho páginas que Max Planck escribió en 1900, quedó sembrada la semilla para la teoría cuántica, allí nació el cuanto de acción de Planck que denominamos h. Sin embargo, no sería justo dar todo el mérito a Planck, otros también pusieron su empeño y su genio en llegar a conclusiones valiosas en ese universo de lo microscópico en lo más profundo de la materia.

Wolfgang Pauli ETH-Bib Portr 01042.jpg

Wolfgang Pauli

Uno de los pioneros del apogeo cuántico (de 1900 a 1930) fue Wolfgang Pauli. Pauli no intentaba resolver el misterio de la Tabla Periódica; simplemente trataba de comprender el átomo. Este personaje era famoso por su cruel sentido del humor. Nadie se libraba. Cuando el famoso físico Victor Weisskopf, que entonces era ayudante de Pauli, le presentó los resultados de sus esfuerzos por desarrollar cierta teoría, Pauli dijo: “¡Bah!, esto ni siquiera es erróneo”. Pauli también envió una carta a Albert Einstein, decía Pauli, “este estudiante es bueno, pero no entiende claramente la diferencia entre las matemáticas y la física. Por otra parte, usted, querido maestro, hace tiempo que perdió la noción de estas diferencias.”

Aparte de que era un auténtico ególatra, también era un auténtico gran físico, y, en 1924, Pauli anunció el principio de exclusión: no hay dos electrones que puedan ocupar el mismo estado cuántico. Este principio explicaba el orden de los elementos de la Tabla de Mendeleiev y, además, por qué podemos utilizarla para predecir que elementos pueden combinarse con cuáles y cómo. No entraré aquí en detalle de lo que es un estado cuántico. Baste decir que el principio de exclusión de Pauli limita el número de electrones en lo que actualmente llamamos las “capas” [o niveles de energía] de cada átomo: dos electrones en el primer nivel, ocho en el segundo, dieciocho en el tercero, y así sucesivamente. El átomo de hidrógeno, por ejemplo, no tiene más que un protón en su núcleo. Para equilibrar esta carga positiva única necesitamos un electrón (carga negativa), que ocupa en su órbita el nivel más bajo de energía. El siguiente en la Tabla es el helio. Su núcleo tiene dos cargas positivas, por lo que necesitamos dos electrones, que, según el principio de Pauli, encajan ambos en el primer nivel…

También es importe el Principio de excluisión de Pauli en el desarrollo del final de las estrellas en función de sus masas, ya que, ese principio hace que los electrones se degeneren para que la estrella quede finalmente como una enana blanca y, en otras más masivas, la degeneración se produce en los neutrones que hacen que la estrella quede estabilizada como una estrella de ese nombre. Si son demasiado masivas, ni la degeneración de los neutrones hacen posible frenar a la Gravedad que, finalmente, lleva a la estrella a convertirse en un agujero negro.

Lo dejaremos aquí por hoy.

emilio silvera