domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Ciudades Inteligentes

Autor por Emilio Silvera    ~    Archivo Clasificado en El futuro tecnológico    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Smart City Nansha, en Guangzhou, China.

 

Las ciudades modernas, basadas en infraestructuras eficientes y durables de agua, electricidad, telecomunicaciones, gas, transportes, servicios de urgencia y seguridad, equipamientos públicos, edificaciones inteligentes de oficinas y de residencias, etc., deben orientarse a mejorar el confort de los ciudadanos, siendo cada vez más eficaces y brindando nuevos servicios de calidad, mientras que se respetan al máximo los aspectos ambientales y el uso prudente de los recursos naturales no renovables.

                             Distrito Financiero de Singapur

Hoy día, el concepto de ciudad (más) inteligente o de espacio (más) inteligente, es muy utilizado en marketing por parte de expertos en sociedades comerciales y en aglomeraciones urbanas, aunque en muchos casos poniendo énfasis en un solo aspecto, lo que en buena medida traiciona el concepto que se intenta desarrollar, que tiene un importante componente holístico e integral. En efecto, una ciudad o un territorio que se considere inteligente se manifiesta fundamentalmente por su carácter multidimensional y multifacético, en términos de actores, en cuanto a dominios clave (transportes, energía, educación, salud, residuos, vigilancia, economía…), y en desarrollo y utilización de tecnologías. Naturalmente, los principales actores del sector privado implicados en un proyecto como el analizado de ciudad, territorio, barrio o edificio inteligente, son los industriales y empresarios de sectores clave, tales como energía, agua, transportes, y servicios… así como dirigentes de empresas públicas de telecomunicaciones e infraestructuras, editores, proveedores de logicales de apoyo a la gestión, así como a la administración y a la consultoría.

En el último Boletin recibido de la Real Sociedad Española de Física, me hablan de este tipo de ciudades que, a medida que pasa el tiempo y avanzan las tecnologías, serán el mundo cotidiano de la Humanidad. En el comentario escueto que publican, nos dicen:

“España se está convirtiendo en el Silicon Valley para las smart cities. Las compañías que construyen la ciudad inteligente ponen en marcha iniciativas y aplicaciones móviles nuevas que hacen la vida urbana más sencilla.

El objetivo de las iniciativas españolas, es utilizar las tecnologías de la información para crear un espacio urbano con infraestructuras, redes y plataformas que mejoren la vida de las personas en las ciudades. La Red Española de Ciudades Inteligentes (RECI) es una iniciativa basada en productos y sericios innovadores en el ámbito de las smart cities. En menos de tres años la Red ha pasado de tener 19 a 54 ciudades, convirtiéndose en la más grande del mundo. Las ciudades ponen a disposición multitud de datos que, gracias a la tecnología ofrecen oportunidades de negocio, como la prestación de servicios susceptibles de pago. Según Fundetec, el reto está en que fluya la información en los distintos servicios y que exista una conexión entre ellos.”


De todas las maneras, el ritmo al que están creciendo los conocimientos en el campo de la Física, de la Química, de la Biología, de las Matemáticas, y, en campos como los de la fotónica y la moderna nanotecnología con sus nuevos e increíbles materiales, nos llevan en volandas hasta Ciudades de ensueño que, podemos llamar “inteligentes” pero, simplemente son el fruto de aplicar los conocimientos nuevos a todos los ámbitos de la vida Humana.

Si la gente corriente (no tiene por que), no están enteradas de los muchos beneficios que, las investigaciones científicas tienen para la Sociedad. El mismo Acelerador de Hadrones, LHC que, en su momento fue tan criticado, ha aportado muchos beneficios en el ámbito cotidiano de la vida Humana, tanto en nuevas tecnologías como en medicina, etc. Además, de decirnos cómo es la materia y hablarnos del corazón de las partículas infinitesimales que allí se destruyen para poder ver sus contenidos.

En fin, que estamos en camino de un futuro inimaginable.

emilio silvera

El “universo” de lo muy pequeño. ¡Resulta fasciante!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                  ¿Os acordais? ¿Cuántos niños no habrán soñado con escenas como estas?

Cuando hablo de lo muy pequeño, puedo llegar a entender muy bien lo que es, lo que son, “licencias literarias” el papel de nada se queja y el lápiz puede escribir lo que quiera y piense el que lo sostiene, según le dicte su imaginación. Claro que, cuando comparamos ese mundo de ilusiones e imaginación con el mundo real, todo el edificio se viene abajo. ¡Lástima!

Todos los niños pequños juegan con pequeños muñecos que son soldados, guerreros o seres de otras galaxias con poderes mágicos y, ellos, en su inocente mundo sin maldad, los dirigen con sus manitas gordezuelas al desarrollo de luchas y aventuras sin fin. Jonathan Swift, nos deleitó con aquellas aventuras de Gulliver, un aventurero que llegó a las tierras de Lilliput: Allí, todo era muy pequeño, la naturaleza, las plantas, los habitantes del lugar y sus casas y palacios, embarcaciones y todos los animales.

Gulliver era allí un gigante de proporciones inmensas: Incluso llegó a extinguir un fuego con una simple chorrada (es decir, hizo pipí) y acabó de inmediato con el (para ellos) enorme fuego.

http://4umi.com/image/book/swift/gulliver-pindar-lilliput-troops.jpg

Su tamaño podía, sin dificultad alguna, decidir el resultado de una guerra entre aquellos pequeñísimos seres que, ante un gigante como él, no tenían defensa alguna y, sus armas, resultaban ridículas para poder causarle algún daño. Dormido lo tuvieron que coger para poder atarlo.

Durante otro viaje, las fuerzas ignotas del destino llevaron a Gulliver a un pais llamado  Brobdingnag, donde la gente y todos los seres animados e inanimados eran mucho más grandes que él. Allí era un enano, mimado por una niña pequeña llamada Glumdalclitch. Al final, Gulliver es recogido en una jaula por un águila que lo deja caer en el mar de donde lo rescataron unos marineros a los que, al contarles esas historias, pusieron incrédulas caras de asombro.

Claro que, cuando nos trasladamos al mundo real, las cosas no suelen ser de esa manera. Poco importa lo fascinantes que las historias de este tipo nos puedan resultar. Las cosas no funcionan de esa manera. Todos sabemos, por ejemplo que la llama de una vela pequeña y la de una vela grande, son aproximadamente del mismo tamaño. ¿De qué tamaño serían las llamas de las velas de Lilliput? Y, desde luego, si pensamos un poco, más cuestiones nos surgen: ¿Cómo serían las gotas de lluvia en Lilliput y en Brobdingnag?, ¿eran las leyes físicas para el agua diferentes allí que en nuestro propio mundo? Y, finalmente, los físicos se preguntarían: ¿De qué tamaño eran los átomos en esos lugares?, ¿qué clase de reacciones químicas podrían tener lugar con los átomos del cuerpo de Gulliver?

Claro que, con esas preguntas esas historias fallan. La verdadera razón por la que los mundos de Los Viajes de Gulliver no pueden existir es que las leyes de la Naturaleza no permanecen exactamente iguales cuando se cambian las escalas. A veces, esto es evidente en las películas de desastres, donde quizá se ha construído una maqueta a escala para simular una gran ola o un rascacielos en llamas.

El ojo experto puede, sin problemas, distinguir entre la maqueta y la realidad. Los mejores resultados se obtienen cuando el factor de escala para el tiempo se elige igual a la raíz cuadrada de la escala espacial. Así, si el rascacielos de turno se construye a escala 1:9, hay que rodar la película a un 1/3 de su velocidad real. Pero incluso así, como antes señalo, el ojo entrenado distingue la diferencia entre lo que sucede en la película y lo que se observaría en el mundo real.

En resumen, las leyes que gobiernan el mundo físico tienen dos características importantes: muchas leyes de la Naturaleza permanecen inalterables, no se alteran cuando cambia la escala, pero hay otros fenómenos, tales como una vela encendida o las gotas de agua, que no cambian del mismo modo. La implicación final es que el mundo de los objetos muy pequeños será completamente diferente del mundo ordinario.

Justamente en el mundo de los seres vivos la escala crea importantes diferencias. En muchos aspectos, la anatomía de un ratón se podría considerar (más o menos y, guardando las distancias) como una copia de la de un elefante, pero mientras que un ratón puede trepar por una pared de piedra prácticamente vertical sin mucha dificultad (incluso se puede caer desde una altura varias veces mayor que su tamaño sin hacerse gran daño), un elefante sería incapaz de realizar tal hazaña. Así llegamos a comprender que la Gravedad, se deja sentir en menor grado a medida que los objetos disminuyen de tamaño.

Cuando llegamos a los seres unicelulares, se ve que para ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de gravedad. Basta observar que la tensión superficial es la fuerza que da forma a una gota de agua y comparar el tamaño de esa gota con los seres unicelulares, muchísimo menores, para que sea evidente que la tensión superficial es muy importante a esta escala.

20070423121309-uk6i7lpn.jpg

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos fuerza de Van der Vaalls. esta fuerza tiene un alcance muy corto. para ser más precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente proporcional a 1/r7. Esto significa  que si se reduce la distancia entre dos átomos a la mitad, la fuerza de Van der Vaalls con la que se atraen uno a otro se hace 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza.

Ahora tendríamos que hablar algo de la mecánica cuántica y, en ese ámbito, las reglas de la mecánica cuántica funcionan tan bien que resultaría realmente difícil refutarlas.

Acordaos de los trucos ingeniosos descubiertos por Werner Hesinberg, Paul Dirac, o, Schrödinger que vinieron a mejorar y completar  las reglas generales. Sin embargo, algunos de aquellos pioneros (Einstein y el mismo Schrödinger), sin embargo, presentaron serias objeciones a dicha interpretación de la naturaleza de lo muy pequeño.

Podríamos formular una simple pregunta que pondría en un brete a más de uno: ¿Dónde está realmente el electrón, en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad? Si prestamos atención a Bohr, no tiene ningún sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores serían las únicas realidades a las que deberíamos prestar atención y de las que podemos hablar.

Muchas veces me sorprende oír a muchos “científicos” que hablan con una seguridad de lo que dicen como si, de una verdad inamovible se tratara. Ellos (en realidad) creen que saben y, no llegan a darse cuenta de que están hablando de un Modelo que ha sido construído matemáticamente hablando, para poder explicar eso que, nosotros, los humanos, creemos que es la realidad del mundo. Sin embargo, más de una vez hemos tenido que cambiar esos modelos y rectificar esa “realidad” por otra que, resultó ser “más real”.

¡Sabemos tan poco

emilio silvera

Siempre queriendo saber ¡De tantas cosas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Einstein nos dijo el límite con el que podríamos recibir información en el universo, la velocidad de c. Que la velocidad de la luz era una constante sobrehumana fundamental de la Naturaleza. También sabía el maestro que en el proceso de nuevas teorías, la búsqueda de la teoría final que incluyera a otras fuerzas de la naturaleza distintas de la gravedad, daría lugar a teorías nuevas y cada vez mejores que irían sustituyendo a las antiguas teorías. De hecho, él mismo la buscó durante los 30 últimos años de su vida pero, desgraciadamente, sin éxito. Ahora se ha llegado a la teoría de supercuerdas que sólo funciona en 10 y 26 dimensiones y es la teoría más prometedora para ser la candidata a esa teoría final de la que hablan los físicos.

¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y  momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar. Esta teoría tan avanzada es que, ni podemos verificarla en nuestro tiempo, pertenece al futuro y la dejaremos por el momento para volver a los números puros de la Naturaleza.

El físico espera que las constantes de la naturaleza respondan en términos de números puros que pueda ser calculado con tanta precisión como uno quiera. En ese sentido se lo expresó Einstein a su amiga Ilse Rosenthal-Schneider, interesada en la ciencia y muy amiga de Planck y Einstein en la juventud.

Lo que Einstein explicó a su amiga por cartas es que existen algunas constantes aparentes que son debidas a nuestro hábito de medir las cosas en unidades particulares. La constante de Boltzmann es de este tipo. Es sólo un factor de conversión entre unidades de energía y temperatura, parecido a los factores de conversión entre las escalas de temperatura Fahrenheit y Centígrada. Las verdaderas constantes tienen que ser números puros y no cantidades con “dimensiones”, como una velocidad, una masa o una longitud.  Las cantidades con dimensiones siempre cambian sus valores numéricos si cambiamos las unidades en las que se expresan.

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin. Estos números infinitesimales definen el mundo cuántico y marcan el límite de nuestras actuales teorías. Nunca hemos logrado ir más allá. De hecho, cuando los científicos y los grandes matemáticos han querido ir más allá del Tiempo de Planck, para conocer qué pasó en esos primeros momentos del Big Bang… Nunca se logró, aparecen resultados sin sentido si pretendemos ir más allá de 10-43 segundos.

La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza al tener que pensar en tan reducidas unidades, y sólo a finales de la década de 1.960 el estudio renovado de la cosmología llevó a una plena comprensión de estos patrones extraños. Uno de los curiosos problemas de la Física es que tiene dos teorías hermosamente efectivas (la mecánica cuántica y la relatividad general)  pero gobiernan diferentes dominios de la Naturaleza.

La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la Naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua. Se parece más a una ola delictiva o una ola de histeria: es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros. Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son. En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

                                                                                      ¿Quién sabe cómo serán?

En sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros. Lo cierto es que, estas unidades, al tener su origen en la Naturaleza y no ser invenciones de los seres humanos, de la misma manera que nosotros y, posiblemente por distintos caminos, seres de otros mundos también las hallarán y serán idénticas a las nuestras. De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo. Planck nos decía:

“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33 de centímetros, más joven que el tiempo de Planck,  10-43 segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la Naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la Naturaleza.

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

α = 2πe2 / hc ≈ 1/137

αG = (Gmp2)2 / hc ≈ 10-38

La identificación de constantes adimensionales de la Naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

 http://3.bp.blogspot.com/-SsTxo0qtVzU/UrLpyVHdWdI/AAAAAAAAANw/S5LIHSy2mr0/s1600/cerebro+dualidad.png

                           Siempre estamos tratando de desvelar los secretos de la Naturaleza. La naturaleza cuántica nos llevará a otros mundos, sin salir de este.

El cuásar 3C191 fue localizado con un desplazamiento al rojo de 1,95 y por eso su luz salió cuando el universo tenía sólo una quinta parte de su edad actual, hace casi once mil millones de años, llevando información codificada sobre el valor de la constante de estructura fina en ese momento. Con la precisdión de las medidas alcanzables entonces, se encontró que la constante de estructura fina era la misma entonces que ahora dentro de un margen de unos pocos por ciento:

α (z = 1,95/α(z = 0) = 0,97 ± 0,05

Algunas imágenes que nos muestran a distintos cuáres de los muchos que pueblan el Universo. El cuásar es una fuente inmensa de energía electromagnética, que incluye radiofrecuencias y luz visible.  Los cuásares visibles muestran un desplazamiento al rojo muy alto.  El consenso científico dice que esto es un efecto de la expansión métrica del universo entre los cuásares y la Tierra. Combinando esto con la Ley de Hubble se sabe que los cuásares están muy distantes. Para ser observables a esas distancias, la energía de emisión de los quasares hace empequeñecer a casi todos los fenómenos astrofísicos conocidos en el universo, exceptuando comparativamente a eventos de duración breve como supernpovas y brotes de rayos gamma.  Los cuásares pueden fácilmente liberar energía a niveles iguales que la combinación de cientos de galaxias medianas. La luz producida sería equivalente a la de cientos de miles de soles.

Poco después , en 1967, Bahcall y Schmidt observaron un par de líneas de emisión de oxígeno que aparecen en el espectro de cinco galaxias que emiten radioondas, localizadas con un desplazamiento hacia el rojo promedio de 0,2 (emitiendo así su luz hace unos dos mil millones de años: Aproximadamente la época en que el reactor de Oklo estaba activo en la Tierra y obtuvieron un resultado consistente con ausencia de cambio en la constante de estructura fina que era aún diez veces más fuerte:

α (z = 0,2)/α(z = 0) = 1,001 ± 0,002

Estas observaciones excluían rápidamente la propuesto por Gamow de que la constante de estructura fina estaba aumentando linealmente con la edad del universo. Si hubiese sido así, la razón α(z = 0,2)/α(z = 0) debería haberse encontrado con un valor próximo a 0,8.

La Constante de la Estructura Fina - www.pedroamoros.com

La Constante de la Estructura Fina

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, por qué todos los números puros definidos por las razones de cualquier par de masas son invariables.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

        Sí, algunas cosas nos quedan muy lejos pero, sobre todo recordad:

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.

 

α = 2πe2 /hc = 1/137

Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck. Todo esto no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h).

Nuestro destino es el de seguir preguntando. Nunca lo podremos saber todo sobre todo y, por cada respuesta que podamos lograr, aparecerán mil preguntas nuevas que plantear. El Universo es inmenso y en él se esconde todo lo que existe y, entre los muchos secretos que guarda, está el más grande de todos: ¡El surgir de las consciencias! Desde que la inteligencia y la consciencia de Ser aparecieron en el Universo, desde siempre estuvo acompañada por la curiosidad y la necesidad de saber. El conocimiento es nuestro destino y, seguramente también, nuestra salvación.

Una cosa es cierta: Todos los seres vivos que puedan estar presentes en los mundos de todas las galaxias que pueblan nuestro Universo, todos sin excepción, están aquí gracias a que las constantes universales de la Naturaleza son las que son y hacen posible mundos como el nuestro que, contienen todos los ingredientes necesarios para albergar la vida. Si la carga del electrón, la masa del protón, o, la velocidad de la luz variara tan sólo en una diexmilésima… ¡Nuestro Universo sería distinto y, la vida, no estaría presente!

emilio silvera