martes, 21 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




De la vida y la muerte de las partículas y…otros

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

Por aquel tiempo pudimos leer en la prensa de todo el mundo:  ESTOCOLMO, Suecia.- El premio Nobel de Física (2.008) fue atribuido hoy al norteamericano Yoichiro Nambu y a los japoneses Makoto Kobayashi y Toshihide Maskawa por sus trabajos separados sobre la física de las partículas que mejoraron la comprensión de la materia, Demos un repaso hoy aquí a esos componentes de la materia, y, profundicemos en sus propiedades., en sus “vidas”.

 

             Todo lo que vemos, está formado por partículas elementales

Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.

También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.

Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, ksi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales manera de desintegración, veríamos como difieren las unas de las otras.

Quarks Antiquarks
Nombre Símbolo[1] Generación Carga eléctrica
(e)
Masa en reposo
(MeV/c²)
Nombre Símbolo Generación Carga eléctrica
(e)
Masa en reposo
(MeV/c²)
Arriba \mathrm{u}\,\! Primera \begin{matrix} +\frac{2}{3} \end{matrix} Antiarriba \mathrm{\bar{u}}\,\! Primera \begin{matrix} -\frac{2}{3} \end{matrix}
Abajo \mathrm{d}\,\! Primera \begin{matrix} -\frac{1}{3} \end{matrix} Antiabajo \mathrm{\bar{d}}\,\! Primera \begin{matrix} +\frac{1}{3} \end{matrix}
Encanto \mathrm{c}\,\! Segunda \begin{matrix} +\frac{2}{3} \end{matrix} Antiencanto \mathrm{\bar{c}}\,\! Segunda \begin{matrix} -\frac{2}{3} \end{matrix}
Extraño \mathrm{s}\,\! Segunda \begin{matrix} -\frac{1}{3} \end{matrix} Antiextraño \mathrm{\bar{s}}\,\! Segunda \begin{matrix} +\frac{1}{3} \end{matrix}
Cima \mathrm{t}\,\! Tercera \begin{matrix} +\frac{2}{3} \end{matrix} Anticima \mathrm{\bar{t}}\,\! Tercera \begin{matrix} -\frac{2}{3} \end{matrix}
Fondo \mathrm{b}\,\! Tercera \begin{matrix} -\frac{1}{3} \end{matrix} Antifondo \mathrm{\bar{b}}\,\! Tercera \begin{matrix} +\frac{1}{3} \end{matrix}
Las iniciales de los símbolos los toma del inglés: u: up, arriba; d: down, abajo; c: charmed, encantado; s: strange, extraño; t: top, alto, superior, cima; b: bottom bajo, fondo.

Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.

Diagrama de partículas elementales

Todas las partículas elementales vistas hasta ahora en esta serie, incluido el neutrino. Claro que, aquí no está todavía el Bosón de Higgs que será confirmado en breve…al parecer. Esas son las últimas noticias, el Bosón de Higgs está “casi” localizado y sólo está a la espera de confirmar el hallazgo no una, sino miles de veces.

CMS detector
The CMS detector.Image © CERN
ATLAS detector
The ATLAS detector. Image © CERN

Por fin, los físicos empiezan a recoger los frutos de una búsqueda que dura ya casi cincuenta años. Dos de los principales detectores del LHC, el gran acelerador europeo de partículas (el Atlas y el muones“>CMS) han encontrado señales que podrían delatar la presencia del esquivo Higgs“>bosón de Higgs, la última particula subatómica que queda por descubrir para completar el Modelo Estandar de la Física y la que encierra, además, el secreto de por qué las demás partículas tienen masa.

Pero sigamos. ¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.

Una colisión entre un prtón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN.

 

Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.

Leptones cargados Neutrinos
Nombre Símbolo Carga Masa en reposo Nombre Símbolo Carga Masa en reposo
1ª generación Electrón \mathrm{e^-}\,\! −1 0,511
\mathrm{\nu_e}\,\! 0 < 3·10−6
Positrón \mathrm{e^+}\,\! +1 Neutrino electrónico
\mathrm{\overline{\nu_e}} 0
2ª generación Muón \mathrm{\mu^-}\,\! −1 105,658 Neutrino muónico \mathrm{\nu_\mu}\,\! 0 < 0,19
Antimuón \mathrm{\mu^+}\,\! +1 Antineutrino muónico \mathrm{\overline{\nu_\mu}} 0
3ª generación Tauón \mathrm{\tau^-}\,\! −1 1776,99 Neutrino tauónico \mathrm{\nu_\tau}\,\! 0 < 18,2
Antitauón \mathrm{\tau^+}\,\! +1 Antineutrino tauónico \mathrm{\overline{\nu_\tau}} 0

En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas  experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.

Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.

Bariones

 

Partícula Símbolo[1] Quarks[2] Spin Masa en reposo
(MeV/c²)
S C B Vida media
(s)
Desintegraciones más importantes
Protón \mathrm{p}\,\! \mathrm{uud}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 938,27 0 0 0 Estable [3]
Neutrón \mathrm{n}\,\! \mathrm{udd}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 939,56 0 0 0 885,7 [4] \begin{matrix}                         {}_{n\,\rightarrow\,p + e^- + \bar{\nu}_e} &                         {}_{100%}                   \end{matrix}
Delta doble positiva \mathrm{\Delta^{++}}\,\! \mathrm{uuu}\,\! \begin{matrix} \frac{3}{2} \end{matrix} ≈1.232 0 0 0 6·10-24 \begin{matrix}                         {}_{\Delta^{++}\,\rightarrow\,p + \pi^+} &                         {}_{100%}                   \end{matrix}
Delta positiva \mathrm{\Delta^+}\,\! \mathrm{uud}\,\! \begin{matrix} \frac{3}{2} \end{matrix} ≈1.232 0 0 0 6·10-24 \begin{matrix}                         {}_{\Delta^{+}\,\rightarrow\,Nucle\acute{o}n + pi\acute{o}n} &                         {}_{100%}                   \end{matrix}
Delta neutra \mathrm{\Delta^0}\,\! \mathrm{udd}\,\! \begin{matrix} \frac{3}{2} \end{matrix} ≈1.232 0 0 0 6·10-24 \begin{matrix}                         {}_{\Delta^{0}\,\rightarrow\,Nucle\acute{o}n + pi\acute{o}n} &                         {}_{100%}                   \end{matrix}
Delta negativa \mathrm{\Delta^{-}}\,\! \mathrm{ddd}\,\! \begin{matrix} \frac{3}{2} \end{matrix} ≈1.232 0 0 0 6·10-24 \begin{matrix}                         {}_{\Delta^{-}\,\rightarrow\,n + \pi^-} &                         {}_{100%}                   \end{matrix}
Lambda neutra \mathrm{\Lambda^0}\,\! \mathrm{uds}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.115,68 −1 0 0 2,63·10-10 \begin{matrix}                         {}_{\Lambda^{0}\,\rightarrow\,p + \pi^-} &                         {}_{63,9%} \\                        {}_{\Lambda^{0}\,\rightarrow\,n + \pi^0} &                         {}_{35,8%}                  \end{matrix}
Sigma positiva \mathrm{\Sigma^+}\,\! \mathrm{uus}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.189,37 −1 0 0 8,01·10-11 \begin{matrix}                         {}_{\Sigma^{+}\,\rightarrow\,p + \pi^0} &                         {}_{51,57%} \\                        {}_{\Sigma^{+}\,\rightarrow\,n + \pi^+} &                         {}_{48,31%}                  \end{matrix}
Sigma neutra \mathrm{\Sigma^0}\,\! \mathrm{uds}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.192,64 −1 0 0 7,4·10-20 \begin{matrix}                         {}_{\Sigma^{0}\,\rightarrow\,\Lambda^0 + \gamma} &                         {}_{100%}                  \end{matrix}
Sigma negativa \mathrm{\Sigma^-}\,\! \mathrm{dds}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.197,45 −1 0 0 1,48·10-10 \begin{matrix}                         {}_{\Sigma^{-}\,\rightarrow\,n + \pi^-} &                         {}_{99,84%} \\                        {}_{\Sigma^{-}\,\rightarrow\,n + e^- + \bar{\nu}_e} &                         {}_{0,1%}                  \end{matrix}
Xi neutra \mathrm{\Xi^0}\,\! \mathrm{uss}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.314,83 −2 0 0 2,90·10-10 \begin{matrix}                         {}_{\Xi^{0}\,\rightarrow\,\Lambda^0 + \pi^0} &                         {}_{99,52%} \\                        {}_{\Xi^{0}\,\rightarrow\,\Sigma^0 + \gamma} &                         {}_{0,33%}                  \end{matrix}
Xi negativa \mathrm{\Xi^-}\,\! \mathrm{dss}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 1.321,31 −2 0 0 1,64·10-10 \begin{matrix}                         {}_{\Xi^{-}\,\rightarrow\,\Lambda^0 + \pi^-} &                         {}_{99,88%}                  \end{matrix}
Omega \mathrm{\Omega^-}\,\! \mathrm{sss}\,\! \begin{matrix} \frac{3}{2} \end{matrix} 1.672,45 −3 0 0 8,21·10-11 \begin{matrix}                         {}_{\Omega^{-}\,\rightarrow\,\Lambda^0 + K^-} &                         {}_{67,8%} \\                        {}_{\Omega^{-}\,\rightarrow\,\Xi^0 + \pi^-} &                         {}_{23,6%} \\                  \end{matrix}
Omega encantada \mathrm{\Omega^0_c}\,\! \mathrm{ssc}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 2.697,5 −2 +1 0 6,90·10-14 \begin{matrix}                         {}_{\Omega^0_c\,\rightarrow\,\Sigma^+ + K^- + K^- + \pi^+} &                         {}_{??\,%} \\                        {}_{\Omega^0_c\,\rightarrow\,\Xi^0 + K^- + \pi^+} &                         {}_{??\,%} \\                  \end{matrix}
Xi positiva encantada \mathrm{\Xi^+_c}\,\! \mathrm{usc}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 2.468 −1 +1 0 4,42·10-13 \begin{matrix}                         {}_{\Xi^+_c\,\rightarrow\,\Xi^0 + \pi^+ + \pi^0} &                         {}_{??\,%} \\                        {}_{\Xi^+_c\,\rightarrow\,\Xi^0 + e^+ + \nu_e} &                         {}_{??\,%} \\                  \end{matrix}
Xi neutra encantada \mathrm{\Xi^0_c}\,\! \mathrm{dsc}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 2.471 −1 +1 0 1,12·10-13 \begin{matrix}                         {}_{\Xi^0_c\,\rightarrow\,p + K^- + K^- + \pi^+} &                         {}_{??\,%} \\                        {}_{\Xi^0_c\,\rightarrow\,\Lambda^0 + K^0_S} &                         {}_{??\,%} \\                  \end{matrix}
Lambda encantada \mathrm{\Lambda^+_c}\,\! \mathrm{udc}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 2.284,9 0 +1 0 2,00·10-13 \begin{matrix}                         {}_{\Lambda^+_c\,\rightarrow\,p + K^- + \pi^+} &                         {}_{??\,%} \\                        {}_{\Lambda^+_c\,\rightarrow\,p + \bar{K^0} + \pi^0} &                         {}_{??\,%} \\                  \end{matrix}
Xi doble encantada \mathrm{\Xi^+_{cc}}\,\! \mathrm{dcc}\,\! \begin{matrix} ? \end{matrix} 3.519 0 +2 0 <3,30·10-14
Lambda inferior \mathrm{\Lambda^0_b}\,\! \mathrm{udb}\,\! \begin{matrix} \frac{1}{2} \end{matrix} 5.624 0 0 −1 1,23·10-12 \begin{matrix}                         {}_{\Lambda^0_b\,\rightarrow\,p + D^0 + \pi^-} &                         {}_{??\,%} \\                        {}_{\Lambda^0_b\,\rightarrow\,\Lambda^+_c + \pi^-} &                         {}_{??\,%} \\                  \end{matrix}
[1] El símbolo de los antibariones es el mismo pero con una barra superpuesta.
[2] Los antibariones están formados por los respectivos antiquarks.
[3] Debe ser superior a 1030 años.
[4] Vida media de los neutrones libres. En los núcleos atómicos son estables.
Se ha conseguido observar por primera vez la desintegración radiactiva del neutrón. Dentro de los núcleos de los átomos hay neutrones y protones. En condiciones normales y mientras que están ahí los neutrones son estables. Sin embargo los neutrones libres son inestables, tienen una vida media de unos 10 minutos, y se desintegran produciendo un protón un electrón y un antineutrino. Pero los físicos nucleares teóricos predijeron que una de cada mil veces los neutrones decaerían en todas esas partículas y además en un fotón.

Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según  la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.

Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.

Bosones

Nombre Símbolo Carga eléctrica
(e)
Carga de color Spin Masa en reposo
(GeV/c²)
Existencia Vida media Desintegraciones más importantes
Fotón \mathrm{\gamma}\,\! Neutra Neutra 1 Nula Confirmada Estable
Bosón W \mathrm{W^{\pm}}\,\! ± 1 Neutra 1 80,425 Confirmada 3·10-25 \begin{matrix}                         {}_{W^{+}\,\rightarrow\,q + \bar{q}} &                         {}_{\approx67%} \\                        {}_{W^{+}\,\rightarrow\,\ell^+ + \nu_\ell} &                         {}_{\approx33%}                  \end{matrix} [1]
Bosón Z \mathrm{Z^{0}}\,\! Neutra Neutra 1 91,187 Confirmada 3·10-25
Gluón \mathrm{g}\,\! Neutra Color + Anticolor 1 Nula Confirmada Estable
Gravitón \mathrm{G}\,\! Neutra Neutra 2 Nula Hipotética Estable
Higgs“>Bosón de Higgs \mathrm{H}\,\! Neutra Neutra 0 > 114 Hipotética Inestable \begin{matrix}                         {}_{H\,\rightarrow\,t + \bar{t}} &                         {}_{???\,%} \\                        {}_{H\,\rightarrow\,b + \bar{b}} &                         {}_{???\,%}                  \end{matrix}

Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”

Foto

Típicamente el neutrón decae en un protón, un antineutrino y un electrón. Muy raramente lo hace radiativamente emitiendo además un fotón. Diagrama: Zina Deretsky, National Science Foundation.  Fue difícil observar los fotones porque el haz está contaminado con fotones que fondo que producen mucho “ruido” en las medidas, por lo que era como buscar una aguja en un pajar. El decaimiento radiativo del neutrón es importante porque conecta directamente con el modelo estándar de partículas.

Si la vida de una partícula  es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.

Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.

Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).

            En el Universo existen muchas clases de resonancias…inesperadas

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (materia), es aún limitado. Los cuadros que aparecen arriba, están referidos a las partículas más usuales como los Quarks y los Leptones (verdaderos componentes de la materia) que a su vez, son: Los Quarks los que forman a los Hadrones y los Leptones los que completan el núcleo atómico de la materia para conformar los átomos. He dejado a los mesones y a las supuestas partículas supersimétricas centrándome en las que me parecen principales en la conformación de la materia.

emilio silvera

Nuevas maneras de mirar al Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en el futuro    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Quedó, hace algún tiempo, instalado el espectrógtafo de Infrarrojo Cercano en el Telescopio James Webb. Veremos que maravillas nos depara.

02.04.14.- En Marzo, el Espectrógrafo de Infrarrojo Cercano (NIRSpec) del Telescopio Espacial James Webb fue instalado en el módulo de instrumentos. El NIRSpec se une a la cámara de infrarrojo cercano (NIRCam), un sensor de guiado de precisión y una cámara en el infrarrojo cercano y un espectrógrafo sin ranura (FGS-NIRISS), y una cámara y espectrógrafo en el infrarrojo medio (MIRI), que ya se encuentran integrados en el Módulo de Instrumentos Científicos, por lo que el módulo de intrumentos está completo.

 Instalacion de espectrógrafo de infrarrojo cercano en el telescopio espacial James Webb
 Instalación de espectrógrafo de infrarrojo cercano en el telescopio espacial James Webb. Image Credit: NASA/Chris Gunn

El Telescopio Espacial James Webb es un gran telescopio espacial, optimizado para longitudes de onda infrarrojas. Su lanzamiento está previsto a finales de esta década. Webb encontrará las primeras galaxias que se formaron en el universo temprano, conectando el Big Bang a nuestra propia galaxia la Vía Láctea. El telescopio espacial James Webb y sus instrumentos están optimizados para captar la luz infrarroja y así poder estudiar la radiación emitida por galaxias remotas y observar a través del denso velo de polvo que envuelve a algunos objetos, como los embriones de estrellas.

Este telescopio alcanzará un nivel de sensibilidad sin precedentes, ya que se encontrará a 1.5 millones de kilómetros de la Tierra en dirección opuesta al Sol y protegido por un parasol del tamaño de una cancha de tenis, que le mantendrán alejado de las influencias de la atmósfera terrestre, a baja temperatura, y en la más absoluta oscuridad. El Telescopio Espacial James Webb es un proyecto conjunto de la ESA, la NASA y la Agencia Espacial Canadiense diseñado para tomar el relevo del exitoso telescopio espacial Hubble.

El Telescopio Espacial James Webb (en inglés James Webb Space Telescope o JWST), es un observatorio espacial en fase de desarrollo que estudiará el cielo en frecuencia infrarroja, sucesor científico del telescopio espacial Hubble y del Spitzer. Las principales características técnicas son un gran espejo de 6,5 metros de diámetro, una posición de observación lejos de la Tierra, en órbita alrededor del punto L2 del sistema Sol- Tierra, y cuatro instrumentos especializados. La combinación de estas características le dará una resolución sin precedentes y sensibilidad de larga longitud de onda visible al infrarrojo medio, permitiendo sus dos principales objetivos científicos –estudiar el nacimiento y evolución de las galaxias y la formación de estrellas y planetas.

От Большого взрыва к Нобелевской премии и границам Вселенной, Джон Мазер, 27 ноября 2009

Si ellos pudieran contemplar hasta donde hemos llegado en la sostificación de los ingenios que podemos fabricar y que son capaces de captar galaxias y estrellas situadas al filo de su nacimiento, hace ahora más de 12.000 millones de años-luz… ¡Se morían del susto!

hubble_vs_Jwst_black2.jpg

Paso a paso, sin que apenas nos demos cuenta, cada día nos acercamos un poco más al futuro que vendrá y, aunque nosotros seguimos instalados en el presente, estamos haciendo todo lo preciso para que ese futuro sea muy diferente al hoy, y, en relación al Universo y a la Naturaleza misma (también la nuestra), estamos avanzando de manera imparable. Cada nuevo conocimiento conquistado, nos posibilitan la apertura de nuevas puertas, antes cerradas, y, detrás de ellas, encontramos respuestas nuevas.

¿Que nos dira el James Webb Space Telescope?

Esperémos que mucho de lo que ahora no sabemos.

 

¿Cómo será el futuro?

Autor por Emilio Silvera    ~    Archivo Clasificado en El futuro tecnológico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

mitocondria

 

¿Qué nos espera en los próximos 10 años?

Lo cierto es que, cada vez que ha salido alguien, que como el precursor de la ciencia ficción, el entrañable Julio Verne, nos hablaba de viajes imposibles y de mundos insólitos, nadie pudo creer, en aquellos momentos, que todas aquellas “fantasías” serían una realidad en el futuro más o menos lejano. Todo lo que él imagino hace tiempo que se hizo realidad y, en algunos casos, aquellas realidades fantásticas, han sido sobrepasadas como podemos contemplar, en nuestras vidas cotidianas. Ingenios espaciales surcan los espacios siderales y, otros, lo hacen por el misterioso fondo oceánico como fue predicho hace más de un siglo.

Los profetas modernos resultan ser Físicos que nos hablan de sucesos cuánticos que no llegamos a comprender y que, son ¡tan extraños! que nos resultan poco familiares y como venidos de “otro mundo”, aunque en realidad, son fenómenos que ocurren en las profundidades del mundo de la materia.

Cada vez van siendo menor los visionarios y más los estudiosos científicos, tanto teóricos como experimentadores que, en todos los campos, nos llevan, sin que nos demós cuanta , hacia el futuro que, ¡puede ser de tántas maneras! Precisamente por eso, será bueno que nuestras mentes, no se resignen a que estémos confinados aquí, en esta nave espacial que llamamos Tierra y que surca el espacio interestelar a muy buena velocidad aunque no todos sean conscientes de ello.

Ascensor espacial. Erkki Halkka

              Ascensor Espacial Erkki Halkka

Los avances que veremos en este mismo siglo, en todos los ámbitos del saber humano, serán sorprendentes y cambiaran nuestras vidas, nuestra Sociedad para el próximo siglo, será ya muy diferentes a ésta que conocemos. Nuestras propias vidas darán un salto cuantitativo y cualitativo en su período de duración y en su calidad de bienestar, podremos vivir un siglo y medio y tendremos menos enfermedades que . las posibles innovaciones tecnológicas en campos tan dispares como la salud, la economía, la demografía, la energía, la robótica, el espacio, las telecomunicaciones y los transportes, darán un vuelco a nuestra forma de vida y entraremos en otra fase del futuro que viene y del pasado que dejamos atrás.

File:Types of Carbon Nanotubes.png

Estos serán los materiales con los que se construi´ra ese ascensor “imposible” que nos llevará 500 Km lejos de la Tierra, las Estaciones Espaciales con las que se podrá acoplar, sin ninguno de los riesgos que conllevan los transbordadores actuales impulsados por Hidrógeno líquido de fácil combustión, es decir, los pasajeros van montados sobre una bomba volante y, al mejor fallo…

Los ascensores espaciales eran hasta hace muy poco materia de ficción pura, pues ningún material conocido podía soportar la enorme tensión producida por su propio peso. Actualmente ciertos materiales comienzan a parecer viables materia prima: los expertos en nuevos materiales consideran que teóricamente los nanotubos de carbono pueden soportar la tensión presente en un ascensor espacial.3 Debido a este avance en la resistencia de los nuevos materiales, varias agencias están estudiando la viabilidad de un futuro ascensor espacial:

En Estados Unidos, un antiguo ingeniero de la NASA llamado Bradley C. Edwards ha elaborado un proyecto preliminar que también están estudiando científicos de la NASA.3 Edwards afirma que ya existe la tecnología necesaria, que se necesitarían 20 años construirlo y que su costo sería 10 veces menor que el de la Estación Espacial Internacional. El ascensor espacial de Edwards no se parece a los presentes en las obras de ficción, al ser mucho más modesto y a la vez innovador en lo que concierne a su eventual método de construcción.

Este sería el final del recorrido y estaría preparado para conectar con bases espaciales. nos parece un suelo paero hace tiempo ya que se está trabajando, de manera muy seria, en su construcción en un futuro próximo y, desde luego, conseguirlo será un buen logro.

Existen algunos tratamientos con células madre, pero la mayoría todavía se encuentran en una etapa experimental. Investigaciones médicas, anticipan que un día con el uso de la tecnología, derivada de investigaciones para las células madre adultas y embrionarias, se podrá tratar el cáncer, , heridas en la espina dorsal y daño en los músculos, como también se podrán tratar otras enfermedades. Se les presupone un destino lleno de aplicaciones, que van desde patologías neurodegenerativas, como la enfermedad de Alzheimer o de Parkinson, hasta la fabricación de tejidos y órganos destinados al trasplante, pasando por la diabetes y los trastornos cardíacos.

En un futuro se espera utilizar células madre de cordón umbilical en terapia génica: podemos así tratar enfermedades causadas por la deficiencia o defecto de un determinado gen, introduciendo un determinado gen en la proliferación de las células madre In Vitro y trasplantar tales células en el paciente receptor. El uso de otros tipos de células como portadores de genes buenos en pacientes con enfermedades causadas por deficiencias o déficits genéticos, está siendo testeado a nivel clínico. El primer trasplante de órgano bioartificial en humanos, por su , confían en que pueda ver la luz dentro de “unos cinco o diez años”.

La bioinformática o la biotecnología consiste en la aplicación de tecnología informática en el análisis de biológicos . Los principales esfuerzos de investigación en estos campos incluyen el alineamiento de secuencias , la predicción de genes , predicción de la expresión génica y modelado de la evolución . Algunos ejemplos son el diseño de organismos para producir antibióticos , el desarrollo de vacunas más seguras y nuevos fármacos, los diagnósticos moleculares, las terapias regenerativas y el desarrollo de la ingeniería genética para curar enfermedades a través de la manipulación génica. Veamos algunas de ellas…

                  Formas nuevas de comunicarse y de adquirir datos e información

                         La fusión, energía limpia y barata y, sobre todo, inagotable

Y mientras el mundo está pendiente de la crisis económica internacional, científicos e ingenieros trabajan intensamente en lo que podría ser la solución a los problemas energéticos del futuro. La palabra clave es “fusión”. Al contrario que la tradicional energía nuclear, la energía de fusión es limpia y no contamina y, sus resifuos, es el Helio fácilmente aprovechable. El Proyecto ITER sigue adelante.

Últimos avances en medicina

La ciencia de la medicina está avanzando a pasos agigantados. Los últimos avances en medicina que se dieron en estos diez o quince años pasados han sido sorprendentes, y podemos esperar un salto muy grande en la medicina dentro de los próximos años.

Algunos descubrimientos todavía no están al alcance de los pacientes, a pesar de que ya se han revelado grandes avances científicos son necesarios muchos estudios y pruebas antes de que se puedan aplicar. No perdamos de vista en ámbito del saber humano, ni la genética ni las nuevas nanotecnologías, lo que llaman el ojo biónico, la sangre artificial…

Cambiaran nuestras ciudades y nuestras Sociedades serán diferentes, los nuevos conocimientos llegarán también, a la vida cotidiana del habitat humano y a su forma de trabajo, de viajar, e, incluso los alimentos del futuro no muy lejano, nos harán recordar con cierta nostalgia, estos que criticamos.

            Los modernos celulares irán insertados en el brazo

     Cualquier vivienda será controlada por mecanimos informáticos

Este programa va más allá de los avances actuales para revelar la tecnología e inventos que nos permitirán ver a través de las paredes, viajar en el tiempo y en el espacio y colonizar planetas distantes. La tecnología inteligente que llevará ayudantes robóticos a los hogares, ciudades enteras a la Internet, y sistemas de entretenimiento que harán los sueños realidad en virtual. Sí, virtual hoy pero… ¿Y mañana?

¡Tantas galaxias y estrellas, tantos mundos, tantas maravillas! Si no podemos en un futuro más o menos lejano, visitarlas, ¿ qué tanta diversidad y tanta belleza? Si están ahí, por algo será y, nosotros, aunque parezca que somos una ínfima cuestión en tan vasto Universo, seguramente serémos, unos privilegiados llamados a realizar grandes cosas. A pesar de nuestras muchas faltas y carencias…¡Lo estamos logrando!

Ya hemos dado los primeros pasos y, nuestros ingenios espaciales tecnológicos robotizados, han realizado nosotros las tareas que, de momento nos están vedadas pero, demslé tiempo al tiempo y, sin duda alguna, en ese futuro soñado, estaremos en las estrellas y en esos otros mundos que presentimos hermanos de la Tierra y que podrán acoger a la Humanidad que, dentro de otros cincuenta años, llegará a la cifra de 8.000 millones de seres y, nuestro planeta, no puede con todo.

El futuro convive ya con nosotros y, al tenerlo tan cercano, no le prestamos atención a esos muchos cambios que con nosotros conviven. Lo cierto es que debe ser así, de otra manera, los cambios tan bruscos que se están produciendo, nos traumatizaría y, sin embargo, lo tomamos -unas veces por comprenderlos y otras por ignorarlos- con toda la normalidad. Esa es la manera en la que se desenvuelve el mundo de nuestra especie.

http://www.fondos10.net/wp-content/uploads/2009/01/3d-espacial-1024-x-768-o.jpg

                                                                                            Sueños convertidos en realidad

¿Cómo no podemos predecir que le puede pasar a la Tierra en el futuro?, mejor será ir “preparando las maletas” que, como decía mi padre, un viejo marinero curtido en mil tempestades: ¡”Más vale, un por si acaso, que un yo creí”!

emilio silvera

Las escalas del Universo no son Humanas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del  nuestro que lo como si existiera más materia de la que realmente hay debido a que, “la fuerza de gravedad de esos universos” vecinos, incide de manera real en este Universo nuestro, y, si es así, la tan cacareada “materia oscura” podría ser el mayor fraude de la cosmología moderna.

A nuestro alrededor pasan muchas cosas a las que no prestamos atención

Inmersos en los problemas cotidianos prestamos poca atención a lo que pasa a nuestro alrededor, en la Naturaleza y, sólo cuando son fenómenos muy llamativos, inusuales, o, que nos ponen en peligro, ponemos nuestros cinco sentidos en el acontecimiento. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos estado más atentos, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la Naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la T. de Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas.

 

 

Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

La vida (creo), estará presente en muchos mundos que, al igual que la Tierra, ofrece las condiciones adecuadas

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución que tantos miles de millones de años le costó al Universo para poder plasmarla en una realidad que llamamos vida.

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.

          Una atmósfera planetaria adecuada dará la opción de que evolucione la vida y se creen sociedades

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

“Las historias de ciencia ficción en las cuales se sugiere la existencia de seres vivos construidos de silicio en vez del carbono han proliferado desde hace varias décadas, por ejemplo, en los argumentos de muchas películas y series de TV. La idea no es nueva, pues esta se originó en 1891 (¡!), cuando Julio Sheiner escribió sobre la posibilidad de vida extraterrestre fundada en el Silicio.Biól. Nasif Nahle

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

emilio silvera

Ciudades Inteligentes

Autor por Emilio Silvera    ~    Archivo Clasificado en El futuro tecnológico    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Smart City Nansha, en Guangzhou, China.

 

Las ciudades modernas, basadas en infraestructuras eficientes y durables de agua, electricidad, telecomunicaciones, gas, transportes, servicios de urgencia y seguridad, equipamientos públicos, edificaciones inteligentes de oficinas y de residencias, etc., deben orientarse a mejorar el confort de los ciudadanos, siendo cada vez más eficaces y brindando nuevos servicios de calidad, mientras que se respetan al máximo los aspectos ambientales y el uso prudente de los recursos naturales no renovables.

                             Distrito Financiero de Singapur

Hoy día, el concepto de ciudad (más) inteligente o de espacio (más) inteligente, es muy utilizado en marketing por parte de expertos en sociedades comerciales y en aglomeraciones urbanas, aunque en muchos casos poniendo énfasis en un solo aspecto, lo que en buena medida traiciona el concepto que se intenta desarrollar, que tiene un importante componente holístico e integral. En efecto, una ciudad o un territorio que se considere inteligente se manifiesta fundamentalmente por su carácter multidimensional y multifacético, en términos de actores, en cuanto a dominios clave (transportes, energía, educación, salud, residuos, vigilancia, economía…), y en desarrollo y utilización de tecnologías. Naturalmente, los principales actores del sector privado implicados en un proyecto como el analizado de ciudad, territorio, barrio o edificio inteligente, son los industriales y empresarios de sectores clave, tales como energía, agua, transportes, y servicios… así como dirigentes de empresas públicas de telecomunicaciones e infraestructuras, editores, proveedores de logicales de apoyo a la gestión, así como a la administración y a la consultoría.

En el último Boletin recibido de la Real Sociedad Española de Física, me hablan de este tipo de ciudades que, a medida que pasa el tiempo y avanzan las tecnologías, serán el mundo cotidiano de la Humanidad. En el comentario escueto que publican, nos dicen:

“España se está convirtiendo en el Silicon Valley para las smart cities. Las compañías que construyen la ciudad inteligente ponen en marcha iniciativas y aplicaciones móviles nuevas que hacen la vida urbana más sencilla.

El objetivo de las iniciativas españolas, es utilizar las tecnologías de la información para crear un espacio urbano con infraestructuras, redes y plataformas que mejoren la vida de las personas en las ciudades. La Red Española de Ciudades Inteligentes (RECI) es una iniciativa basada en productos y sericios innovadores en el ámbito de las smart cities. En menos de tres años la Red ha pasado de tener 19 a 54 ciudades, convirtiéndose en la más grande del mundo. Las ciudades ponen a disposición multitud de datos que, gracias a la tecnología ofrecen oportunidades de negocio, como la prestación de servicios susceptibles de pago. Según Fundetec, el reto está en que fluya la información en los distintos servicios y que exista una conexión entre ellos.”


De todas las maneras, el ritmo al que están creciendo los conocimientos en el campo de la Física, de la Química, de la Biología, de las Matemáticas, y, en campos como los de la fotónica y la moderna nanotecnología con sus nuevos e increíbles materiales, nos llevan en volandas hasta Ciudades de ensueño que, podemos llamar “inteligentes” pero, simplemente son el fruto de aplicar los conocimientos nuevos a todos los ámbitos de la vida Humana.

Si la gente corriente (no tiene por que), no están enteradas de los muchos beneficios que, las investigaciones científicas tienen para la Sociedad. El mismo Acelerador de Hadrones, LHC que, en su momento fue tan criticado, ha aportado muchos beneficios en el ámbito cotidiano de la vida Humana, tanto en nuevas tecnologías como en medicina, etc. Además, de decirnos cómo es la materia y hablarnos del corazón de las partículas infinitesimales que allí se destruyen para poder ver sus contenidos.

En fin, que estamos en camino de un futuro inimaginable.

emilio silvera