Ene
10
Sí, todo cambia. ¿Cual es la verdadera medida? ¡Llegar a comprender!
por Emilio Silvera ~ Clasificado en El Universo y... ¿nosotros? ~ Comments (0)
En otras ocasiones hemos presentado aquí trabajos yque, entre los temas que fueron tratados, entraba el Universo estacionario y también la posibilidad de un final con la presencia del Big Crunch, lo cual, según todos los datos de la cosmología moderna, no será posible dado que, el Universo euclideo y la Densidad Crítica que se observa no sería suficiente para producir tal final. Por el contrario, la dinámica observada de expansión es cada vez más acelerada y, aunque algunos hablan de la “materia oscura”, en realidad no sabemos a qué se puede deber tal expansión pero, lo cierto es que no habrá colapso final y sí, en cambio, una expansión ilimitada que nos llevará hacia un “enfriamiento térmico” que llegará a alcanzar un máximo de entropía dS = dQ/T, así habrá una gran parte de la energía del Universo que no podrá producir trabajo. Sin embargo, es curioso que siendo eso lo que se deduce de los datos que tenemos, cuando miramos lo que predicen las nuevas teorías basadas en las cuerdas y la mecánica cuántica nos indica que tal escenario es poco creíble.
Todo parece indicar que nada podrá impedir que en las galaxias se sigan produciendo explosiones supernovas que formaran hermosas Nebulosas de las que nacerán nuevas estrellas, toda vez que las galaxias, quedarán aisladas y detendrán su expansiòn y tal hecho, no parece que pueda incidir en la mecánica galáctica de formación de nuevas estrellas. Así, las estrellas más masivas devolveran parte de la materia que las conforman al medio interestelar y la gravedad y la radiación se encargarán de que nuevos ciclos se sigan produciendo. Y, las estrellas menos masivas, como nuestro Sol y otras seguirán sus vidas durante miles de millones de años y, si tiene planetas en su entorno, ¿quién sabe si estando en la zona habitable no podrá hacer surgir alguna clase de vida? Claro que, el proceso de la dinámica del universo es llegar al frío absoluta de los -273 ºC y, en ese momento, las masas de las estrellas quedarían bloqueadas, los átomos presentes en las Nebulosas perderían su dinámica y nada, en nuestro Universo, tendría movimiento ni energía para crear trabajo, la Entropía sería la dueña y señora de todo y una última estrella habría nacido para quedar colapsada sin poder cumplir su misión de transmutar elementos.
Pero no pocas de todas estas conclusiones son conjeturas que se hacen conforme a los datos observados que llevan a esas consecuencias. En otros panoramas se podría contemplar como en el futuro, las estrellas escaparían lentamente de las galaxias y según algunos cálculos el 90% de la masa estelar de una galaxia habría huído al espacio en unos 10^19 años. El 10% restante habría sido engullido por agujeros negros supermasivos centrales. El mismo mecanismo haría que los planetas escaparan de su soles y vagaran por el espacio como planetas errantes hasta perderse en el espacio profundo y, los que no lo hagan caeran hacia el centro de sus soles en unos 0^20 años.
Un último estudio ha indicado que el Universo es curvo, no plano como se creía y tal resultado, aunque tendrá que ser verificado, es importante para saber el final que realmente espera a nuestro Universo en ese futuro muy lejano en el que, no sabemos siquiera si nuestra especie andará aún por aquí.
Esa imagen de arriba no sería repetida y las galaxias, los cúmulos se disgregarían debido a interacciones gravitatorias en unos 10^23 años y, en un momento determinado el universo estaría formado por enanas negras, estrellas de neutrones y agujeros negros junto con planetas y pequeñas cantidades de gas y polvo, todo ello, sumergido en una radiación de fondo a 10^-13K. Hay modelos que predicen que los agujeros negros terminarán evaporándose mediante la emisión de la radiación de Hawking. Una vez evaporado el agujero negro, los demás objetos se convertirían en Hierro en unos 10^1500 años pero también, pasado mucho tiempo, se evaporaran y a partir de este momento el universo se compone de partículas aisladas (fotones, electrones, neutrinos, protones). La densidad tenderá a cero y las partículas no podrán interactuar. Entonces, como no se puede llegar al cero absoluto, el universo sufrirá fluctuaciones cuánticas y podría generar otro universo. ¿Qué locura!
Claro que toda esa teoría podría modificarse si la “energía oscura” -si finalmente existe- resultara ser negativa, con lo cual el fin se produciría antes. Tampoco se ha contado con la posible inestabilidad del protón. Todo esto está descrito según la física que hoy día se conoce, lo cual nos puede llevar a conclusiones erróneas. Como vereis, tenemos respuestas para todo y, aunque ninguna de ellas pueda coincidir con la realidad, lo cierto es que, el panorama de la cosmología está lleno de historias que, algunas podrán gustar más que otras pero todas, eso sí, están cargadas de una imaginación desbordante.
Como mi intelecto es más sencillo y no alcanza a ver en esas profundas lejanías, me quedo con lo más tangible y cercano como lo es el hecho cierto de que el Universo tiene que tener miles de millones de años para que haya podido tener tiempo suficiente para que los ladrillos de la vida sean manifacturados en las estrellas.
Las leyes de la gravitación nos dice que la edad del universo está directamente ligada a otras propiedades que manifiesta, como su densidad, su temperatura y el brillo del cielo. Puesto que el Universo debe expandirse durante miles de millones de años, debe tener una extensión visible de miles de millones de años-luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace más frío y disperso. Ahora sabemos que la densidad del Universo es hoy día de poco más de 1 átomo por m3 de espacio.
Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra porque no es tan sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extratreterrestres. Si existen en el Universo otras formas de vida avanzada (como creo), entonces, al igual que los seres de la Tierra habrán evolucionado sin ser perturbadas por los seres de otros mundos hasta que puedan llegar a lograr una fase tecnológica avanzada.
Además, la muy baja temperatura de la radiación hace algo más que asegurar que el espacio sea un lugar frío: también garantiza la oscuridad del cielo nocturno. Durante siglos los científicos se han preguntado por esta sorprendente característica del Universo. Si ahí fuera en el espcio hubiera un número enorme de estrellas, entonces cabría pensar que mirar hacia arriba al cielo nocturno sería un poco como mirar un bosque denso.
Millones de estrellas en un sólo cúmulo globular
Cada linea de visión debería terminar en una estrella. Sus superficies brillantes cubrirían cada parte del cielo haciénsolo parecido a la superficie del Sol. Lo que nos salva de ese cielo brillante es la expansión del Universo y la lejanía a la que se encuentran las estrellas entre sí. Para encontrar las condiciones necesarias que soporte la complejidad viviente hicieron falta diez mil millones de años de expansión y enfriamiento.
La Densidad de materia ha caido hasta un valor tan bajo que aun sim toda la materia se transformase repentinamente en energía radiante no advertiríamos ningún resplandor importante en el cielo nocturno. La radiación es demasiado pequeña y el espacio a llenar demasiado grande para que el cielo parezca brillante otra vez. Hubo un tiempo cuando el Universo era mucho más jovencito, menos de cien mil años, en que todo el cielo era brillante, tan brillante que ni estrellas ni átomos ni moléculas podían existir, la podría radiación los destruía. Y, en ese tiempo, no podrían haber exististido observadores para ser testigo de ello.
Con algunas estrellas por aquí y por allá, alguna que otra Nebulosa (incluso algunas brujas), el Universo es oscuro y frío.
Pero estas consideraciones tienen otros resultados de una Naturaleza mucho más filosófica. El gran tamaño y la absoluta oscuridad del Universo parecen ser profundamente inhóspitos para la vida. La apariencia del cielo nocturno es responsable de muchos anhelos religiosos y estéticos surgidos de nuestra aparente pequeñez e insignificancia frente a la grandeza e inmutabilidad (aparente) de las estrellas lejanas. Muchas Civilizaciones rindieron culto a las estrellas o creyeron que gobernaban su futuro, mientras otras, como la nuestra, a menudo anhelan visitarlas.
Mucho se ha escrito sobre el efecto emocional que produce la contemplación de la insignificancia de la Tierra ante esa inmensidad del cielo salpicado de estrellas, inmersa en una Galaxia que tiene más de cien mil millones y que ahora sabemos, que también tiene, miles de millones de mundos. En efecto, la idea de ese conocimiento es impresionante y puede llegar (en algunos casos) a ser intensamente desagradable y producir sensación de ahogo y hasta miedo. Nuestra imaginación matemática se ve atormentada ante esa inconmensurable grandeza que, nuestras mentes, no llegan a poder asimilar.
Claro que, en eso de lo grande y lo pequeño…, todo puede ser muy subjetivo y, no pocas veces dependerá de la perspectiva con que lo podamos mirar. Podríamos considerar la Tierra como enorme, al mirarla bajo el punto de vista que es el mundo que nos acoge, en el que existen inmensos océanos y grandes montañas y volcanes y llanuras y bosques y ríos y, una inmensa lista de seres vivos. Sin embargo, se nos aparecerá en nuestras mentes como un minúsculo grano de arena y agua si la comparamos a la inmensidad del Universo. Igualmente, podemos ver un átomo como algo grande en el sentido de que, al juntarse con otros, pueden llegar a formar moléculas que juntas, son capaces de formar mundos y galaxias.
Si comparamos una galaxia con un átomo, éste nos parecerá algo ínfimo. Si comparamos esa misma galaxia con el Universo, lo que antes era muy grande ahora resulta ser también muy poca cosa. Si el mundo que nos acoge, en el que la Humanidad ha escrito toda su historia y costado milenios conocer, dado su “inmensidad” para nosotros, lo comparamos con la Nebulosa Orión, nos parecerá ridículo en tamaño y proporción y, sin embargo, cuán importante es para nosotros. Todo puede ser grande o pequeño dependiendo de la perspectiva con que lo miremos y según con qué lo podamos comparar.
Nada es objetivamente grande; las cosas son grandes sólo cuando consiguen tocar la sensibilidad del observador que las contempla, encontrar los caminos hacia su corazón y su cerebro. La idea de que el Universo es una multitud de esferas minúsculas circulando como motas de polvo en un vacío oscuro e ilimitado, podría dejarnos fríos e indiferentes, si no acomplejados y deprimidos, si no fuera porque nosotros identificamos este esquema hipotético con el esplendor visible, la intensidad conmovedora del desconcertante número de estrellas que están ahí, precisamente, para hacer posible nuestra presencia aquí y, eso amigos míos, nos hace ser importantes, dado que demuestra algo irrefutable, formamos parte de toda esta grandeza.
Bueno, no es por nada pero, ¿quién me puede decir que una imagen como la que arriba podemos contemplar, no es tan hermosa como la más brillante de las estrellas del cielo? Incluso diría que más, ya que, se trata del producto o esencia del marterial que allí se fabricó y que ha podido llegar a su más alto nivel de belleza.
Yo, si tengo que deciros la verdad, no me considero nada insignificante, soy consciente de que formo parte del Universo, como todos ustedes, ni más ni menos, somos una parte de la Naturaleza y, como tales productos de algo tan grande, debemos estar orgullosos y, sobre todo procurar, conocer bien qué es lo que realmente hacemos aquí, para qué se nos ha traído y, para ello amigos, el único camino que conozco es, llegar a conocer a fondo la Naturaleza y procurar desvelar sus secretos, ella nos dirá todo cuanto queramos saber.
emilio silvera
Ene
10
¿La Vida? ¡Puede ser de tántas maneras!
por Emilio Silvera ~ Clasificado en Divagando ~ Comments (0)
No podemos negar que algunos resultados en esta teoría han sido sobresalientes: Las resonancias, que habían actuado como motivación, se acomodaban como …
¿Teoría de Cuerdas? ¡Qué extraña resulta!
Seres inteligentes pueden haber hecho su aparición en alguno de esos planetas similares al nuestro mil millones de años …
No todo lo moderno tenemos que darlo por bueno. Como pude leer en alguna parte:
“La paradoja de nuestro tiempo en la historia es que tenemos edificios más altos pero temperamentos más cortos, autopistas más anchas, pero puntos de vista más estrechos. Gastamos más pero tenemos , compramos más, pero gozamos menos. Tenemos casas más grandes y familias más pequeñas, más conveniencias, pero menos tiempo. Tenemos más grados y títulos pero menos sentido, más conocimiento, pero menos juicio, más expertos, sin embargo más problemas, más medicina, pero menos . “
Quizá el problema esté en que no sabemos donde reside lo que realmente valor, tendemos a querer tener la casa más grande, el coche que más corra, la pantalla de plasma o el celular de la última generación, siempre vamos corriendo a todas partes y, salimos de noche de casa y regresamos cuando el día ha terminado pero, cuando nos acostamos sin haber visto a los niños, ya dormidos, nos cuesta coger el sueño… La hipoteca, aquel préstamo, que no marcha, la inestabilidad de la empresa, los impagados…
Dedicar algún tiempo a la familia, sacrificando los beneficios compensarnos a la larga, ya que, no siempre es el dinero el que nos proporciona los mejores momentos ni los más auténticos. Estos momentos felices, residen siempre en las cosas más sencillas, es siempre lo más cercano, nuestro entorno y nuestra familia que, al fin y al cabo… ¿Qué tenemos mejor que eso? ¿Por qué luchamos mientras nuestro tiempo nos mantiene aquí?
Siendo tan efímero el tiempo que nos ha tocado vivir (así lo dispuso la Naturaleza), es un auténtico disparate la cantidad de “tiempo” que perdemos en vanalidades, en cuestiones superfluas que no tienen valor. El verdadero “tesoro” que tenemos que buscar en nuestro tránsito por este mundo es el de ser felices y, amigos míos, esa felicidad está en nosotros mismos, en la manera en que podamos plantearnos la vida. Aquel hombre viejo tenía razón cuando dijo: “No es más rico el que más tiene, sino el que menos necesita”.
No puedo ni recordar la cantidad de veces que dejé pasar la oportunidad de ayudar a mis hijos pequeños en la tarea del colegio. Estaba de viaje, la oficina me ocupaba demasiado, el trabajo no me dejaba mucho tiempo libre y, sin embargo, ahora miro hacia atrás, y, nada de aquello podía compensar, de hecho no compensó nunca aquellos momentos perdidos. Que no se trata de que los perdieras tú, si no que, además, se los hicisteis perder a vuestros hijos que lo echaron de menos y, seguramente, así lo recordaran.
El Tiempo sólo marcha en una dirección: La flecha del Tiempo que sigue siempre adelante y, el momento que pasó, nunca podrá volver, si en cada momento no hacemos aquello que procede … ¡Lo perderemos para siempre! Muchos son los que, pasado el tiempo se recriminan así mismo el no haber estudiado cuando muchacho, sus vidas serían ¡tan diferentes! Otros, no dejan de pensar en aquella muchacha a la que nunca se atrevieron a expresarle su callado Amor. ¿Qué habría sido de sus vidas de haberlo hecho?
¡Menos mal que pude despertar a tiempo! ¿Cuántas escenas como ésta no habré vivido? Mirar las fotografías y contemplar los vídeos en los que,podemos volver al pasado y disfrutar del recuerdo de aquellos momentos felices… ¡No tiene precio! En todos los órdenes de nuestras vidas debemos saber dosificar los momentos y, dar a cada cual lo suyo. Hay tiempo para todo y para todos.
Así, contemplaremos el paisaje y disfrutaremos de la Naturaleza
Este viaje, aunque no se le niegue emoción… es diferente, otra cosa
No, esto no es calidad de vida. Pasarse años en esta ciudad, seguramente, acortará el tiempo que podamos estar aquí. El estrés y la agobieante de vida en una de estas ciudadades… ¡acabaría conmigo. La escena que arriba contemplamos es desquiciante y sin duda alguna hará mella en los seres que ahí tengan que estar cada día, en esa vorágine de actividad inusitada, de ruidos…
Mejor poder dejar pasar tu tiempo en una casa tranquila con un poco de jardín, en la que los fines de semana se escuche el bullicioso ruído de los más pequeños con sus juegos que te traen recuerdos de otros tiempos pasados que, de esta manera, volver a revivir en tu memoria.
Y, mientras eso ocurre, tienes la de mirar por la cristalera mientras tecleas tus ideas en ese espacio en blanco que te deja el ordenador para que, juntando las palabras, puedas expresar las cosas que por tu imaginación van pasando.
Claro que, no siempre podemos hacer realidad nuestros deseos y, todos, sin excepción, estamos supeditados a lo que la vida nos tiene deparado que, no pocas veces, es un destino que nos forjamos nosotros mismos.
emilio silvera
Ene
10
Es importante saber medir y elegir las unidades para ello
por Emilio Silvera ~ Clasificado en Física ~ Comments (1)
Extraños mundos de personajes imposibles que nos visitan en sueños y, a veces, en la Imaginación ilimitada de nuestras mentes. Los Humanos, desde que pudimos evolucionar y ser conscientes del lugar en el que estábamos ubicado dentro del contexto del Universo, no hemos dejado nunca de representar mundos de escenarios ¿imposibles? aunque sólo fuese en sueños.
Historias como el Señor de los anillos, las aventuras narradas por Julio Verne, o, incluso aquellas contadas por Asimav, Ursula Leguin y tantos otros, nos hablan de una imaginación casi tan grande como el propio universo.
¿Os acordais de la Mars Climater Orbiter? Allá por el mes de Septiembre de 1998, la NASA preparaba a bombo y platillo la gran noticia que sacudiría el “mundo” de la Prensa y las televisiones y revistas especializadas con una gran noticia. En breve (dijeron), saldría para el planeta Marte la nueva misión comocida como la Mars Climater Orbiter, diseñada para estudiar la atmósfera superior de Marte y, estaba acondicionada para poder enviarnos importantes datos sobre el clima y la atmósfera marciana. En lugar de ello, simplemente se estrelló contra la superficie marciana.
La distancia entre la nave espacial y la superficie del planeta Marte era de 96,6 kilómetros inferior de lo que pensaban los controladores de la misión, y 125 millones de dolares desaparecieron en el rojo polvo de la superficie Marte. La pérdida ya era suficientemente desastrosa, pero aún, hubo que morder más el polvo cuando se descubrió la causa: Lockheed-Martin, la empresa que controlaba el funcionamiento diario de la nave espacial, estaba enviando datos al control de la misión en unidades imperiales -millas, pies y libras de fuerza- mientras que el equipo de investigación de la NASA estaba suponiendo, como el resto del mundo científico internacional, que recibián las instrucciones en unidades métricas. La diferencia entre millas y kilómetros fue lo suficiente para desviar la nave unas 60 millas del curso previsto y llevarla a una órbita suicida hacia la suprficie marciana, en la que quedó chafada e inservible dando al traste, no ya con el objetivo propuesto (que también) sino con un montón de ilusionados componentes del equipo que esperaban grandes acontecimientos del Proyecto.
La lección que podemos obtener de catástrofe está muy clara: ¡Las Unidades de medida son importantes!
Unidades de medidas de peso
Rústica unidades de medida de líquidos
Nuestros predecesores nos han legado incontables unidades de medida de uso cotidiano que tendemos a utilizar en situaciones diferentes por razones de conveniencia. Compramos huevos por docenas, pujamos en la subasta en guineas, medimos las carreras de caballos en estadios, las profundidades oceánicas en brazas, el trigo en fanegas, el petróleo en barriles, la vida en y el peso de las piedras preciosas en quilates. Las explicaciones de todos los patrones de medida existentes en el pasado y en el presente llenan cientos de volúmenes.
Todo era plenamente satisfactorio mientras el comercio era local y sencillo. Pero cuando se inició el comercio internacional en tiempos antiguos, se empezaron a encontrar otras formas e contar. Las cantidades se median de diferente de un pais a otro y se necesitaban factores de conversión, igual que hoy cambiamos la moneda cuando viajamos al extranjero a un pais no comunitario. Esto cobró mayor importancia una vez que se inició la colaboración internacional de proyectos técnicos. La Ingenieria de precisión requiere una intercomparación de patrones exacta. Está muy bien decir a tus colaboradores en el otro lado del mundo que tienen que fabricar un componente de un avión que sea exactamente de un metro de longitud, pero ¿cómo sabes que su metro es el mismo que el tuyo?
No todas las medidas se regían por los mismos patrones
En origen, los patrones de medidas eran completamente locales y antropométricos. Las longitudes se derivaban de la longitud del brazo del rey o de la palma de la mano. Las distancias reflejaban el recorrido de un día de viaje. El Tiempo segúi las variaciones astronómicas de la Tierra y la Luna. Los pesos eran cantidades convenientes que podían llevarse en la mano o a la espalda.
Muchas de esas medidas fueron sabiamente escogidas y aún siguen con nostros hoy a pesar de la ubicuidad oficial del sistema decimal. Ninguna es sacrosanta. una está diseñada por conveniencia en circunstancias concretas.Muchas medidas de distancia se derivan antropomórficamente de las dimensiones de la anatomía humana:
El “pie” es la unidad más obvia dentro de esta categoría. Otras ya no resultan tan familiares. La “yarda” era la longitud de una cinta tendida desde la punta de la nariz de un hombre a la punta del dedo más lejano de su brazo cuando se extendía horizontalmente un lado. El “codo” era la distancia del codo de un hombre a la punta del dedo más lejano de su mano estirada, y varía entre los 44 y los 64 cm (unas 17 y 25 pulgadas) en las diferentes culturas antiguas que lo utilizaban.
La unidad náutica de longitud, la “braza” era la mayor unidad de distanciadefinida a partir de la anatomóa humana, y se definía como la máxima distancia las puntas de los dedos de un hombre con los brazos abiertos en cruz.
El movimiento de Mercaderes y Comerciantes por la región mediterránea en tiempos antiguos habría puesto de manifiesto las diferentes medidas de una misma distancia anatómica. Esto habría hecho difícil mantener cualquier conjunto único de unidades. la tradición y los hábitos nacionales era una poderosa fuerza que se resistía a la adopción de patrones extranjeros.
El problema más evidente de tales unidades es la existencia de hombres y mujeres de diferentes tamaños. ¿A quién se mide patrón? El rey o la reina son los candidatos obvios. Claro que, había que recalibrar cada vez que, el titular del trono cambiaba por diversos motivos.
La depuración de patrones de medidas comenzó de decisiva en Francia en la época de la Revolución Francesa, a finales del siglo XVIII. La introducción de nuevos pesos y medidas conlleva una cierta comvulsión en la Sociedad y raramente es recibida con entusiamo por el pueblo. Así, dos años más tarde, se introdujo el “metro” como patrón de longitud, definido como la diezmillonésima de un cuadrante de meridiano terrestre. Aunque esta es una forma plausible de identificar un patrón de longitud, es evidente que no resulta práctica a efectos de comparación cotidiana. Consecuentemente, en 1795 las unidades fueron referidas directamente a objetos hechos de forma especial.
Siempre hemos tratado de medirlo todo, hasta las distancias que nos separan de las estrellas
Sí, siempre hemos tenido que medirlo todo. Al principio, unidad de masa se tomó el gramo, definido como la masa de un centímetro cúbico de agua a cero grados centígrados. Más tarde fue sustituido por el kilogramo (mil gramos), definido como la masa de mil centímetos cúbicos de agua… Finalmente, en 1799 se construyó una barra de metro prototipo junto con una masa kilogramo patrón, que fueron depositadas en los Archivos de la nueva República Francesa. Incluso hoy, la masa kilogramo de referencia se conoce como el “Kilogramme des Archives”.
Contar la historia aquí de todas las vicisitudes por las que han pasado los patrones de pesos y medidas en todos los paises, sería demasiado largo y tedioso. Sabemos que en Francia, en 1870, cuando se creo y reunió por primera vez en Paris la Comisión Internacional del Metro, con el fin de coordinar los patrones y supervisar la construcción de nuevas masas y longitudes patrón. El Kilogramo era la masa de un cilindro especial, de 39 milímetros de altura y de diámetro, hecho de una aleación de platino e iridio, protegido bajo tres campanas de cristal y guardado en una cámara de la Oficina Internacional de Patrones en Sèvres, cerca de Paris. Su definición es simple:
El kilogrtamo es la unidad de masa: es igual a la masa del prototipo internacional del kilogramo.
tendencia hacia la estándarización vio el establecimiento de unidades científicas de medidas. Como resultado medimos habitualmente las longitudes, masas y tiempos en múltiplos de metro, kilográmo y segundos. Cada unidad da una cantidad familiar fácil de imaginar: un metro de tela, un kilogramo de patatas. esta conveniencia de tamaño testimonia inmediatamente su pedigrí antropocéntrico. Pero sus ventajas también se hacen patentes cuando empezamos a utilizar dichas unidades para describir cantidades que corresponden a una escala superior o inferior a la humana:
Los átomos son diez millones de veces más pequeños que un metro. El Sol una masa de más de 1030 kilogramos. Y, de esa manera, los humanos hemos ido avanzando en la creación, odeando patrones todos y, no digamos en la medida de las distancias astronómicas en las que, el año-luz, la Unidad Astronómica, el Parsec, el Kiloparsec o el Megaparsec nos permiten medir las distancias de galaxias muy lejanas.
Lo que decimos siempre: Nuestra curiosidad nunca dejará de querer saber el por qué de las cosas y, siempre tratará de racionalizarlo todo para hacernos fácil nuestras interacciones con el mundo que nos rodea. Y, aunque algunas cosas al principio nos puedan parecer mágicas e ilusorias, finalmente, si nuestras mentes la pensaron… ¡Pueden llegar a convertirse en realidad!
emilio silvera
Ene
10
Hawking sobre dos piernas
por Emilio Silvera ~ Clasificado en Personajes de la Historia ~ Comments (2)
Jane Hawking, primera esposa del científico, aporta en unas memorias un retrato intenso y vívido de aquellos años de formación intelectual y emocional del físico.
El científico Stephen Hawking y la escritora Jane Hawking el día de su boda, en 1965.
Poca gente quedará sobre el planeta Tierra que no esté familiarizada con la imagen de Stephen Hawking, cosmólogo, físico teórico, escritor de éxito, polemista agudo y personaje de Los Simpsons, postrado por la esclerosis lateral amiotrófica (ELA) en su silla de ruedas de alta tecnología y comunicándose con el mundo mediante un sintetizador de voz que va cambiando de software pero mantiene –por expreso deseo del usuario— su inconfundible y algo inquietante timbre robótico. La figura resulta tan familiar, de hecho, que resulta fácil olvidar que el físico fue hasta los veintipocos años una persona sana que se movía sobre dos piernas, soñaba con un futuro brillante y se enamoraba como cualquier joven, o al menos como cualquier joven educado en Oxford. Su primera mujer, Jane Hawking, nos aporta ahora un retrato intenso y vívido de aquellos años de formación intelectual y emocional. Y también de todo lo que vino después.
Hacia el infinito; mi vida con Stephen Hawking (Lumen, que llegará a librerías el 2 de enero) no es exactamente una biografía del físico, ni tampoco una autobiografía de su autora. Consciente de que la celebridad de su ex marido no cesará en décadas ni en siglos por venir, la escritora y conferenciante Jane Hawking ha decidido contar ella misma su relación con él antes de que “dentro de cincuenta o cien años alguien se inventara nuestras vidas”. Esta es la narración de la mujer que mejor conoció a Stephen Hawking durante su juventud, y la que decidió casarse con él pese a su trágica enfermedad. También es por tanto la historia de un dilema moral: uno de los más graves a los que se puede enfrentar un ser humano a lo largo de su vida.
Hawking pertenecía a una de esas familias británicas que parecen sacadas de una película de Frank Capra, excéntricas, intelectuales y despreocupadas de su imagen entre los más o menos horrorizados vecinos. El padre, el médico Frank Hawking, no solo era el único apicultor de Saint Albans, una ciudad de 60.000 habitantes, 30 kilómetros al norte de Londres, sino también el único que tenía un par de esquís. “En invierno”, narra Jane, “pasaba esquiando por delante de nuestra casa camino del campo de golf”. Los Hawking eran conocidos en Saint Albans por costumbres como la de sentarse a comer en la mesa leyendo un libro cada uno, y la abuela vivía en la habitación de la buhardilla, que tenía una entrada independiente desde la calle, y solo bajaba con ocasión de algún acontecimiento familiar o para dar un concierto de piano, instrumento del que era virtuosa.
Jane Hawking fue por primera vez a casa de los Hawking en 1962, invitada al 21 cumpleaños de Stephen, y tuvo ocasión de conocer allí a sus amigos de Oxford, que se consideraban a sí mismos “los aventureros intelectuales de su generación”, en palabras de la autora, “consagrados en cuerpo y alma al rechazo crítico de todo lugar común, a la burla de los comentarios manidos o tópicos, a la afirmación de su propia independencia de criterio y a la exploración de los confines de la mente”. Jane, una muchacha de firmes convicciones cristianas y opiniones convencionales, se sintió siempre algo abrumada por todo ese despliegue de cohetería, pero desde el principio vio en Stephen algo más que eso, una naturaleza empática e independiente de la que, casi sin darse cuenta, cayó enamorada en pocos meses.
Eddie Redmayne (Stephen Hawking) y Felicity Jones (Jane) en un imagen de ‘La teoría del todo’. / ©Focus Features/Courtesy Everett Collection (©Focus Features/Courtesy Everett Collection / Cordon Press)
La noticia llegó un sábado de febrero de 1963 de boca de su amiga Diana: “Oye, ¿os habéis enterado de lo de Stephen?”. El joven talento llevaba dos semanas en el hospital de Saint Bartholomew, porque había estado tropezando continuamente y no se podía ni abrochar los cordones de los zapatos. Los médicos le habían diagnosticado la esclerosis y le habían dado dos años de vida. Jane se quedó perpleja. “Aún éramos lo bastante jóvenes para ser inmortales”, escribe. Diana le contó que Stephen estaba muy deprimido, y que había visto morir al chico de la cama de al lado en el pabellón del hospital. Stephen se había negado a aceptar una habitación individual, fiel a sus principios socialistas. Genio y figura.
Pero el libro de Jane Hawking no tiene el tono de una tragedia, como tampoco lo ha tenido la ya larga vida de Stephen. Quienes conocen de cerca al físico se quedan indefectiblemente perplejos por un detalle: lo muy poco que le importa su discapacidad. Hawking no solo ha dejado perplejos a sus médicos por sus décadas de supervivencia a la ELA –un caso insólito para la medicina—, sino que demuestra cada día que puede llevar una vida tan normal como pueda llevar un físico teórico. Su productividad científica le sitúa en la élite de la disciplina, disfruta como cualquiera de una buena cena con los amigos, y jamás ha renunciado a su agudo sentido del humor.
La esclerosis se presentaba en aquellos primeros años con crisis alternadas con episodios de relativa normalidad, y poco después de su deprimente ingreso en el hospital de Saint Bartholomew, Jane tuvo ocasión de comprobar el estrepitoso estilo de conducción de su novio. Stephen la llevó a Cambridge en el gigantesco Ford Zephyr de su padre –un coche que había vadeado ríos en Cachemira durante la estancia india de la familia— en lo que acabó constituyendo una de las experiencias más espeluznantes a las que se había enfrentado la joven. “Parecía utilizar el volante para alzarse y ver por encima del salpicadero”, cuenta Jane. “Yo apenas me atrevía a mirar a la carretera, pero Stephen parecía mirarlo todo salvo la carretera”. Qué años aquellos.
Hay mucho más en este libro, una mirada extraordinaria a la vida de una figura aún más extraordinaria: el físico más popular de nuestro tiempo enfrentado al amor y al destino, los dos agujeros negros a los que acabamos sucumbiendo todos los miembros de esta especie paradójica.
Fuente: El Pais
Ene
9
¡El Big Bang! ¿Creador del Universo?
por Emilio Silvera ~ Clasificado en Los secretos del Universo ~ Comments (3)
Nunca estamos de acuerdo con esa certeza que buscamos para predecir la “Creación” del Universo, o, mejor, su origen. Y, para ello, buscamos incansables las pruebas que nos lleven hacia esa verdad que no hemos podido encontrar… ¡todavía! Muchos son los secretos que tendremos que desvelar antes de estar seguros de que, fue el Big Bang, el que nos trajo el Universo en el que viovimos. Y, para ello, se han llevado a cabo múltiples proyectos y se han fabricado ingenios que, enviados al Espacio, han tratado y están tratando de medir aquellas primeras radiaciones del fondo de microondas que nos digan, de una vez por todas (también con la detección de ondas gravitacionales y fluctuaciones de vacío), lo que realmente pudo pasar en aquellos primeros momentos. Nadie ha podido sondear el pasado hasta el comienzo del Tiempo y, existe una infinitesimal fracci´çon de aquel primer segundo que nos tiene a ciegas, toda vez que, nunca, la ciencia ni las matemáticas,han podido ir más allá del Tiempo de Planc.
Se han puesto hoy un par de páginas que siguen a este trabajo y que se refieren a entrevistas realizadas sobre el mismo tema a dos prestigiosos Físicos que nos hablan del Big Bang y de sus puntos de vistas al respecto. Ahora veámos lo que se cree y está asentado como cierto en la comunidad cientifica.
Hablaremos ahora del Big Bang, esa teoría aceptada por todos y que nos dice cómo se formó nuestro universo y comenzó su evolución hasta ser como ahora lo conocemos. De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.
La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.
Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica y la era hadrónica hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013 K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s después de la singularidad, cuando la temperatura era de 1028 K. Esa infinitesimal escala de longitud es conocida como límite de Planck, = 10-35 m, que en la ley de radiación de Planck, es distribuida la energía radiada por un cuerpo negro mediante pequeños paquetes deiscretos llamados cuantos, en vez de una emisión continua. A estas distancias, la Graverdad está ausente para dejar actuar a la mecánica cuántica.
Gamov, alumno de Friedmann, fue el que presentó en 1948 las bases definitivas de la teoría del Big Bang tal como la conocemos. Entre otras, predijo la radiación cosmológica de fondo.
La misión WMAP (Wilkinson Microwave Anisotropy Probe) de la NASA ha publicado los resultados de cinco años de observación de la radiación de fondo de microondas del firmamento completo. Estos resultados confirman bastante de lo que ya sospechábamos acerca de la infancia del Universo, además de alcanzar una precisión sin precedentes en las estimaciones acerca de la edad y la composición del Universo.
La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.
Abundancia de núcleos ligeros en el universo temprano
La radiación de fondo cósmica proporciona la evidencia más directa de que el universo atravesó por una fase caliente y densa. En la teoría del Big Bang, la radiación de fondo es explicada por el hecho de que durante el primer millón de años más o menos (es decir, antes del desacoplo de la materia y la radiación), el universo estaba lleno de plasma que era opaco a la radiación y, por tanto, en equilibrio térmico con ella. Esta fase es habitualmente denominada “bola de fuego primordial”.
Cuando el universo se expandió y se enfrió a unos 3000 ºK, se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas. El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival, la teoría del universo estacionario de F. Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas. Es irónico que el término Big Bang tuvo inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del universo inflacionario y defensor del estacionario.
De aquella explosión primera, surgieron todas las fuerzas que rigen hoy nuestro universo, se estabilizaron las constantes universales que le dan su sello característico, y, se formaron las primeras estrellas necesarias para que, en su hornos nucleares se crearan los materiales complejos presentes en los mundos y en los seres vivos.
Veamos que paso:
Cronología del Big Bang | ||
Era | Duración | Temperatura |
Era de Planck | de 0 a 10-43 seg. | a 10-34 K |
Era de radiación | de 10-43 a 30.000 años | desde 10-34 a 104 K |
Era de la materia | de 30.000 años al presente (13.500.000.000 años). | desde 104 a 3 K actual |
Para fijar más claramente los hechos se debe extender la explicación evolutiva del universo en las fases principales que son las eras reseñadas en el recuadro de arriba, su duración y temperatura.
Primera forma de la materia, los primeros átomos. Pero, expliquemos algo más sobre las Eras en el proceso del Big Bang:
Está claro que las estrellas y los planetas no se formaron de hoy para mañana, el proceso fue algo más largo y, las primeras estrellas aparecieron a los doscientos mil años después del Big Bang, y, con ellas, se fueron formando también los primeros planetas. Más tarde se confromaron las galaxias que agruparon estrellas y material interestelar por la fuerza de gravitatoria.
De la materia
Es la era que comenzó cuando el efecto gravitacional de la materia comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.
Aún colean los últimos éxitos del acelerador de partículas por excelencia y ya ha vuelto a dar el campanazo con su reciente experimento, una recreación a escala de lo que sucedió en los orígenes del Universo. Se han utilizado los iones de plomo para alcanzar este logro. Un metal poco glamuroso en comparación con otros más caros pero que posee la cualidad de ser uno de los más pesados.
Como no dejamos de indagar sobre lo que pudo pasar en aquellos primeros momentos, en el CERN, tras los innumerables problemas de puesta a punto, etapa que quedó atrás y los científicos se muestran muy ufanos con el funcionamiento del acelerador desde que comenzaron los experimentos una vez reparadas las averías. La sorpresa que nos traen los responsables del LHC sitúa a este aparato de nuevo en la cúspide de la carrera de la física por alcanzar los misterios de la creación. Los expertos han hecho colisionar iones de plomo a alta velocidad con el resultado de una violenta generación de calor que supera en 1 millón de grados la temperatura que existe en el centro del Sol. Las primeras colisiones se registraron a las 00.30 hora local (Suiza) del Domingo día 7 de Noviembre pasado.
Según el CERN estos experimentos con iones de plomo abren “una nueva vía en la investigación del programa del acelerador para sondear la materia tal como era en los primeros instantes del Universo, justo después del Big Bang”. Aclaran que “uno de los principales objetivos de esta nueva fase es producir cantidades ínfimas de esta materia, llamada “plasma quark-gluon y estudiar su evolución hacia aquella que constituye el Universo actualmente”. Hace tan sólo 4 días que terminaron los experimentos con protones, cuyo trabajo no tiene nada que ver con lo realizado con los iones de plomo (átomos de plomo a los que se le han eliminado los electrones). Sin embargo, los responsables del LHC se muestran contentos con el funcionamiento del aparato pues afirman que “la rapidez en la transición hacia las colisiones de iones de plomo supone un síntoma de madurez del LHC”.
Los iones de plomo pueden alcanzar una aceleración brutal de 287 teraelectrovoltios (TeV), muy por encima de lo que pueden llegar los protones. Para el director general del CERN, Rolf Heuer, esto no supone ningún problema porque dice que “la máquina funciona como un reloj justo después de varios meses con la misma operación”. El acelerador seguió con su experimentación de colisiones de iones de plomo hasta el día 6 de Noviembre, fecha en la que realizó una parada técnica para tareas de mantenimiento y revisión. En Febrero de 2011 reanudó sus trabajos y seguirá trayendo nuevas sorpresas, a tenor de la enorme fiabilidad de que ha hecho gala estos últimos meses.
Traigo aquí este breve comentario sobre tareas que se están realizando en el LHC para, haceros ver que, siempre estamos tratando de ahondar en el saber de la amteria y lo que pudo pasar en aquellos primeros momentos de la creación.
El Tiempo de Plank nos lleva hacia la
Era de la Radiación
Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación.
La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual las partículas lentas dominaron la expansión del universo.
Era hadrónica
Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.
Ahora, como todos sabeis, en el LHC se están preparando para contiinuar las pruebas con una capacidad de energía del doble a la que hasta el momento han utilizado para encontrar el Bosón de Higgs. Con estas energías, seguramente, aparecerán nuevas partículas y… ¡Y muchas cosas más! Seguramente nos descubrirán secretos de la Naturaleza que están escondidos en el corazón de la materia y, ¡Por qué no? también se podría dar el caso de que, por fín, se pueda saber si realmente existe esa dichosa “materia oscura” de la que tanto suelene hablar sin tener ni idea de que pueda ser. Otra posibilidad que está en el aire, será que sea el LHC, o, en último caso su sucesor el ILC, el que nos diga de una vez por todas si realmente existío un Big Bag.
Bueno, esa es una de las incognitas que se quiere desvelar
Era Leptónica
Intervalo que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones se unieron a los hadrónes para formar átomos.
Así se formó nuestro universo, a partir de una singularidad que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas, y a partir de ese mismo instante conocido como Big Bang, nacieron, como hermanos gemelos, el tiempo y el espacio junto con la materia que finalmente desembocó en lo que ahora conocemos como universo.
El universo es el conjunto de todo lo que existe, incluyendo el espacio, el tiempo y la materia. El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein–de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.
Los telescopios espaciales de la NASA han captado, a 62 millones de años luz de la Tierra, una colisión de dos galaxias que comenzó hace 100 millones de años y aún continúa. La espectacular imagen publicada por la agencia espacial ha sido obtenida combinando las las tomadas por las cámaras del Observatorio de rayos X Chandra, el Telescopio Espacial Hubble y el Spitzer.
El universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Existe evidencia creciente de que el espacio puede estar lleno de una materia oscura invisible que puede constituir muchas veces la masa total de las galaxias visibles.
Este gráfico de Shalafi nos muestra algunas características que se podrían dar en los universos. Algunos colapsan muy pronto, otros se pueden expandir demasiado rápidos, y, otros, como el nuestro, consiguen el ritmo adecuado para que se puedan formar las galaxias y estrelas que posibilitan la presencia de la vida en un sin fin de mundos, y, todo eso, hizo posible que pudiéramos llegar a efectuar proezas como la que podemos contemplar más abajo
¿Hasta donde podremos llegar? Mucho dependerá de nuestras aptitudes y decisiones
Como ya quedó claro antes, el concepto más favorecido de origen del universo es la teoría del Big Bang, de acuerdo con la cual el universo se creó a partir de una densa y caliente concentración enorme de materia (una singularidad) en una bola de fuego que explotó y se expandió para crear el espacio, el tiempo y toda la materia que lo conforme. Todo ello ocurrió, según los datos de que se disponen, hace ahora aproximadamente 15.000 millones de años, o 15 eones (109).
El universo se formó y apareció el tiempo, el espacio y la materia. Mucho después, en un planeta insignificante en el contexto del inemnso Universo, pudimos surgir nosotros que, como observadores, podemos constar todo aquello que vamos descubriendo de esa Naturaleza maravillosa que, con cada nuevo paso hacia adelante que podemos dar, no podemos por menos que asombrarnos ante tanta grandeza y perfeccción. Es lo que dice la teoría que antes hemos descrito. Sin embargo, hay muchas cuestiones que, por lo menos a mí, no han quedado claras y me llevan a preguntas tales como:
Muchas son aún, las cosas que no sabemos, y, nuestra enorme ignorancia nos lleva a formular preguntas que nadie sabe contestar
- ¿Qués es, en realidad, la materia?
- ¿Tiene un final, un borde el Universo?
- ¿Que misterio esconde el hecho de que, a partir de la “materia inerte”, podamos estar nosotros aquí?
- ¿Cómo pueden desarrollar las estrellas transformaciones de fase tan perfectas en la materia, hasta conseguir los materiales complejos necesarios para la vida?
- Si el Universo es igual en todas sus regiones por muy alejadas que estén, daremos por supuesto que existe vida similar o parecida a la nuestra en otros mundos lejanos, y, si eso es así, ¿por qué nadie aún, en tanto tiempo, no se ha puesto en contacto con nosotros?
- Definitivamente, ¿Estamos en un Universo abierto, cerrado y curvo, o, como decía Einstein plano e infinito?
- ¿Existe la materia oscura? Seguramente sin ella no podrían haberse formado las primeras estrellas y galaxias.
- ¿Qué hay en ese mal llamado vacío?
Bueno, la lista de preguntas sería interminable. ¡Es tan grande nuestra ignorancia!
emilio silvera