viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Sirve realmente orar pidiendo alguna cosa?

Autor por Emilio Silvera    ~    Archivo Clasificado en Las religiones    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

El Amigo Nelson, hace algún tiempo ya,  me envió un Correo (como otros muchos) que me llamó la atención y, habiéndolo encontrado ahora,  aquí os lo dejo para que saqueis vuestras propias conclusiones.

Preparativos para la celebración sagrada

Imagen de la Agencia EFE

Una reportera escuchó hablar de un anciano judío que había estado yendo a orar al Muro de los Lamentos durante muchos años, todos los días, sin faltar uno. Así que fue para allí a comprobarlo. Identificó al hombre fácilmente mientras se acercaba al Muro de los Lamentos.

Lo observó mientras oraba.

Después de 45 minutos y cuando el viejito se estaba dando vuelta para irse, ella se acercó para hacerle una entrevista.

“Discúlpeme, señor. Soy Rebecca Laskowsky, reportera. ¿Cuál es su nombre?”.

“Morris Fishbein,” respondió el hombre.

“¿Cuánto tiempo ha venido usted, señor, al Muro de los Lamentos?”.

“Alrededor de 60 años”.

“¡60 años! ¡Es asombroso! ¿Y por quién ó por qué reza?”.

“Rezo por la paz entre cristianos, judíos y musulmanes.”

“Rezo porque terminen todas las guerras y los odios entre la gente.”

“Rezo para que los niños crezcan como adultos responsables, amando a sus semejantes”.



“Rezo porque no haya pobres en el mundo, aunque para ello no tengan que haber ricos”

“¿Y cómo se siente usted después de estos 60 años?”


” ¡¡¡Como si le hubiera estado hablando a una pared!!!”

¡La Condición Humana! ¿Cuándo seremos conscientes para saber que, lo que queramos alcanzar tendrá que ser mediante el propio esfuerzo? Son muchas las personas que encuentran consuelo en la oración y en asistir a las celebraciones religiosas, no importa de qué religión se trate, ellos tienen allí sus creencias y, lo cierto es que, en momentos de dificultad, les ayuda a sobreponerse y pasar los malos tragos que la vida nos hace pasar. Eso, amigos, hay que respetarlo y de jar que las personas, en linbertad, elijan su forma de vida y cómo quieren llevarla, tanto en lo político como en lo religioso lo debemos respetar.

Claro que, pedir a la divinidad que te toque la loteria sin comprar el décimo… ¡Es dificil que se cumpla! Con esta metáfora me refiero al hecho cierto de que, nuestra realidad es la de tener que ganarlo todo con el esfuerzo o el ingenio, ya que, cada persona estará dotada con diferentes cualidades que son las que emplea para pasar la vida.

Particularmente, siendo persona muy apegada a la Ciencia… ¡No creo en divinidades ni en milagros! Pero, eso sí, respeto a los que piensan lo contrario.

Si echamos una mirada hacia atrás en la Historia de la Humanidad, ¿Que consecuencias podemos obtener de lo que se ha obtenido de la religión?

emilio silvera

¡El maldito dinero! En qué mala hora se inventó

Autor por Emilio Silvera    ~    Archivo Clasificado en El maldito dinero    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Anverso - Billete 10 centavos de Peso Moneda Nacional (Argentina).png

Si miramos un diccionario y queremos saber lo que es “ese mal del mundo”, nos dirá: “Dinero (del latín denarius, denario, moneda romana) es todo medio de intercambio común y generalmente aceptado por una sociedad que es usado para el pago de bienes (mercancías), servicios,  y de cualquier tipo de obligación (deudas). Actualmente, el tipo de dinero que manejamos en el día a día es dinero fiduciario.

En el neolítico con la aparición de la agricultura y la ganadería, apareció la primera economía de producción y se produjo un excedente; una cantidad de bienes que no necesitan ser consumidos. Esto dio lugar a la posibilidad de alimentar a personas que no necesitaban trabajar la agricultura o la ganadería y podían dedicarse a producir otros productos, como la cerámica, e intercambiarlo por el excedente producido. Ello permitió la primera forma de comerciar, el trueque,  intercambiando directamente bienes y servicios por otros. Con el tiempo, esta forma de intercambio se consideró ineficiente y se puede explicar con el siguiente ejemplo:

Desde el neolítico, en las sociedades agrícolas-ganaderas, el hombre ha intercambiado los bienes obtenidos como fruto de su trabajo productivo por otros. De ese modo, el que había recolectado frutos de la tierra en un determinado momento podía desear cambiar parte de ellos por ejemplo por pieles. Así surgió el trueque. El problema es que, en ese momento, los intercambios dependían de la demanda de cada individuo en cada momento, siendo un trámite lento y difícil adaptarse a las urgencias inmediatas de cada individuo.

En el ejemplo planteado, es posible que el cazador que tenía las pieles no desea frutos de la tierra sino bastones de madera. La tarea del trueque podía resultar ardua, ya que en primera instancia, el recolector de frutas requeriría encontrar a alguien dispuesto a cambiar las frutas por madera, para ir posteriormente a cambiar ésta por las pieles. En algún momento pudo suceder que el recolector de frutas diera las frutas al que poseía bastones de madera, y le pidiera una nota equivalente al valor de las frutas; y luego pudo haber ido con esta nota junto al dueño de las pieles, pidiendo le cambiaba ese documento (el cual tenía un valor en madera) por pieles, pues más tarde podría reclamar la madera al emisor de la nota (al dueño de la madera). Y probablemente, en esa hipotética situación, el poseedor de las pieles pudo haber recibido la nota y no ir luego a canjearla por bastones de madera, sino usarla para con ella obtener algún otro bien o servicio en otro lugar. Obviamente, en algún momento la nota pudo haber regresado a su emisor original a efectos de cambiarla finalmente por los bastones de madera. Pero también pudo haber sucedido, que algunas notas muy especiales nunca hubieran regresado a su emisor original, y quedaran circulando por un muy largo tiempo en el circuito de los intercambios hasta su eventual destrucción o hasta su eventual pérdida de valor, cumpliendo así una función monetaria; esto bien pudo haber pasado con notas de entrega de metales emitidas por personas en lo alto de la estratificación social, como reyes o faraones.

Al final, acabaron apareciendo ciertos bienes que son más fácilmente intercambiables que otros, de forma que los individuos los demandan, no por su utilidad, sino por su especial capacidad para circular por el mercado, para servir de moneda de cambio. O sea en definitiva, por su liquidez. Un claro ejemplo serían los cigarrillos en el ambiente carcelario, que serían utilizados incluso por los no fumadores para cambiar por otros bienes, o los chocolates en Europa después de la Segunda Guerra Mundial, producto que por su aguda escasez sirvió informalmente para niños y adultos como moneda de cambio de otros bienes. Estos ejemplos ilustran que estas circunstancias permiten el intercambio de bienes y servicios. Y en las civilizaciones más próximas a la actualidad, esa especie de aceptación generalizada es el dinero, que facilita las transacciones comerciales de una manera más fácil y sencilla que el trueque, favoreciendo de este modo la expansión del comercio.

Cada cual entregaba lo que tenía a cambio de lo que el otro le daba, ambos lograban su objetivo: Adquirir lo que le hacía falta

Naturalmente, el dinero que fue usado en sus inicios, desde el neolítico, no fue como hoy lo conocemos. Distintas civilizaciones adoptaron distintos bienes para suplir con ellos la función de dinero: alimentos, conchas, metales, plumas, piedras preciosas, etc.

Con el paso del tiempo, el oro y la plata fueron ampliamente usados como dinero debido a que su valor es aceptado mundialmente, y también debido a la facilidad de transporte, a las ventajas de la conservación, etcétera. Para garantizar o certificar que un trozo de metal o moneda contenía una cierta cantidad de oro y/o plata, se comenzó la acuñación, a modo de garantía o certificación, por parte de entidades reconocidas y respetadas (reinos, gobiernos, bancos), que avalaban el peso y la calidad de los metales que contenían.

Las primeras monedas que se conocen, se acuñaron en Lidia, la actual Turquía en el Siglo VII a. C.

El Origen De La Moneda Desde El Trueque A Bizancio

El Origen De La Moneda Desde El Trueque A Bizancio

 

Monedas de un tercio de estátera, acuñadas a principios del siglo VI a. C. Según todos los indicios, Lidia puede ser el primer lugar donde se acuñó moneda, antes incluso que en China o India. Esas primeras monedas datan del reinado de Giges, en la segunda mitad del siglo VII a. C., hacia el 620 a. C.,8 e incluso antes, durante el reinado de Ardis II (652-621 a. C.). Los conocimientos actuales se apoyan en los hallazgos de monedas de electro u oro blanco, cuyos yacimientos principales se hallan en Éfeso,  en la costa de Asia Menor.

De acuerdo con Heródoto,  el pueblo lidio fue el primero en introducir el uso de moneda de oro y plata, y también el primero en establecer tiendas de cambio en locales permanentes. Se cree que fueron los primeros en acuñar monedas estampadas, durante el reinado de Giges, en la segunda mitad del siglo VII a. C. Otros numismáticos remontan la acuñación a Ardis II. La primera moneda fue hecha de electro (aleación de oro y plata), con un peso de 4,76 gramos, para poder pagar a las tropas de un modo regulado. El motivo del estampado era la cabeza de un león, el símbolo de la realeza. El estándar lidio eran 14,1 gramos de electrón, y era la paga de un soldado por un mes de servicio; a esta medida se le llamó estátera.

                                                                                            Monedas romanas

Fue necesaria una evolución en la cual los Estados emitían billetes y monedas, que daban derecho a su portador a intercambiarlos por oro o plata de las reservas del país. La evolución del respaldo del papel moneda es el siguiente:

  • En los siglos XVIII y XIX, muchos países tenían un patrón de dos metales, basado en oro y plata.
  • Entre 1870 y la Primera Guerra Mundial se adoptó principalmente el Patrón oro,  de forma que cualquier ciudadano podría transformar el papel moneda en una cantidad de oro equivalente.
  • En el periodo entre guerras mundiales se trató de volver al Patrón oro, si bien la situación económica y la crisis o crak del 29 terminó con la convertibilidad de los billetes en oro para particulares.
  • Al finalizar la Segunda Guerra Mundial,  los aliados establecieron un nuevo sistema financiero en los acuerdos de Bretton Woods, en los cuales se establecía que todas las divisas serían convertibles en dólares estadounidenses y sólo el dólar estadounidense sería convertible en lingotes de oro a razón de 35 dólares por onza para los gobiernos extranjeros.
  • En 1971, las políticas fiscales expansivas de los EE.UU., motivadas fundamentalmente por el gasto bélico de Vietnam, provocaron la abundancia de dólares, planteándose dudas acerca de su convertibilidad en oro. Esto hizo que los bancos centrales europeos intentasen convertir sus reservas de dólares en oro, creando una situación insostenible para los EE.UU. Ante ello, en diciembre de 1971, el presidente de EE.UU., Richard Nixon, suspendió unilateralmente la convertibilidad del dólar en oro para el público y devaluó el dólar un 10%. En 1973, el dólar se vuelve a devaluar otro 10 %, hasta que, finalmente, se termina con la convertibilidad del dólar en oro también para los gobiernos y bancos centrales extranjeros.
  • Desde 1973 hasta nuestros días, el dinero que hoy usamos tiene un valor que está en la creencia subjetiva de que será aceptado por los demás habitantes de un país, o zona económica, como forma de intercambio. Las autoridades monetarias y Bancos Centrales no pretenden defender ningún nivel particular de tipo de cambio, pero intervienen en los mercados de divisas para suavizar las fluctuaciones especulativas de corto plazo, con el objetivo de mantener a corto plazo la estabilidad de precios, y evitar situaciones como la hiperinflación, que hacen que el valor de ese dinero se destruya, al desaparecer la confianza en el mismo, o como la deflación.

 

 

Lo cierto es que, el invento del dinero no siempre ha sido positivo para la Sociedad que, de alguna manera, se ha visto siempre supeditada a la manipulación de unas pocas familias de banqueros que en el mundo lo mueven todo. Ellos son los que rigen el destino de los pueblos y más allá de los Gobiernos, manejan el destino de muchas personas que se ven inmersas en el vaiven que ellos imponen. Son gente que están al margen de la realidad del pueblo llanao (por el que no sienten nada y sólo lo consideran como un vehículo para poder enriquecerse más, mientras éstos, los del pueblo, cada día son más pobres, trabajan m´ças y tienen menos), su realidad es otra muy diferente a nuestra realidad, viven en “otro mundo” y lo único que prima es el beneficio. Tienen bien montado sus tinglados y crean fundaciones para dar la sensación de que buena parte de las ganancias van a inversiones de naturaleza social, cuando la puera realidad es muy otra (no pagar impuestos) y, los beneficios sólo son empleados en crear más beneficios a costa de lo que sea.

Pero nosotros… ¿Qué podemos hacer?

emilio silvera

 

El futuro incierto, el mundo del mañana.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Futuro incierto    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia de los Materiales
Más Oscuro Que el Color Negro

Foto: Chris Gunn/NASA“Un equipo de ingenieros de la NASA desarrolla actualmente un material más oscuro que el color negro y que ayudará a que los científicos logren realizar mediciones científicas difíciles de llevar a cabo, o consigan observar objetos astronómicos que hoy es difícil o imposible discernir, como por ejemplo planetas semejantes a la Tierra en órbita alrededor de otras estrellas.

El material ultraoscuro, basado en la nanotecnología, está siendo desarrollado por un equipo de diez expertos del Centro Goddard de Vuelos Espaciales de la NASA, en Greenbelt, Maryland.

Se trata de un delgado recubrimiento de nanotubos de carbono de pared múltiple, diminutos tubos huecos de carbono puro, aproximadamente 10.000 veces más delgados que un cabello humano. Los nanotubos tienen una multitud de usos potenciales, particularmente en la electrónica y en el campo de los materiales avanzados, gracias a sus propiedades eléctricas únicas y a su extraordinaria robustez. Pero en esta nueva aplicación, la NASA está interesada en usar la nanotecnología para ayudar a suprimir la luz errante que interfiere en las mediciones hechas con instrumental óptico.”

Lo que debe quedarnos claro es que, cada día, avanzamos un poco más en todas las disciplinas del saber humano y, más rápidamente de lo que algunos puedan suponer, nos estamos preparando para un futuro que está a la vuelta de la esquina.

¿Qué dirían nuestros ancestros de los móviles y de las múltiples aplicaciones que pueden ser aplicadas para realizar funciones asombrosas? Como ha pasado con Internet, el mundo de los teléfonos móviles ha desbordado cualquier previsión que pudiera haberse formalizado de las espectativas de futuro. Cada día, sentado cómodamente en el salón de casa, puedo hablar con mi hija María que está en México por razones de trabajo. Es algo que, aunque seámos de este tiempo, no deja de asombrarnos también a nosotros.

Muchos van siendo los logros que todos los campos vamos conquistando y, tanto en nuestro planeta como en el Espacio Interestelar, en el Universo, se van logrando victorias que, en un futuro lejano serán imprescindibles para la continuidad de nuestra especie.

Los cinco grandes descubrimientos de la Física de los últimos 25 años
   Se consiguió el teletransporte que  ya es posible en el mundo cuántico… ¡Sólo es cuetión de Tiempo! Acordáos, en 2012, un equipo internacional de científicos logró teletransportar fotones a través de 143 kilómetros de distancia, rompiendo todos los registros anteriores. Además, un grupo de físicos israelíes ha anunciado que ha conseguido entrelazar dos fotones que nunca habían coincidido en el tiempo, esto es, que existieron en momentos diferentes.
La construcción de un ingenio que nos lleve de un lado a otro del Universo burlando la velocidad de la luz, como ocurre en Star Trek, está aún muy lejos de hacerse realidad, pero el teletransporte ya es posible en el mundo cuántico, ese universo extraño que rige el comportamiento de lo diminuto, las moléculas y los átomos, y en el que es posible que ocurran cosas tan mágicas como estar en dos sitios a la vez.
Computación cuántica
Computadoras con velocidad y capacidad descomunales o materiales con “superpoderes” son algunas de las tecnologías desarrolladas a partir de los hallazgos más importantes de la física contemporánea. Son muchos los avanzas que han sido realizados en el campo de la Física y costaría trabajo elegir algunos como los mejores. ¡Todos tienen una importancia enorme!
bec_20021007.jpg
La creación del primer condensado de Bose-Einstein (1995): El quinto estado de agregación de la materia (los tres más conocidos son sólido, líquido y gaseoso, y el cuarto es el plasma) se produce a temperaturas que se aproximan al cero absoluto. Los átomos se fusionan a baja energía, y comienzan a comportarse como ondas, y no como partículas. A su descubrimiento se le auguran varias aplicaciones: instrumentos de medición y relojes atómicos más exactos, y la capacidad de almacenar información en las futuras computadoras cuánticas. Su creación en laboratorio reforzó las teorías cuánticas fundamentales desarrolladas por el Premio Nobel de Física Enrico Fermi sobre el comportamiento y la interección de los electrones.
La aceleración de la expansión del Universo (1997): Las evidencias de una misteriosa fuerza antigravitatoria, la “energía oscura”, que causa la expansión del Universo a un ritmo cada vez más veloz confirmaron una idea originalmente propuesta -y descartada- por Albert Einstein. Este descubrimiento sacudió las bases de la cosmología observacional y supuso un gran avance en la comprensión de la evolución y el destino final del cosmos, al constatar que está dominado por energía, no por materia.
neutrinos
La prueba de que los neutrinos tienen masa (1998): La evidencia de la ínfima masa de los neutrinos es un paso clave para entender mejor a una de las partículas subatómicas más enigmáticas del modelo estándar –la teoría que describe las interacciones y las partículas elementales de toda la materia– y su relación con la cosmología y la astrofísica. Miles de millones de minúsculos neutrinos nos atraviesan cada segundo, sin tocar nada ni dejar rastro. Pero son esenciales en todos los átomos que existen y tienen la clave para entender lo que hace funcionar al Sol.
Colisión de particulas
El bosón de Higgs (2012): Esta partícula elemental fue propuesta en teoría en 1964 por Peter Higgs para explicar la razón de la existencia de masa en las partículas elementales. Sus rastros físicos fueron descubiertos por científicos de la Organización Europea para la Investigación Nuclear (CERN) en el Acelerador de partículas LHC y, ha hecho posible que uno de los parámetros aleatorios del Modelo Estándar (la masa de las partículas), se confirmara para perfeccionar lo que sabemos que, en no pocos casos, son intuiciones no confirmadas.
     Cinco tecnologías que cambiarán el mundo
– Terapia de hadrones: puede tratar tumores con un acelerador de partículas en miniatura, controlado desde un tablero.
Computación cuántica: permite simular y crear modelos moleculares de nuevos fármacos.
Grafeno: es importante para la electrónica y la creación de materiales muy resistentes.
Superlentes nanoscópicos: capaces de producir imágenes a partir de luz evanescente.
Recolección de energía cinética: energía portátil basada en la triboelectricidad o electrificación por contacto de materiales.
Como estamos aquí y todo ocurre a nuestro alrededor, estando como estamos inmersos en nuestros pequeños problemas cotidianos, no prestamos o prestamos poca atención a lo que realmente está pasando ¡ahora mismo! en los miles de laboratorios del mundo, en las investigaciones que sobre la materia y el Universo mismo se están realizando y, de los muchos inventos y nuevos ingenios que se están logrando. En menos de 50 años, nuestro mundo, será “otro mundo”.
Nadie ha podido nunca predecir el futuro que, por su naturaleza intrínseca, es y será siempre incierto. Sin embargo, nadie puede negar que no son pocas las cuestiones y los hechos que ahora están aquí con nosotros y que, hace tan sólo unos décadas, eran simples predicciones. Es decir, sí que podemos intuir, en parte, lo que podrá pasar.
Nos estamos preparando para poder tocar, aunque sea con la punta de los dedos, la naturaleza de ese “universo oscuro” que presentimos.

¿Qué es el tiempo? ¿Lo sabremos alguna vez?

 

 

 

 

 

¿La vida en la Tierra es un fenómeno único? Seguramente no, las probabilidades son muchas para que sea al contrario. Sin embargo… ¡las distancias!

 

 

Dicen que la gravedad cuántivca subyace en la teoría de cuerdas pero… ¿Podremos unificar la mecánica cuántica y la gravedad?

 

 

¿Podemos explotar las rarezas de la mecánica cuántica? ¿Cómo es posible que se produzca el entrelazamiento cuántico? Es cierto que casi todos los avances actuales de la Física, son fruto de la aplicación de la física cuántica, así los ordenadores cuánticos, el teletransporte del que antes se habló y muchos otros, tienen su origen en este fenómeno cuántico que no es bien conocido de todos.

 

 

¿Qué es el entrelazamiento cuántico?

 Esta propiedad, cuyo término fue introducido en 1935 por Schrödinger (el del famoso gato que lleva su nombre), es un proceso en el que una sola función de onda describe dos objetos separados. Se da la particularidad de que estos dos objetos comparten una misma existencia, como si estuvieran unidos por un cordón umbilical invisible o una onda que, en teoría, se puede propagar por todo el universo.
Ahora amigos, me despido después de haber dejado aquí unas cuantas cuestiones para que os hagan pensar. Ya sabéis, “No solo de Pan vive el Hombre!
Feliz fin de semana.
emilio silvera

Esos diminutos objetos que conforman la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

El electrón es poseedor de una carga eléctrica negativa; y, al girar el electrón sobre su propio eje genera un campo magnético que denominamos espín. El espín proporciona una medida del momento angular intrínseco de toda partícula. Añadiendo el espín como un cuarto número cuántico, se logró dar una explicación más completa de las características de los espectros de átomos que poseen un solo electrón. Actualmente, la existencia del espín del electrón está confirmada por muchos resultados experimentales. Pronto, el concepto de espín se amplió a todas las partículas subatómicas, incluidos los protones, los neutrones y las antipartículas.

Así, las interacciones magnéticas y la dupliidad de muchas líneas espectrales (estructura fina), son los efectos atribuidos a la existencia de ese momento magnético (el momento del espín), que surge debido al movimiento de rotación del electrón alrededor de su eje. El momento angular de rotación no puede cambiar de ninguna manera, que que forma parte intrínseca de la particula como una propiedad más, como lo son la masa o su carga eléctrica. El momento cuántico del espín (s) del electrón tiene valores de ±½.

 

En concreto, cuando se realiza una medición del espín en diferentes direcciones, sólo se obtienen una serie de valores posibles. que son sus posibles proyecciones sobre esa dirección. Por ejemplo, la proyección del momento angular de espín de un electrón, si se mide en una dirección particular dada por un campo magnético externo, puede resultar únicamente en los valores \hbar/2 o bien -\hbar/2.

El valor de espín está cuantizado, lo que significa que no pueden encontrarse partículas con cualquier valor del espín, sino que el espín de una partícula siempre es un múltiplo entero de \hbar/2 (donde \hbar es igual a h la constante de Planckdividida entre 2\pi.

 Kronig  Goudsmit  Uhlenbeck
Ralph Kronig, físico alemán (1904-1996)
Samuel Goudsmit, físico holandés (1902-1978)
George Uhlenbeck, físico holandés (1900-1988)

Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.

 http://farm5.static.flickr.com/4140/4745204958_afd02b2486.jpg

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

 

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.

Los bosones tienen un momento angular nh/2π, donde n es cero o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

 

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

 

               El principio de exclusión de Pauli y el cuarto número cuántico, el spin

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma  un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

 

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en  definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.

 

Los investigadores, de la organización europea de investigación nuclear (CERN), lograron atrapar 38 átomos de hidrógeno de antimateria en una fracción de segundo, un tiempo que permite comenzar a estudiar su estructura. Esto supone un hito histórico ya que, según explica el especialista en Ciencia de la BBC, Jason Palmer, pese a que antes se había logrado producir antihidrógeno, en las ocasiones anteriores se destruyó inmediatamente al entrar en contacto con la materia.

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.

No parece que dichas observaciones fuesen un éxito. ¿Es posible que el universo esté formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalente en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaría la otra, y el universo debería estar compuesto de iguales cantidades de la una y de la otra.

 

 En la prensa pudimos leer la noticia:

“Un grupo de investigadores de la Universidad de Syracusa acaba de anunciar una serie de importantes hallazgos sobre una extraña partícula subatómica, el mesón Bs, que podrían explicar por qué el Universo contiene mucha más materia que antimateria.

La cuestión de la “antimateria perdida” ha intrigado a los Físicos durante décadas. Según predicen los modelos vigentes, durante el Big Bang tuvo por fuerza que producirse una cantidad igual de materia que de antimateria. Pero en la actualidad todo lo que vemos a nuestro alrededor está hecho de materia. ¿Dónde está, pues, la antimateria que falta?

Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.

Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado, de la composición de la materia en lugares lejanos del universo. “Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible”. Este comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad (un material desconocido), sin embargo, no porque la nave esté construida por una materia distinta, sino porque la aleación es distinta y más avanzada a partir de los materiales conocidos del universo. En cualquier parte del universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte. Lo único que puede diferir es la forma en que se utilice, el tratamiento que se le pueda dar, y sobre todo, el poseer el conocimiento y la tecnología necesarios para poder obtener el máximo resultado de las propiedades que dicha materia encierra, porque, en última instancia, ¿es en verdad inerte la materia?

 

                 El saludo los destruiría a los dos

Tiene y encierra tantos misterios la materia que estamos aún a años luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como transuránicos.

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).

 

          Al fin se pudo conseguir imágenes de los electrones en distintas modalidades y, cada día, este pequeño objeto va teniendo menos secrtetos

Aunque el electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1.940), el problema de su estructura, si la hay, aún no está resuelto. Conocemos su masa y su carga negativa que responden a 9’1093897 (54) × 10-31 Kg la primera, y 1’60217733 (49) × 10-19 culombios la segunda, y también su radio clásico r0 igual a e2/(mc2) = 2’82 × 10-13 cm. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea la que fuese (sabemos cómo actúa y cómo medir sus propiedades, pero aún no sabemos qué es), que tenga asociada un mínimo de masa.

Lo cierto es que el electrón es una maravilla en sí mismo. El universo no sería como lo conocemos si el electrón fuese distinto a como es; bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

¡No por pequeño se el insignificante!

Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tiene asociada ninguna masa en absoluto, es decir, ninguna masa en reposo. Por ejemplo, las ondas de luz y otras formas de radiación electromagnética se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*). Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda, se denomina fotón, de la palabra griega que significa “luz”.

 

Funciones de onda del electrón en el átomo de hidrógeno

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma de que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este término se reserva para la familia formada por el electrón, el muón y la partícula tau, con sus correspondiente neutrinos: υe, υμ y υτ.

 

                                                                          Emitiendo fotones de luz

Existen razones teóricas para suponer que cuando  las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitaciones. Esas ondas pueden, así mismo, poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La forma gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón, y por tanto, ha de ser inimaginablemente difícil de detectar.

emilio silvera

¿Viajes en el Tiempo? ¡Otro sueño de la Humanidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al pasado    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En cromodinámica cuántica, la propiedad de libertad asintótica hace que la interacción entre quarks sea más débil cuanto más cerca están unos de otros (confinación de quarks) y la fuerza crece cuando los quarks tratan de separarse, es la única fuerza que crece con la distancia. Los quarks y los gluones están confinados en una región cuyo valor se define por:

R » ћc /L » 10-13 cm

Poder contemplar Quarks libres sólo podría haber sido posible en aquellos primeros momentos, antes de la formación de los hadrónes. En realidad, la única manera de que pudiéramos observar quarks libres, sería en un ambiente con la temperatura del universo primitivo, es la temperatura de desconfinamiento.

Ahora se cree que el Big Crunch nunca se producirá y que la muerte del Universo será térmica, es decir, una temperatura del cero absoluto que lo paralizará todo, ni los átomos se moveran en ese frío de muerte que dejará un universo congelado donde ni brillaran las estrellas ni estará presente ninguna clase de vida.

En la parte anterior de este mismo trabajo,  estaba hablando del Big Crunch y me pasé a otro (los quarks), así que cerremos este capítulo del Big Crunch que está referido a un estado final de un universo cerrado de Friedmann  (es decir, uno en el que la densidad excede a la densidad crítica). Dicho universo se expande desde el Big Bang inicial, alcanza un radio máximo, y luego colapsa hacia un Big Crunch, donde la densidad de la materia se vuelve infinita después de que la gravedad haga parar la expansión de las galaxias que, lentamente al principio, y muy rápidamente después, comenzarán a desplazarse en sentido contrario, desandarán el camino para que toda la materia del universo se junte en un punto, formado una singularidad en la que dejaría de existir el espacio-tiempo. Después del Big Crunch debería haber otra fase de expansión y colapso, dando lugar a un universo oscilante.  universo que se va y universo que viene.

Pero, ¿y nosotros?, ¿qué pintamos aquí?

¡Mirado así no parece que seamos gran cosa!

Antes de pasar a otros temas, retomemos el de los viajes en el tiempo y las paradojas que pueden originar.

Una versión de la máquina del tiempo de Thorne consiste en dos cabinas, cada una de las cuales contiene dos placas de metal paralelas. Los intensos cambios eléctricos creados entre cada par de placas de metal paralelas (mayores que cualquier cosa posible con la tecnología actual) rizan el tejido del espacio-tiempo, creando un agujero en el espacio que une las dos cabinas. Una cabina se coloca entonces en una nave espacial y es acelerada a velocidades próximas a la de la luz, mientras que la otra cabina permanece en la Tierra. Puesto que un agujero de gusano puede conectar dos regiones des espacio con tiempos diferentes, un reloj en la cabina de la nave marcha más despacio que un reloj en la cabina de la Tierra. Debido a que el tiempo transcurriría a diferentes velocidades en los dos extremos del agujero de gusano, cualquiera que entrase en un extremo del agujero de gusano sería instantáneamente lanzado al pasado o al futuro.

Stephen Hawking

Viajar al pasado y conocer a personajes famosos a los que contar las novedades científicas. Algunos dicen que el viaje en el Tiempo está prohibido, aunque es posible. Siempre hemos tenido una gran imaginación y, cuando se sabíamos contestar a una cuestión compleja… ¡Inventamos la respuesta!

Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.

Parece que la función de las placas metálicas paralelas consiste en generar la materia o energía exótica necesaria para que las bocas de entrada y salida del agujero de gusano permanezcan abiertas y, como la materia exótica genera energía negativa, los viajeros del tiempo no experimentarían fuerzas gravitatorias superiores a 1g, viajando así al otro extremo de la galaxia e incluso del universo o de otro universo paralelo de los que promulga Stephen Hawking. En apariencia, el razonamiento matemático de Thorne es impecable conforme a las ecuaciones de Einstein.

Normalmente, una de las ideas básicas de la física elemental es que todos los objetos tienen energía positiva. Las moléculas vibrantes, los vehículos que corren, los pájaros que vuelan, los niños jugando tienen todos energía positiva. Por definición, el espacio vacío tiene energía nula. Sin embargo, si podemos producir objetos con “energías negativas” (es decir, algo que tiene un contenido de energía menor que el vacío), entonces podríamos ser capaces de generar configuraciones exóticas de espacio y tiempo en las que el tiempo se curve en un circulo.

                Muchas son las máquinas del tiempo que hemos desarrollado en nuestra imaginación

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.

En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.

Nuestra línea de universo resume toda nuestra historia, que nacemos hasta que morimos. Cuanto más rápido nos movemos más se inclina la línea de universo. Sin embargo, la velocidad más rápida a la que podemos viajar es la velocidad de la luz. Por consiguiente, una de este diagrama  espacio-temporal está “prohibida”; es decir, tendríamos que ir a mayor velocidad que la luz para entrar en esta zona prohibida por la relatividad especial de Einstein, que nos dice que nada en nuestro universo puede viajar a velocidades superiores a c.

                 Sí, ¿pero dónde está esa energía negativa para viajar en el Tiempo?

Este concepto más bien simple se conoce con un nombre que suena complicado: la condición de energía media débil (average weak energy condition, o AWEC). Como Thorne tiene cuidado en señalar, la  AWEC debe ser violada; la energía debe hacerse temporalmente negativa para que el viaje en el tiempo tenga éxito. Sin embargo, la energía negativa ha sido históricamente anatema para los relativistas, que advierten que la energía negativa haría posible la antigravedad y un montón de otros fenómenos que nunca se han visto experimentalmente.

Pero Thorne señala al momento que existe una forma de obtener energía negativa, y esto es a través de la teoría cuántica.

En 1.948, el físico holandés Hendrik Casimir demostró que la teoría cuántica puede crear energía negativa: tomemos simplemente dos placas de metal paralelas y descargadas ordinariamente, el sentido común nos dice que estas dos placas, puesto que son eléctricamente neutras, no ejercen ninguna fuerza entre sí. Pero Casimir demostró que, debido al principio de incertidumbre de Werner Heisenberg, en el vacío que separa estas dos placas existe realmente una agitada actividad, con billones de partículas y antipartículas apareciendo y desapareciendo constantemente. Aparecen a partir de la “nada” y vuelven a desaparecer en el “vacío”. Puesto que son tan fugaces, son, en su mayoría, inobservables, y no violan ninguna de las leyes de la física. Estas “partículas virtuales” crean una fuerza neutra atractiva entre estas dos placas que Casimir predijo que era medible.

Cuando Casimir publicó el artículo, se encontró con un fuerte escepticismo. Después de todo, ¿cómo pueden atraerse dos objetos eléctricamente neutros, violando así las leyes normales de la electricidad clásica? Esto era inaudito. Sin embargo, en 1.985 el físico M. J. Sparnaay observó este efecto en el laboratorio, exactamente como había predicho Casimir. Desde entonces (después de un sin fin de comprobaciones), ha sido bautizado como el efecto Casimir.

Una manera de aprovechar el efecto Casimir mediante grandes placas metálicas paralelas descargadas, sería el descrito para la puerta de entrada y salida del agujero de gusano de Thorne para poder viajar en el tiempo.

Por el momento, al no ser una propuesta formal, no hay veredicto sobre la máquina del tiempo de Thorne. Su amigo, Stephen Hawking, dice que la radiación emitida en la entrada del agujero sería suficientemente grande como para contribuir al contenido de materia y energía de las ecuaciones de Einstein. Esta realimentación de las ecuaciones de Einstein distorsionaría la entrada del agujero de gusano, incluso cerrándolo para siempre. Thorne, sin embargo, discrepa en que la radiación sea suficiente para cerrar la entrada.

Aquí es donde interviene la teoría de supercuerdas. Puesto que la teoría de supercuerdas es una teoría completamente mecanocuántica que incluye la teoría de la relatividad general de Einstein como un subconjunto, puede ser utilizada para calcular correcciones a la teoría del agujero de gusano original.

En principio nos permitiría determinar si la condición AWEC es físicamente realizable, y si la entrada del agujero de gusano permanece abierta para que los viajeros del tiempo puedan disfrutar de un viaje al pasado.

  Podríamos ver como se forman las nebulosas y nacen y mueren las estrellas

Antes comentaba algo sobre disfrutar de un viaje al pasado pero, pensándolo bien, no estaría yo tan seguro. Rápidamente acuden a mi mente múltiple paradojas que, de una u otra especie han sido narradas, principalmente por escritores de ciencia-ficción que, por lo general, son los precursores del futuro.

Si viajar en el tiempo finalmente pudiera ser posible, cosas parecidas a esta locura ¡”podrían ocurrir”! I. B. S. Haldane,

“La naturaleza no sólo es más extraña de lo que suponemos; es más extraña de lo que podamos suponer”.

emilio silvera