miércoles, 25 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Simetría CP y otros aspectos de la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Rotura de la simetrísa CP    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los quarks al otro lado del espejo. Científicos del Laboratorio Nacional Jefferson Lab (EEUU) han verificado la rotura de la simetría de paridad (también llamada simetría del espejo) en los quarks mediante el bombardeo de núcleos de deuterio con electrones de alta energía. Los núcleos de deuterio están formados por un protón y un neutrón, es decir, por tres quarks arriba y tres quarks abajo. La dispersión inelástica entre un electrón y un quark, es decir, su colisión, está mediada por la interacción electrodébil, tanto por la fuerza electromagnética como por la fuerza débil. Esta última es la única interacción fundamental que viola la simetría de paridad.

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y, lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar la coherencia matemática del modelo estándar.  La idea de Higgs, y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes.  Parece, con tantos parámetros imprecisos (19) que, el modelo estándar se mueve bajo nuestros pies.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

La Física nos lleva de vez en cuando a realizar viajes alucinantes. Se ha conseguido relacionar y vibrar a dos diamantes en el proceso conocido como entrelazamiento cuántico. El misterioso proceso, al que el propio Eisntein no supo darle comprensión completa, supone el mayor avance la fecha y abre las puertas de la computación cuántica. que nos hagamos una idea del hallazgo, en 1935 Einstein lo llegó a denominar la “acción fantasmal a distancia”. Un efecto extraño en donde se conecta un objeto con otro de manera que incluso si están separados por grandes distancias, una acción realizada en uno de los objetos afecta al otro.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado! Pero se sigue hablando de partículas supersimétricas.

¿Quién puede ir a la longitud de Planck para verlas?

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa.  En el Hiperespacio, todo es posible.  Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intento calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas.  Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello,  no la tiene ni la nueva capacidad energético del  acelerador de partículas LHC . Ni sumando todos los aceleradores de partículas de nuestro mundo, podríamos lograr una energía de Planck (1019 GeV), que sería necesaria para poder llegar hasta las cuerdas vibrantes de la Teoría. Ni en las próximas generaciones seremos capaces de poder utilizar tal energía.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Sabemos sobre las partíoculas elementales que conforman la materia bariónica, es decir, los átomos que se juntan para formar moléculas, sustancias y cuerpos… ¡La materia! Pero, no sabemos si, pudiera haber algo más elemental aún más allá de los Quarks y, ese algo, pudieran ser esas cuerdas vibrantes que no tenemos capacidad de alcanzar.

¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña.  El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo.  El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

                   Con 7 TeV ha sido suficiente para encontrar la famosa partícula de Higgs pero…

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs.  Las partículas influidas por este campo, toman masa.  Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético.  Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo.  Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein.  La masa, m, tiene en realidad dos partes.  Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.  La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos.  Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pietez Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa -los W+, W, Zº y fotón que llevan la fuerza electrodébil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una vez potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmariana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron del “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs de masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

Basta con cambiar un quark tipo U a uno tipo D.

Pues justamente esto es lo que ocurre en la naturaleza cuando entra en acció la fuerzxa nuclear débil.  Un quark tipo U cambia a uno tipo D por medio de la interacción débil así

 

 

Las otras dos partículas que salen son un anti-electrón y un neutrino. Este mismo proceso es el responsable del decaimiento radiactivo de algunos núcleos atómicos. Cuando un neutrón se convierte en un protón en el decaimiento radiactivo de un núcleo, aparece un electrón y un neutrino. Este es el origen de la radiación beta (electrónes).

La interacción débil, recordareis, fue inventada por E.Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? Como s su partícula, nos cabe esperar que la veamos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10′5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.

Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que, algunos, han llegado a llamar, de manera un poco exagerada:

¡La partícula Divina!

¡Ya veremos en que termina todo esto! Y que explicación se nos ofrece desde el CERN en cuanto al auténtico escenario que según ellos, existe en el Universo para que sea posible que las partículas tomen su masa de ese oceáno de Higgs, en el que, según nuestro amigo Ramón Márquez, las partículas se frenan al interaccionar con el mismo y toman su masa, el lo llama el “efecto frenado”.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos steven Weinberg y Abdus Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, Wy Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todos, exponer su teoría relativista. (Mach, Maxwell, Lorentz… y otros).

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no tenemos la menor prueba experimental.

Ahora, por fin la tenemos con el LHC, y ésta pega, se la traspasamos directamente a la teoría de supercuerdas y a la materia oscura que, de momento, están en la sombra y no brillan con luz propia, toda vez que ninguna de ellas ha podido ser verificada, es decir, no sabemos si el Universo atiende a lo que en ellas se predice.

El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, llego a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo pudo surgir  el Universo dependen de que se encuentre el bosón de Higgs, Se averigue si realmente existe la materia oscura, Sepamos llegar al fondo de la Teoría de Cuerdas y confirmarla, Poder crear esa Teoría cuántica de la Gravedad…Y, en fín, seguir descubriendo los muchos misterios que no nos ejan saber lo que el Universo es.  Ahora, por fin, tenemos grandes aceleradores y Telescopisos con la energía necesaria y las condiciones tecnológicas suficientes para que nos muestretodo eso que queremos saber y nos digan dónde reside esa verdad que incansables perseguimos.

¡La confianza en nosotros mismos, no tiene límites! Pero, no siempre ha estado justificada.

emilio silvera

¡Una Singularidad! Extraño Objeto

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión.  La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir.  Además, en la singularidad, según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.

La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de enana blanca o de estrella de neutrones, para convertirse en una singularidad.

Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad, la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.

Modelo OS
La figura de la izquierda representa a la nube de polvo en colapso de Oppenhieimer y Snyder, que ilustra una superficie atrapada.
El modelo de Oppenhieimer y Snyder posee una superficie atrapada, que corresponde a una superficie cuya área se i
Oppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro, al desarrollar el planteamiento de una nube de polvo colapsante. En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad de la que pasará a formar parte.

Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Wheeler (que los bautizó como agujeros negros), Roger Penrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros, las cuestiones que de ellas se derivan y otras consecuencias de densidad, energía, gravedad, ondas gravitacionales, etc, que son deducidas a partir de estos fenómenos del cosmos.

Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca la singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:

  • Debe ser una superficie nula donde es pareja, generada por geodésicas nulas;
  • contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
  • el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.

 

 

 

Pueden existir agujeros negros  supermasivos (de 105 masas solares) en los centros de las galaxias activas. En el otro extremo, mini agujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después delBig Bang. Diminutos agujeros negros podrían ser capaces de capturar partículas a su alrededor, formando el equivalente gravitatorio de los átomos.

 

 

 

 

Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espaciotiempo como el espaciotiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío de Einstein y, como un tema que se relaciona con la entropía en los agujeros negros.

No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de Kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.

Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de una singularidad como un agujero negro, en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque esta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape:

Para el caso de fotones u objeto sin masa, tales como neutrinos, se sustituye la velocidad de escape por la de la luz c2. “En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, … Es cierto que en mecánica cuántica quedan muchos enigmas por resolver. Pero hablando de objetos de grandes masas, veámos lo que tenemos que hacer para escapar de ellos.

Podemos escapar de la fuerza de gravedad de un planeta pero, de un A.N., será imposible.

La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. El objeto que escapa puede ser cualquier cosa, desde una molécula de gas a una nave espacial. Como antes he reflejado está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo del que pretende escapar (del núcleo). Un objeto que se mueva a velocidad menor a la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica.

Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:

Objeto

Velocidad de escape

La Tierra

………….11,18 Km/s

El Sol

………….617,3 Km/s

Júpiter

………….59,6 Km/s

Saturno

………….35,6 Km/s

Venus

………….10,36 Km/s

Agujero negro

…….+ de 299.000 Km/s

Como se ve en el cuadro anterior, cada objeto celeste, en función de su masa, tiene su propia velocidad de escape para que cualquier cosa pueda salir de su órbita y escapar de él.

La excepción está en el último ejemplo, la velocidad de escape necesaria para vencer la fuerza de atracción de un agujero negro que, siendo preciso superar la velocidad de la luz 299.792’458 Km/s, es algo que no está permitido, ya que todos sabemos que conforme determina la teoría de la relatividad especial de Einstein, la velocidad de la luz es la velocidad límite en nuestro universo; nada puede ir más rápido que la velocidad de la luz, entre otras razones porque el objeto sufriría la transformación de Lorentz y su masa sería infinita.

Podría continuar explicando otros aspectos que rodean a los agujeros negros, pero estimo que el objetivo que perseguía de hacer conocer lo que es un agujero negro y el origen del mismo, está sobradamente cumplido.

Existen aspectos del A.N. que influyen en el mundo cuántico, y, por ejemplo, el máximo radio que puede tener un agujero negro virtual está dado aproximadamente por

que equivale a unos 10-³³ centímetros. Esta distancia se conoce como longitud de Planck y es la única unidad de distancia que se puede construir con las tres constantes fundamentales de la naturaleza: G, h y c. La longitud de Planck es tan extremadamente pequeña (10²° veces menor que el radio de un electrón) que debe ser la distancia característica de otro nivel de la naturaleza, subyacente al mundo subatómico, donde rigen las leyes aún desconocidas de la gravedad cuántica.

Así como el océano presenta un aspecto liso e inmóvil cuando se observa desde una gran distancia, pero posee fuertes turbulencias y tormentas a escala humana, el espacio-tiempo parece “liso” y estático a gran escala, pero es extremadamente turbulento en el nivel de la longitud de Planck, donde los hoyos negros se forman y evaporan continuamente. En el mundo de Planck, las leyes de la física deben ser muy distintas de las que conocemos hasta ahora.

 

La estructura macroscópica del espacio-tiempo parece plana, pero éste debe ser extremadamente turbulento en el nivel de la escala de Planck. Escala en la que parece que entramos en otro mundo… ¡El de la mecánica cuántica! que se aleja de ese mundo cotidinao que conocemos en el que lo macroscópico predomina por todas partes y lo infinitesimal no se deja ver con el ojo desnudo.

¡Existen tántos secretos!

emilio silvera

Recordemos a un personaje, unos hechos.

Autor por Emilio Silvera    ~    Archivo Clasificado en Personajes de la Historia    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

http://scientia1.files.wordpress.com/2011/05/logo_carnaval1.jpg

Este trabajo lo presenté  en el Carnaval de la Física en homenaje a Riemann.

Georg Friedrich Bernhard Riemann fue un matemático alemán que realizó contribuciones muy importantes al análisis y la geometría diferencial, algunas de las cuales allanaron el camino para el desarrollo más avanzado de la relatividad general. Hay personajes que parecen estar destinados al olvido a pesar, de sus muchas contribuciones alñsaber del mundo.

Recordemos aquí un extraño caso que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: la teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann que dio su célebre conferencia en la facultad de la Universidad de Göttingen en Alemania. Aquello fue como abrir de golpe todas las ventanas cerradas durante 2.000 años de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Su ensayo, de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios. La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas. La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del universo y su evolución mediante su asombrosa teoría de la relatividad general. Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico. Era huraño, solitario y sufría crisis nerviosas. De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.

Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde predicador para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte. La madre de Riemann también murió antes de que sus hijos hubieran crecido.

A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público. Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.

Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia.  En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas. Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura. Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado. El libro era la Teoría de números de Adrien-Marie Legendre, una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números. Riemann devoró el libro en seis días.

Legendre: Geometría
Portada de la décimo primera edición de los “Eléments de Geométrie” de A. M. Legendre (1794)

Cuando el director le preguntó:

¿hasta dónde has leído?”, el joven Riemann respondió: “este es un libro maravilloso. Ya me lo sé todo”.

Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.

Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que a los 19 años pudiera acudir a la Universidad de Göttingen, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos. Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.

La ciencia la construyen las personas, pero también es interesante prestar atención a los lugares en los que se desarrolla. Gotinga, en Alemania, albergó uno de los centros más importantes para las matemáticas, del que formaron parte Gauss, Riemann, Klein, Hilbert, Minkowski, Heisenberg, Born, Jordan, Wigner, Teller, Von Neuman y muchos otros grandes nombres de la historia de la ciencia. Lamentablemente, la guerra, el odio y la barbarie redujeron el lugar a un viejo recuerdo. Fernando Jiménez Alburquerque, investigador postdoctoral de la Technische Universität München (Alemania), dedica la siguiente entrada a éste santuario del saber.

Los estudios de Riemann no fueron un camino de rosas precisamente.  Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.

En aquel ambiente, el problema que captó el interés de Riemann fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).

Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo. En ninguna parte veía Riemann las figuras geométricas planas idealizadas por Euclides. Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita. Riemann, ante aquella realidad, se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos, descubrió él, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.

Euclides nos habló de la obviedad de que un punto no tiene dimensión.  Una línea tiene una dimensión: longitud. Un plano tiene dos dimensiones: longitud y anchura. Un sólido tiene tres dimensiones: longitud, anchura y altura. Y allí se detiene. Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible. En Sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas”. Además, en el año 150 d. C. el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.

En realidad, lo único que Ptolomeo demostraba era que era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen). Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.

La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”. Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.

Riemann desarrolló su teoría de dimensiones más altas.

Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta. Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas. Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante dos milenios.

Riemann creó su tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresarse, a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2.  El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él. Claro que, es una herramienta para utilizar en un mundo tridimensional).

¿Que habría podido hacer Einstein sin el Tnsor métrico de Riemann?

El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas. Precisamente, el tensor de Riemann permitió a Einstein formular su teoría de la gravedad y posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de supergravedad, supersimetría y, finalmente, las supercuerdas.

Una corredora que se llama imaginación deambula por nuestras mentes y, en el momento menos esperado… ¡Surge la Luz! Así podemos decir que ocurrió en el caso de Riemann que, para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854 que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema.  Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio. Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de la relatividad general. Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E = mc2. La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.

No sería justo reconocer aquí que Riemann, tiene mucho que ver en ese gran logro de Einstein (Relatividad General), y de toda la física en lo que a la geometría de espacios curvos se refiere…

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

 

 

 

 
Hay algunas historias que merecen ser contadas y de ellas, podemos obtener información valiosa de cómo surgieron algunos nombres y qué hicieron algunos personajes, y, precisamente aquí que hablamos tanto de la Tierra, de Marte y de la Vida dentro y fuera del planeta, creo que está bien dejar el siguiente trabajo que resulta aleccionador y que, he podido entresacar de las ideas originales de John Gribbin en su magnifico libro: Así de Simple.

 

 

File:Artist Concept Planetary System.jpg

 

Aun no hemos podido tomar una intantánea de nuestro Sistema Planetario y, nos tenemos que conformar con alguna concepción artística del mismo que nunca podrá reflejar la realidad, sino que tan sólo será una triste aproximación de lo que reralmente es este complejo equilibrio que llamamos sistema solar.

 

No siempre sabemos ver… lo que el Tiempo es. Algunos quieren olvidar su pasado para comenzar a escrinbir su futuro, y, no son conscientes de que, nunca podrán hacerlo, estamos condenados a vivir en un perpetuo presente en el que elaboramos un futuro que nunca podremos conocer.

Hablamos del pasado y del futuro estando en el presente pero, por lo general, el pasado lejano se nos muestra como si estuviera retratado por la cámara fotográfica que sostenía una mano temblorosa, todo aparece movido, confuso, sin claridad. Los espacios oscuros en los que nada podemos ver, tendemos a rellenarlos con conjeturas, hipótesis y teorías de lo que fue, de lo que pasó. Otras veces, sin embargo, se alza ante nosotros inmenso, sostenido por un fuerte pedestal y nos habla de su magnificencia mientras nos muestra las hazañas del pasado y el transcurrir de la Naturaleza en aquel tiempo pretérito. También, en ocasiones ocurre que, lo que vemos, nos parece increíble.

Bueno, al menos del pasado podemos buscar vestigios, huellas y señales que nos hablen de lo que pasó. Otra cuestión muy distinta es eso que llamamos futuro y que está más allá del presente, es lo que aún no ha pasado, lo que no tiene historia, lo que tiene que llegar. Es en ese plano de lo que podrá ser, donde entra de lleno nuestra imaginación que, haciendo un ejercicio de inventiva, trata, con los datos del pasado y del presente, construir una imagen de lo que podrá ser ese imaginado futuro.

              Pero hombre… ¡No te das cuenta de que eso, no puede ser!

Claro que, somos grandes animales con algo de racionalidad y, nuestra tendencia, es magnificar todo lo nuestro y, en la mayoría de los casos, nuestra perspectiva resulta ser errónea, ya que, el sentido que tenemos de la “realidad”, no siempre concuerda con la realidad de la Naturaleza que no hemos llegado a comprender. La mejor demostración de ello es que, ni sabemos explicar lo que el Tiempo es. ¡El Tiempo!, ahí están encerrados esos conceptos de pasado, presente y futuro que, en realidad, hemos inventado poder ubicar nuestro paso por este mundo.

Algunas veces me sorprendo a mí mismo pensando en esa abstracción quen llamamos Tiempo, en su transcurrir, en lo que caro que nos resulta a todos poseerlo, toda vez que, mientras pasa, nosotros estamos consumiendo nuestra estancia aquí que está marcada por un “tiempo” limitado que debemos aprovechar para desarrollar lo que seremos.

Somos animales eminentemente sociales, tendemos a explicar nuestras ideas y tratamos de que, todo lo nuestro quede, de alguna manera, para la posteridad. Los hechos destacados quedaron grabados, primero en rústicos dibujos en las paredes de las cuevas, más tarde en las piedras y en los muros de las construcciones, en papiros y finalmente en los libros de historia y, más modernamente, en grabaciones filmadas en películas que nos permiten visualizar la historia.

Claro que, del futuro, como aún no ha llegado, sólo podemos imaginar. Tenemos los medios tecnológicos construir los futuros que podrían ser, y, representamos historias inventadas que nos llevan a ese futuro soñado. Unas veces será idílico y perfecto y otras, por el contrario, será un futuro en el que, la misma tecnología que hemos creado, se apodera del mundo y trata de destruirnos.

En ese futuro imaginario, nuestra tendencia es la de representar el escenario que, según creemos, se podría producir dentro de…más o menos tiempo que está por venir. En el espacio están muchas de esas historias futuras, pues pensamos que entonces, seremos los señores, no ya del espacio, sino del hiperespacio mismo, es decir, estaremos en posesión de conocimientos que nos permitirán burlar el muro que hoy tenemos delante, ¡la velocidad de la luz! Infranqueable en este tiempo presente para nosotros.

 

¿Será científicamente posible superar la velocidad de la Luz?  “Los motores de curvatura que impulsaban a la nave Enterprise en sus  escarceos por el espacio pueden convertirse en una realidad y permitirnos superar la velocidad de la luz”. Han declarado unos científicos de los que no recuerdo sus nombres. Sin embargo, si la velocidad de la luz puede ser superada, antes de que dicha proesa la puedan conseguir los hombres, creo que vendrá de la mano de la misma Naturaleza que, teniendo todas las respuestas, nos señalará el camino para lograr esa proesa por inconcebible.

Como decía al principio, el pasado no siempre está claro y es diáfana su lectura, y, de lo que hemos podido recuperar y conservar, aprendimos y nos señaló el camino a seguir, aunque no por ello, dejamos de repetir algunos errores y de caer en las mismas trampas. La sabiduría de los antiguos queda al descubierto: “El hombre es el único animal que tropieza dos veces en la misma piedra”. Bueno, en realidad, el tropiezo se reproduce una y otra vez, sólo tenemos que mirar hacia atrás en el tiempo para comprobar las muchas torpezas repetidas.

El transcurso del tiempo, a pesar de todo nuestro empeño, termina por enseñarnos y adquirimos eso que llamamos experiencia y que nos más sabio: “Más sabe el diablo por viejo que por diablo”.

mujer calle

Ella camina y, por muy rápida que pueda ir, este movimiento no implica cambio alguno al no ser relativista, es un simple desplazamiento de lugar. Nosotros, en nuestra vida cotidiana no hacemos que el tiempo se ralentice o se agilice, transcurre a la velocidad que el ritmo del Universo ha impuesto nosotros. Una estrella vive diez mil millones de años y, nosotros, de momento no pasamos de los cien.

No pocos piensan que el futuro y el pasado no existen, que son irreales y que estamos en un continuo presente. Claro que, el pasado sí existió, recuerdo pasajes de mi infancia junto a mi padre que fueron muy reales. Del futuro, no puedo recordar nada por mucho que me quiera esforzar, sólo puedo representar pasajes que mi imaginación dibuja en mi mente y que, al contrario de aquellos otros del pasado que son inamovibles, éstos, pueden ser cambiados a voluntad. Claro aquellos del pasado fueron y estos del futuro, nunca tuvieron realidad.

El futuro será el presente de nuestros hijos con los que, , compartimos el presente que, para entonces, para ellos será el pasado, cuando nosotros no estemos y formemos parte de la historia.

El futuro, a pesar de que no ha llegado aún, es “leído” por algunos que dicen tener ese don, “pueden ver lo que no ha ocurrido” y, con ello, llevan al convencimiento a los crédulos de que, “su futuro” será de ésta o aquella manera. ¡Cómo somos! En todos los tiempos y lugares, siempre existieron espabilados que se aprovecharon de esa abstracción que llamamos tiempo, para, de una u otra manera, obtener beneficios y posiciones privilegiadas haciendo creer a otros que ellos conocían lo que nadie conoce.

 

         Parece mentira que alguien pueda creer en estos…

Desde que nacemos, comienza “nuestro tiempo” que, como regla universal y para nuestro bien, es algo secreto, nadie conoce la duración de su tiempo que, por otra parte, no pocas veces está en manos del azar. Si todo transcurre con normalidad y no somos atacados por ninguna enfermedad, accidente, ataque , etc., nuestro tiempo será el de la vida media de una persona sana que, hoy en día, está en los 80 años. Conocer la duración de nuestro tiempo sería, en muchos casos, motivo más que suficiente para vivir angustiados y, en algunos casos, nadie sabe qué reacciones o comportamientos podríamos tener en qué casos concretos.

                          Su tiempo transcurre lleno de felicidad

El Tiempo, es algo tan subjetivo que, siendo el mismo para todos, en la realidad, no lo es. Cómo puede transcurrir el tiempo igual y de la misma manera para el que todo lo tiene, que goza de una inmejorable, que ama y es amado, que vive en la tranquilidad y certidumbre de que ningún problema podrá venir a perturbar su paz, con aquel otro que, viviendo en la más grande de las pobrezas, carece de todo, la vida le ha negado cualquier alegría, vive debajo de un puente, enfermizo y en la más completa incertidumbre. Para él, la vida es de una dureza tal que, no pocas veces pensó en acabar con ella. El primero puede “ver” y sentir como el tiempo transcurre con normalidad, todo se desarrolla a su alrededor al ritmo que marca el tic tac del reloj de oro que lleva bien abrazado a su muñeca. El otro, puede sentir en lo más profundo de sus pensamientos como el “tiempo” transcurre lento, como un martirio que nunca acaba, como algo que se ensaña y se regodea de su sufrimiento.

                    ¿Qué tiempo es el suyo?

No todos podemos sentir, el transcurso del tiempo de la misma manera. Todos tenemos “nuestro propio tiempo”.

Yo, por ejemplo, tengo muchas clases de tiempo, ese que no deja sentir su transcurrir cuando estoy leyendo o escribiendo sobre temas de ciencia, y, aquel otro, que se me hace eterno, cuando tengo que cumplir con algún compromiso social. En aquel tiempo primero de cuyo transcurrir ni me entero, mi “espíritu” está gozando al bucear en los misterios de la Naturaleza que nos asombra y, al mismo tiempo, nos explica, el por qué de las cosas. En el “otro tiempo”, el que transcurre lentamente y no acaba nunca de pasar, las horas se hacen interminables, escuchar a la señora que te lo listo que su nieto es, oír al joven que lo sabe todo, al jubilado que se queja de todo, o, simplemente escuchar banalidades de esta o aquella “famosa”…hace que, el transcurso del tiempo me resulte interminable.

 

Otro tiempo, diferente del nuestro cotidiano es aquel que, podríamos vivir si tuviéramos la suerte de ser pasajero de una nave cuya velocidad se acercara o fuese próxima a la de la luz. Nuestro tiempo, se ralentizaría y su transcurrir, sería mucho más lento que el tiempo de nuestros familiares y amigos que se quedaron en la Tierra. Claro que, también eso sería antinatural y, dependiendo de a dónde fuésemos, se podría dar el caso de que, a nuestro regreso, no estarían aquí ninguno de nuestros seres queridos. Así que, renuncio a ese tiempo y, prefiero el mío propio en el que, salvo sorpresas inesperadas, transcurrirá según lo previsto.

           Dan un poco de miedo, tan fríos y faltos de sentimientos

Algunos pintan el porvenir (es decir, el futuro) de manera tal que, lo que hemos construido nos sobrepasará, se harán los dueños del mundo y de los mundos a los que nosotros, pobres humanos, nunca podremos llegar. El futuro tiene muchos nombres, y, como en realidad nadie sabe lo que será, para los imaginativos es como una gran página en blenaco en la que pueden escribir cualquier cosa que se les pueda ocurrir, y, lo increíble del caso es que, cualquiera de ella, podría ser posible.

Si la Teoría del Big Bang es cierta, el Tiempo comenzó en aquella gran explosión cuando el espacio se expandió. Desde entonces, nunca ha dejado de transcurrir y habiendo pasado miles de millones de años, han pasado muchas cosas: Surgieron de la radiación las partículas de la materia para formar átomos, el universo se hizo transparente con los fotones que nos trajeron la luz, se formaron las primeras estrellas, galaxias y mundos y, en alguno, pudieron surgir y evolucionar, a partir de la materia inerte, algunos seres vivos que, en alguna especie, pudo alcanzar la consciencia y llegar a construir teorías que, de manera asombraso, han demostrado que el Tiempo, no transcurre de la misma manera para todos, que es relativo y dependen del observador y de la velocidad del movimiento…

Sobre esto del “tiempo” hemos construido muchas frases:

– “Vive el presente de manera tal que, en el futuro, tengas un bonito pasado”.

– “El futuro estará siempre, construido por tu presente”.

– “El presente está cargado del pasado y, el futuro, será lo que determine el presente”.

– “Todo lo que será, causa en lo que es”.

“El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido. Para los valientes es la oportunidad” . Según Víctor Hugo.

Woody Allen, lo mira desde otra perspectiva: “Me interesa el futuro porque es el sitio donde voy a pasar el resto de mi vida”.

El Tiempo, ese Tic Tac que, como una gota de agua que eternamente cae, transcurre

En realidad, quiso construir una frase inteligente y se queda en perogrullada, ya que, el resto de su vida siempre será presente, el resto al que se refiere…estará muerto y, tendría que haber dicho: No me interesa el futuro porque no se en que lugar podrán estar mis restos y, sobre todo, mi consciencia. Y, a todo esto, ¿qué piensas tú sobre lo que el Tiempo es, cómo ves el pasado, el presente y el futuro? ¿Será todo una misma cosa dividida por tramos todos, de una u otra manera conexos? ¿Será que, para los seres vivientes sólo existe el eterno presente y que, el pasado sólo pertenece a los muertos y el futuro a los que nop han llegado a vicvir todavía? ¿Cómo clasificarías tú el Tiempo?

emilio silvera

Algo más sobre Física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

viaje

 

Si como dice un estudio, dentro de 1.700 millones de años, Marte entrará en la Zona habitable… ¡Podia ser así!

 

 

Todo cambia. Nada permanece inmóvil, todo está en constante vibración y la Entropía hace su trabajo para que nada permanez de la misma manera a medida que el Tiempo transcurre. También, el Universo, si lo consideramos como un Sistema cerrado, se va deteriorando y cada vez es mayor la Entropía presente. A nosotros, los seres vivos, nos pasa otro tanto de lo mismo, vamos soportando mal el paso del tiempo y, llegado un momento, el final es irremediable.

 

Fizeau,

Fizeau, Armand-Hippolyte-Louis

En 1.849, el físico francés Armand-Hippolyte-Louis Fizeau ideó un artificio mediante el cual se proyectaba la luz sobre un espejo situado a 8 km de distancia, que devolvía el reflejo al observador. El tiempo empleado por la luz en su viaje de ida y vuelta no rebasó apenas la 1/20.000 de segundo, pero Fizeau logró medirlo colocando una rueda dentada giratoria en la trayectoria del rayo luminoso. Cuando dicha rueda giraba a cierta velocidad, regulada, la luz pasaba entre los dientes y se proyectaba contra el siguiente, al ser devuelta por el espejo; así, Fizeau, colocado tras la rueda, no pudo verla. Entonces se dio más velocidad a la rueda, y el reflejo pasó por la siguiente muesca entre los dientes, sin intercepción alguna. De esa forma, regulando y midiendo la velocidad de la rueda giratoria, Fizeau pudo calcular el tiempo transcurrido y, por consiguiente, la velocidad a que se movía el rayo de luz.

1.- Movimiento del plano pendular (en el sentido de las agujas del reloj)

2.- Desplazamiento del plano de oscilación debido a la rotación de la Tierra

3-. Movimiento de rotación de la Tierra (en el sentido contrario a las agujas del reloj)

Jean-Bernard-Léon Foucault suspendió una bola de 62 libras (unos 28 kilogramos) de hierro desde la cúpula del Panteón y lo puso en movimiento, balanceándolo. Para marcar su progreso el enganchó una aguja a la bola y colocó un anillo de tierra mojada en el suelo bajo él. La audiencia observó con pavor como el péndulo inexplicablemente parecía rotar, dejando un trazo ligeramente distinto en cada balanceo. En realidad era el suelo del Panteón el que estaba ligeramente en movimiento, y Foucault había demostrado, de una forma más convincente que nunca, que la tierra gira sobre su eje. En la latitud de París, el trazo del péndulo completaría una rotación completa en el sentido horario cada 30 horas; en el hemisferio sur rotaría en sentido antihorario, y en el ecuador no rotaría nada. En el Polo Sur, como han confirmado los científicos de la era moderna, el periodo de rotación es de 24 horas.

Jean Foucault

El periodo de oscilación es menor en los polos, en donde giraría una vuelta completa cada 24 horas, mientras que en el ecuador el plano de oscilación no experimentaría ningún sentido de rotación.

Un año más tarde, Jean Foucault (quien realizaría poco después su experimento -arriba- con los péndulos) precisó más estas medidas empleando un espejo giratorio en ve de una rueda dentada. Entonces se midió el tiempo transcurrido desviando ligeramente el ángulo de reflexión mediante el veloz espejo giratorio. Foucault obtuvo un valor de la velocidad de la luz de 300.883 km/s. También, el físico francés utilizó su método para determinar la velocidad de la luz a través de varios líquidos. Averiguó que era notablemente inferior a la alcanzada en el aire. Esto concordaba también con la teoría ondulatoria de Huyghens.

La naturaleza de la luz. Profesor escrupuloso, aunque poco entusiasta, Newton se dedicó a estudios de óptica que le llevaron, a través de una serie de experimentos, al famoso descubrimiento de la descomposición de la luz blanca, que fue explicada por él mediante una teoría corpuscular de la luz destinada a dar jaque a la teoría ondulatoria de C. Huygens y a dominar durante todo el siglo XVIII. Experimentos, descubrimientos e hipótesis sobre la luz fueron hechos públicos en una memoria a la Royal Society. Pero las tempestuosas disputas suscitadas por esta memoria le disgustaron hasta el punto de que se abstuvo de publicar sus Lecciones de óptica (desarrolladas en la cátedra lucasiana entre 1668 y 1671), las cuales sólo vieron la luz en 1729. No obstante, en 1675 presentó a la Royal Society una importante memoria, que constituirá después la base de su Óptica, en la que, partiendo de los experimentos sobre la coloración de laminillas metálicas, expone los principios de su teoría sobre la luz. En la imagen, El descubrimiento de la refracción de la luz de Newton (1827), óleo del pintor italiano Pelagio Palagi.

 Albert A. Michelson, Albert <a href=Einstein and Robert A. Millikan en 1931

Michelson, Einstein y Millikan

Michelson fue más preciso aún en sus medidas. Este autor, durante cuarenta años largos, a partir de 1.879, fue aplicando el sistema Fizeau-Foucault cada vez con mayor refinamiento, para medir la velocidad de la luz. Cuando se creyó lo suficientemente informado, proyectó la luz a través de vacío, en vez de hacerlo a través del aire, pues este frena ligeramente su velocidad, y, empleó para ello tuberías de acero cuya longitud era superior a 1’5 km. Según sus medidas, la velocidad de la luz en el vacío era de 299.730 km/seg. (Sólo un 0’006% más bajo). Demostraría también que todas las longitudes de ondas luminosas viajan a la misma velocidad en el vacío.

En 1972, un equipo de investigadores bajo la dirección de Kenneth M. Eveson efectuó unas mediciones aún más exactas y vio que la velocidad de la luz era de 299.727’74 km/seg. Una vez se conoció la velocidad de la luz con semejante precisión, se hizo posible usar la luz, o por lo menos formas de ella, para medir distancias.

Desde Galileo con sus lámparas, cada vez se han utilizado aparatos más sofisticados para medir la velocidad de la luz, y, finalmente, se consiguió medirla de manera muy exacta en 299.792.458 metros por segundo que, es el límite que algo puede alcanzar corriendo por el espacio vacío y que sólo ha conseguido la luz. Es un límite que nos mareca el Universo para viajar y enviar información, nada puede correr más que la luz en el vacío y, como nos dice la relatividad especial, cuando un objeto se va acercando a ese límite, su masa aumenta, toda vez que la energía de inercia se convierte en masa al estar acercándose al límite prohibido.

Aunque para algunos resulte alto tedioso el tema anterior, no he podido resistirme a la tentación de exponerlo, así podrá saber algo más sobre la luz y, habrán conocido a personajes que hicieron posible el que ahora nosotros, la conozcamos mejor.

Podría continuar, hasta el final de este trabajo, hablando de la luz y sus distintas formas o aplicaciones: ondas de luz a través del espacio, de cómo se transmite la luz en el “vacío”, nos llega a través del espacio desde Galaxias situadas a miles de millones de años luz; las líneas de fuerzas electromagnéticas de Faraday y Maxwell de campos eléctricos y magnéticos cambiantes (todo ello explicado en un simple conjunto de cuatro ecuaciones, que describían casi todos los fenómenos referentes a esta materia electromagnética), o de los enigmas aún por descubrir (aunque predichos).

Monopolos

Muchos han ido a la caza de los monopolos magnéticos que, deben ser raros en el Universo, si finalmente existen. Parece que, algunos físicos han conseguido alguna cosa…no se bien qué sobre su existencia.

En 1.931, Dirac, acometiendo el asiento de una forma matemática, llegó a la conclusión de que sí los monopolos magnéticos existían, sería necesario que todas las cargas eléctricas fuesen múltiplos exactos de una carga más pequeña, como en efecto así es. Y dado que todas las cargas eléctricas son múltiplos exactos de alguna carga más pequeña, ¿no deberían en realidad existir los monopolos magnéticos?

En 1.974, un físico joven y prometedor (más tarde ganó el Nobel), Gerard’t Hooft, y un físico soviético, Alexander Poliakov, mostraron, independientemente, que podía razonarse, a partir de las grandes teorías unificadas, que los monopolos magnéticos debían así mismo existir, y que debían poseer una masa enorme. Aunque un monopolo magnético sería incluso más pequeño que un protón, debería tener una masa que sería de 10 trillones a 10 cuatrillones mayor que la del protón. Eso equivaldría a la masa de una bacteria comprimida en una diminuta partícula subatómica.

[monopolos+m.gif]

Sería la confirmación de una teoría de 1931. Si seres de otros mundos han podido verlos, habrían visto otro tipo de magnetismo los llamados “monopolos magnéticos”.

Semejantes partículas sólo podían haberse formado en el momento de la gran explosión (otra vez volvemos al origen). Desde entonces, no ha existido la suficientemente alta concentración de energía necesaria para formarla. Esas grandes partículas deberían avanzar a unos 225 km por seg., más o menos, y la combinación de una enorme masa y un pequeño tamaño le permitiría deslizarse a través de la materia sin dejar el menor rastro de presencia. Esta propiedad, de hecho, está relacionada directamente con el fracaso obtenido en su búsqueda.

Los físicos están tratando de idear un mecanismo capaz de poder detectar, con claridad, el paso de monopolos magnéticos.

Podríamos decir que, un monopolo magnético es una entidad magnética hipotética consistente en un polo Norte o Sur elemental aislado. Ha sido postulado como una fuente de campo magnético en analogía a la forma en que las partículas eléctricamente cargadas producen un campo eléctrico.

http://2.bp.blogspot.com/_93W9IMdur5E/TEBx2-Q8aLI/AAAAAAAAASU/1ra_LSlDoA4/s1600/00001.bmp

Se han diseñado numerosos experimentos ingeniosos para detectar monopolos, pero hasta ahora, ninguno ha producido un resultado definitivo. Los monopolos magnéticos son predichos en ciertas teorías gauge con bosones de Higgs. En particular, algunas teorías de gran unificación predicen monopolos muy pesados (con masas del orden de 1016 geV). Se habló de su aparición en los primeros experimentos del LHC, algunos denunciaron eso junto con la aparición de agujeros negros microscópicos pero…, de momento…nada

Los monopolos magnéticos también son predichos en las teorías de Kaluza-Klein (5 dimensiones) y en teoría de supercuerdas (10 y 26 dimensione). Es decir, que se predice pero no se puede verificar, y, siendo así, quedamos anclados en el campo de la teoría.

Recuerdo que estaba hablando de los distintos aspectos de la luz, lo que no recuerdo es como he llegado a éste berenjenal de los monopolos magnéticos. Me ocurre siempre, estoy tratando un tema y termino hablando (escribiendo) de otro. No parece más que, el bolígrafo, tenga vida propia. Sin embargo, lo que ocurre en verdad es que, todo es uno, compuesto de distintas partes. Siempre estamos hablando de lo mismo, solo cambian las partes que, en cada momento, estemos estudiando de ese todo en el que estamos inmersos.

La misteriosa materia que compondría el 23 % (se especula) de toda la materia del universo es tan esquiva que jamás ha sido observada por nadie. Así que sólo podíamos sospechar que quizá existía. La materia oscura emite, absorbe e interactúa con radiación electromagnética de manera tan débil que no puede ser observada por medios técnicos ordinarios, no refleja la luz para ser observada.

Sin embargo, un equipo internacional de astrónomos de Japón, Gran Bretaña y Taiwan acaba de conseguir, por primera vez, imágenes que reflejan la distribución de materia oscura alrededor de 20 grandes cúmulos de galaxias. Los resultados se publicarán en la revista mensual de la Royal Astronomical Society. Las pruebas aún no son concluyentes, pero sí muy esperanzadoras. Es decir, un poco más de lo mismo pero, sin aclarar absolutamente nada.

Ni en el infrarrojo, ni en los rayos X ni en el ultravioleta la materia oscura había revelado aún su auténtica naturaleza. Pero utilizando lentes gravitacionales los científicos han sido capaces de mostrar las primeras imágenes en las que se “aprecia” la misteriosa materia oscura.

Masa-Materia-Luz: Todo la misma cosa ¡Energía! que es el motor que hace andar al ¡El Universo!

emilio silvera