martes, 24 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Simetría! en la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Simetrías    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

 

 
                                              La imagen especular de la montaña en el lago es simétra

Todos sabemos que la materia en nuestro Universo adopta muchas formas distintas: Galaxias de estrellas y mundos que, en alguna ocasión, pueden incluso tener seres vivos y algunos han podido evolucionar hasta adquirir la consciencia. Sin embargo, no me quería referir a eso que es bien sabido por todos, sino que, trato de pararme un poco sobre una curiosa propiedad que la materia tiene en algunas ocasiones y que, la Naturaleza se empeña en repetir una y otra vez: ¡La Simetría!

Las Galaxias espirales, la redondez de los mundos, las estrellas del cielo, los árboles y las montañas, los ríos y los océanos, las especies animales (incluída la nuestra) que, se repiten una y otra vez y, en general, salvando particularidades, todas repiten un patrón de simetría.

Recuerdo aquí aquel pensamiento de Paul Valery en el que nos decía:

“El Universo está construído según un plan

cuya profunda simetría está presente de algún

modo en la estructura interna de nuestro intelecto.”

                                                     La Naturaleza está llena de simetrías

La simetría es una propiedad universal tanto en la vida corriente, un punto de vista matemático como desde el quehacer de la Física Teórica. En realidad, lo que observamos en la vida corriente es siempre lo repetitivo, lo simétrico, lo que se puede relacionar entre sí por tener algo común.

En un sentido dinámico, la simetría podemos entenderla como lo que se repite, lo reiterativo, lo que tiende a ser igual. Es decir, los objetos que, por mantener la misma geometría, son representativos de otros objetos. En el Caos matemático encontramos concepción de la simetría en el mundo los fractales. Sin embargo, la simetría es mucho más. Hay distintas maneras de expresarla: “Conjunto de invariancias de un sistema”, podría ser una de ellas. Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado, la simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y las rotaciones en las moléculas y las translaciones en las redes cristalinas.

        Aquí hay mucho más de lo que asimple vista parece, aqí está presente la sucesión de Fibonacci

Los físicos teóricos también se guían en su por preocupaciones estéticas tanto como racionales. Poincaré escribió: “Para hacer ciencia, es necesario algo más que la pura lógica”. Él identificó ese elemento adicional como la intuición, que supone “el sentido de la belleza matemática”. Heisenberg hablaba de “la simplicidad y belleza de los esquemas matemáticos que la Naturaleza nos presenta”.

Los físicos creen también que están en el camino correcto porque, de algún modo que no pueden explicar, tienen la convicción de que son correctas, y las ideas de simetría son esenciales para esa intuición. Se presiente que es correcto que ningún lugar del Universo es especial comparado con cualquier otro lugar del Universo, así que los físicos tienen la confianza de que la simetría de traslación debería estar las simetrías de las leyes de la Naturaleza. Se presiente que es correcto que ningún movimiento a velocidad constante es especial comparado con cualquier otro. De modo que los físicos tienen confianza en que la relatividad especial, al abrazar plenamente la simetría entre todos los observadores con velocidad constante, es una parte esencial de las leyes de la Naturaleza.

Dirac nos hablaba de ecuaciones bellas. La estética es, evidentemente, subjetiva, y la afirmación de que los físicos buscan la belleza en sus teorías tiene sentido sólo si podemos definir la belleza. Afortunadqamente, esto se puede , en cierta medida, pues la estética científica está iluminada por el sol central de la simetría.

Resultado de imagen de La perfecta simetría de una simple hoja de árbol

                                                  Sí, la Naturaleza nos ofrece la más rica diversidad y simetría

La simetría es un concepto venerable y en modo alguno inescrutable y no podemos negar que tiene muchas implicaciones en la Ciencia, en las Artes y sobre todo, ¡en la Naturaleza! que de manera constante nos habla de ella. Miremos donde miremos…¡allí está!

El físico chino-norteamericano Chen Ning Yang ganó el Nóbel de Física por su en el desarrollo de una teoría de campos basada en la simetría y, aún afirmaba: “No comprendemos todavía el alcance del concepto de simetría”. Es lógico pensar que, si la Naturaleza emplea la simetría en sus obras, la razón debe estar implicada con la eficacia de los sistemas simétricos.

En griego, la palabra simetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera, como de hecho, resultan ser en las imágenes que arriba contemplamos. Asi, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético superior.

Arte humo simétrica Foto de archivo - 8808585

                                           Humo simétrico

Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Escuela Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos de ese Universo de simetría.

Los planetas son esféricos y, por ejemplo, tienen simetría de rotación. Lo que quiere indicar es que poseen una característica -en caso, su perfil circular- que permanece invariante en la transformación producida cuando la Natuiraleza los hace rotar. Las esferas pueden Hacerse rotar en cualquier eje y en cualquier grado sin que cambie su perfil, lo cual hace que sea más simétrica.

La clave de la belleza está en la simetría

La simetría por rotación se encuentra en los pétalos de una flor o en los tentáculos de una medusa: aunque sus cuerpos roten, permanecen iguales. La simetría bilateral que hace que los lados derecho e izquierdo sean iguales y se presenta en casi todos los animales, incluido nosotros. Pero es uniendo estos aspectos se obtienen figuras realmente armoniosas. Si se trata de desplazamiento y rotación en un  mismo plano hablamos de una espiral, mientras que en el espacio sería una hélice, aunque ambas se encuentran por todas partes en la naturaleza.

Las simetrías se generan mediante las fuerzas que actúan sobre los cuerpos, descritas por leyes rigurosas e inequívocas, como una fórmula matemática y dependen de la existencia de fuerzas distintas que actúan en diversas  direcciones. Si éstas permanecen en equilibrio, no hay preferencia alguna hacia arriba o abajo, a la derecha o a la izquierda, y los cuerpos tenderán a ser perfectamente esféricos, como suele ocurrir en el caso de virus y bacterias, las estrellas y los mundos… las galaxias. Además, cuando el aspecto no es el de una esfera perfecta, la Naturaleza hará todo lo posible para hacercarse a esta .

¿Sería posible que la simetría material tuviera un paralelismo en la abstracción intelectual que son las leyes físicas? luego hace falta un esfuerzo mental considerable para pasar de lo material a lo intelectual, pero cuando se profundiza en ellla, la conexión aparece. En la naturaleza existen muchas cosas que nos pueden llevar a pensar en lo complejo que puede llegar a resultar entender cosas que, a primera vista, parecían sencillas.

Me explico:

Fijémonos, por ejemplo, en una Flor de Girasol y en las matemáticas que sus semillas conllevan. Forman una serie de números en la que la cifra es la suma de las dos precedentes (por ejemplo 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…) se denomina, en términos matemáticos, sucesión de Fibonacci, una ley que se cumple incluso en el mundo vegetal, como hemos podido comprobar en las semillas del girasol, dispuestas en espiral y que respetan ésta fórmula. La podemos ver por todas partes.

En el mundo inorgánico las leyes de la cristalización del agua congelada, determinadas por las fuerzas que actúan entre las moléculas, hacen que los cristales adopten formas que son infinitas y varían con respecto a un tema común: la estrella de seis puntas. Sin embargo, los planetas son esféricos porque han nacido en la primordial que rodeaba al Sol, atrayendo materia indeferentemente de todas partes.

                                Una bonita imagen especular

Claro que, en la Naturaleza, nada ocurre porque sí, todo tiene su por qué, y, todo lo que en ella podemos contemplar posee una funcionalidad que está directamente relacionada con su mecánica, con el medio en el que habita, con lo que el Universo espera que haga en su medio y, para ello, dota a figura con aquellos “trajes” que mejor les permita realizar aquello para lo que están destinados.

Vamos a generalizar un paso más el concepto de simetría, planteándonos si es posible que una ley física se cumpla en cualquier lugar. ¿En cualquier lugar… de dónde?, ¿de nuestra ciudad?, ¿de nuestro planeta? No: del universo. Una ley que fuera válida en cualquier lugar del universo sería una ley simétrica respecto al espacio. Se cumpliría dondequiera que se hiciese un experimento para comprobarla.

Fíjense que nuestra idea de simetría se va haciendo más compleja y más profunda. no nos detenemos en ver si la forma material de un objeto es simétrica, ni de si la escritura de una fórmula matemática es simétrica. Ahora nos preguntamos si una ley física es válida en todo el Universo.

La otra simetría interesante para una ley física es la que se refiere al tiempo. Cierta ley física se cumple ; ¿antes también?, ¿se cumplirá pasado algún tiempo? Una ley que fuera cierta en cualquier instante de la historia del universo sería una ley simétrica respecto al tiempo.

Monografias.com

Lo que nos preguntamos es: ¿son simétricas o no las leyes de la física?

Hasta donde alcanzan nuestras medidas, las leyes físicas (y, por tanto, la interacción gravitatoria) sí son simétricas respecto al espacio y respecto al tiempo. En cualquier lugar y momento temporal del universo, la Naturaleza se comporta igual que aquí y ahora en lo que se refiere a estas leyes.

Esta simetría es un arma muy poderosa para investigar hacia el pasado y hacia el futuro, ya que nos permite suponer (y, en la medida en que confiemos en la seguridad de la simetría,conocer) locales donde jamás podremos llegar por la distancia espacial y temporal que nos separa de muchas partes del universo. Así, por ejemplo, gracias a esta simetría, podemos calcular que el Sol lleva 5.000 millones de años produciendo energía y que le quedan, probablemente, otros 5.000 millones hasta que consuma toda su masa. Esto lo podemos aventurar suponiendo que en ese enorme tramo de 5.000 + 5.000 = 10.000 millones de años las leyes físicas que determinan los procesos mediante los cuales el Sol consume su propia masa como combustible (las reacciones nucleares que le permiten producir energía), fueron, son y serán las mismas aquí en el Brazo de orión donde nos encontramos como en los arrabales de la Galaxia Andrómeda donde luce una estrella como nuestro Sol que, también envía luz y calor a sus planetas circundantes, y, por muy lejos que podamos mirar, siempre veremos lo mismo.

Por tanto, en cierto modo, la simetría se vuelve tan importante o más que la propia ley física.

La regularidad de las formas de la Naturaleza se refleja incluso en la cultura humana, que desde siempre intenta inspirarse en el mundo natural conformar su propio mundo. Existen hélices en las escaleras de palacios, castillos y minaretes y en las decoraciones de esculturas y columnas. Las espirales abundan en los vasos, en los bajorrelieves, en los cuadros,  en las esculturas en los collares egipcios, griegos, celtas, precoolombinos e hindúes e, incluso, en los tatuajes con los que los maoríes neozelandeses se decoran el rostro.

La búsqueda de la perfección geométtrica y de las propiedades matemáticas pueden ser una guía importante en el estudio científico del mundo. Paul Dirac, una de los padres de la moderna mecánica cuántica, solía decir que “si una teoría es bella desde el punto de vista matemático, muy probablemente es también verdadera”.

A todo esto, no debemos olvidar que todo, sin excepción, en nuestro Universo, está sometido a la Entropía que nos trae el paso inexorable de eso que llamamos “Tiempo”, y que, convierte perfectas simetrias de joven belleza, en deteriorados objetos o entidades que, nos viene a recordar que nada es perpetuo, que todo pasa y se transforma. Claro que, de alguna manera, todo vuelve a resurgir.

Un dolor que llevo dentro de mí es el no poder contemplar la verdadera belleza que  estándo presente en los seres vivos inteligentes, en la mayoría de los casos, se nos queda oculta a nuestra percepción, toda vez que esa clase de belleza, que no podemos ver pero sí percibir, sólo la podemos captar con el trato y la convivencia y, verdaderamente, tengo que admitir que, algunas bellezas que he tenido la suerte de poder “ver con los ojos del espíritu”, llegan a ser segadoras, deslumbrantes, su explendor es muy superior al de la estrella más brillante del cielo, y,  seguramente (estoy seguro) como a muchos de ustedes les pasa, tengo la suerte de tenerla junto a mí desde hace muchos años. y, si pienso en ello en profundidad y detenimiento, no tengo más tremedio que concluir que es ese brillo y esplendor el que me da la fuerza para seguir cada dia en la dura lucha a la que el destino nos ha tenido abocado desde el nacimiento. ¡Siempre un objetivo que conseguir y una meta que alcanzar!

¡Sí que es importante la Belleza! (y no me refiero sólo a la física que, esa, es pasajera) Dirac tenía toda la razón. Y, no digamos la Simetría que undican con el dedo de la Naturaleza el camino a seguir a muchos físicos que quieren desvelar sus secretos.

emilio silvera

¿Podría ser que electromagnetismo no sea sino gravedad con una…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Kaluza le envió a Einstein una teoría mediante la cual, se producía la unión de las dos teorías más famosas hasta el momento, la de la relatividad de con la del electromagnetismo de Maxwell, y, para ello, sólo había que formular la teoría en la quinta dimensión, es decir, poner una dimensión extra a las tres ya conocidas y a la temporal.
     Theodor Kaluza

Cuando Einstein oyó hablar de esta idea de Kaluza se entusiasmó con ella,  pero pronto comprendió que con esa teoría no se podía predecir nada y la abandonó. La característica esencial de este diagrama de abajo es que la materia, junto con las ecuaciones de Yang-Mills y de Einstein, está ahora incluida en el mismo campo de supergravedad de 11 dimensiones. Veámoslo así:

La materia con todas las fuerzas fundamentales de la naturaleza. Los bosones intermediarios o partículas portadoras de las fuerzas como el fotón para el electromagnetismo, los gluones para la fuerza nuclear fuerte, las partículas W y Z para la nuclear débil y, en la partícula portadora de la gravedad, el gravitón, ponemos el signo de interrogación, ya que se sabe que esta ahí en algún sitio pero hasta la fecha no ha sido detectado.

Los expertos en supergravedad redescubrieron esta idea de Kaluza y Klein.Una vez que hemos empezado a considerar muchas dimensiones extra, entramos en una especie de Valhalla de las matemáticas donde podemos enrollar las cosas de muchas maneras diferentes. Las componentes de los campos de fuerza gravitatorias en las direcciones enrolladas actúan como diferentes campos gauge. Obtenemos así, prácticamente por nada, no sólo electromagnetismo sino también otras fuerzas gauge. El número mágico de dimensiones es 11, tres de las cuales forman el espacio ordinario, una el tiempo y las siete restantes están enrolladas. Haciendo ciertos trucos con los números, este sistema resulta tener una simetría mayor que nuestro viejo sistema espacio-temporal de cuatro dimensiones. Los campos y las partículas observadas ahora pueden ser fácilmente acomodados, ya que una simetría mayor significa que los indeseados infinitos se cancelan unos a otros con mayor perfección que antes.

Ciertamente esta idea, esta idea parece ser la contraria a la noción de que el espacio y el tiempo sean nada más que puntos aislados, ya que entonces la noción de “dimensión” deja de tener sentido. Pero los matemáticos no se sienten amenazados por tales contracciones aparentes. De acuerdo con ellos,  hay todo tipo de relaciones entre los espacios enrollados y la matemática de los números enteros, “sueltos” (uno podría indicar los puntos aislados del espaciotiempo con enteros). ¿Podría ser que exitieran diferentes formas de describir nuestro espacio y el tiempo que todas fueran matemáticamente equivalentes? Simplemente no lo sabemos.

Lo que sospecho es que la Supergravedad de dimensión once puede que sólo sea, en el mejor de los casos, la punta de un amravilloso Iceberg, p que sea simplemente errónea.

                                          Se intenta y se utilizan energías inmensas pero, no siempre podemos ver todo lo que hay

No deberíamos olvidar en este  momento que estamos tratando de suposiciones y que los argumentos teóricos que la sustentan son aún, extremadamente débiles. ¿Por qué supersimetría? ¿Por qué Once Dimensiones? ¿Por qué en este mundo todo debería ser maravillosamente simétrico? Y, sobre todo, ¿por qué un continuo, si ya sabemos que el espacio y el tiempo han perdido su significado habitual a distancias ultracortas? Además está la dificultad persistente en esta clase de teorías de que las interacciones entre partículas son siempre tratadas como perturbaciones que afectan a sus trayectorias las cuales, de otra manera, serían perfectamente rectilineas.

Pero entonces habrá nuevas (y diferentes) perturbaciones sobre esas trayectorias perturbadas, y perturbaciones sobre ellas, y así sucesivamente. esta serie de perturbaciones no acaba nunca y este es un problema que se impone en cualquier proceso de formulación exacta.

Es cierto que este problema también afecta al viejo “modelo estándar”, pero al menos allí se podría argüir que, donde realmente importaba, las fuerzas podrían mantenerse pequeñas  y que la serie de perturbaciones convergía rápidamente. Esto no se puede mantener así en nuestra teoría de la (super)  Gravedad, ya que a distancias pequeñas las interacciones se hacen fuertes.

CNO Cycle.svg

Los Quarks permacen confinados dentro del núcleo formando protones y neutrones y, cuando tratan de separase, la fuerza nuclear fuerte aumenta, en cambio, cuando los Quarks están juntos, se mueven con facilidad y la fuerza disminuye: Libertad asintótica de los Quarkas.

Es cierto que fue un alivio descubrir aquellas primeras dificultades serias en esta teoría, u resultó que no era posible tener infinitos que se cancelasen en diagramas con más de siete lazos cerrados. La teoría, o mejor dicho, la especulación de que esto fuese una “teoría de todo” se abandonó (como otras veces ocurrió) porque algo mñás interesante apareció en el horizonte de la Física. ¡Las Supercuerdas!

Aunque hemos hablado mucho de ellas, creo que debemos profundizar algo más en esta prometedora teoría y, aunque de momento es sólo una especulación avanzada…¿quién sabe? lo que nos podría traer. Hablaremos de ella en próximos trabajos.

emilio silvera

Desde el pasado pero, ¡siempre hacia el futuro!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

[IMG]

                      Imagem cedida por Diamond Light Source

Acelerador de partículas construido en las instalaciones del Diamond Ligth Source en Oxfordshire (Inglaterra). Llamado la Fuente luminosa de diamante, el Diamond synchrotron comenzó a funcionar en enero de 2007. La luz que puede generar este artefacto es 100 mil millones de veces más brillante que un rayo X estándar médico.

Un acelerador de partículas (como todos sabemos) es, a grandes rasgos, una máquina que mediante campos electromagnéticos acelera partículas hasta que alcanzan velocidades inimaginables. Luego, por ejemplo, hacen chocar estas partículas y así se consigue saber de qué está formada la materia en sus partes más diminutas (mucho más diminutas que un átomo). Eso es lo que hace el LHC.

Sin embargo, en el caso de este acelerador, los científicos esperaban usar la luz del Diamond synchrotron para “leer” los textos antiguos que han sufrido el daño significativo. Porque los potentes rayos X permitirán hacerlo sin ni siquiera abrir el libro. El synchrotron emite un rayo X tan poderoso que, al incidir en una voluta, permite producir una imagen de 3-D del texto.

La técnica ya había sido aplicada satisfactoriamente en textos escritos con la tinta de hierro, que los escribanos comenzaron a usar en el siglo XII. Algunas de las tintas hechas con extractos vegetales y sales de hierro utilizadas en el Siglo XII deterioran el tipo de pergamino utilizado, imposibilitando la lectura de documentos valiosos. Simplemente he querido incluir esta introducción para que os hagais una idea de hasta donde puede llegar nuestro ingenio.

Inventos-del-siglo-XXI-4.jpg

                                                                       (ilustración de un nano robot)

Si hablamos de nuevos inventos en los campos más diversos, nos podríamos sorprender de lo que se ha conseguido en los últimos años que, desde  una “mano robótica” capaz de realizar toda clase de movimientos, “El sexto sentido”, una interfaz gestual portable que permite la interacción entre los gestos y los movimientos naturales del cuerpo humano con una computadora,  o, un Implantes de retina, que devuelve la visión a pacientes con degeneración macular y ceguera mediante implantes microelectrónicos. Entre los últimos inventos dedestaca una variedad de plástico hecha con orina de cerdo y lentes de contacto biónicos. Se inventa un proceso capaz de cultivar parte de un corazón humano a partir de células madre, una máquina que puede imprimir una novela completa de 300 páginas en tan solo 3 minutos y por un costo ínfimo, una batería que funciona con cualquier solución azucarada y enzimas de digestión de glucosa capaz de extraer electrones que crean electricidad…

Inventos-del-siglo-XXI-0.jpg

Las nuevas tecnologías y los inventos que se están produciendo en el diglo XXI, harían abrir la boca por el asombro a los filósofos naturalistas del pasado que trataban de profundizar en el conocimiento de la Naturaleza. Ellos fueron los que pusieron las primeras piedras del Edificio que hoy, llamamos Ciencia.

Corazones e Hígados artificiales, el guante de braille para ciegos, o, yendo más allá…

Inventos-del-siglo-XXI-3.jpg

Un “Diente telefónico”. Se trata de un minúsculo implante que se coloca en el diente molar y que mediante un complejo sistema de señales y vibraciones permite recibir llamadas telefónicas. Tejido artificial nanotecnológico, Parche hormonal anticonceptivo, o, esa invención que hace posible que con una pequeña gota nos permite descubrir si en una bebida se ha vertido alguna de las llamadas “drogas del depredador” como las GHB o la Ketamina. Estas drogas suelen utilizarse por violadores y secuestradores pues facilitan dicho crimen al desinhibir a la víctima. El “Motor a nanoescala”, lo suficientemente pequeño como para viajar en la espalda de un virus. Un dispositivo que administra medicamentos a través de ondas sonoras que sustituyen las inyecciones, siendo igual de efectivas. Plástico inteligente capaz de modificar su estructura ante la exposición de determinadas longitudes de onda. Un dispositivo móvil creado por Aqua Sciences que permite beber agua del aire. ¿Os imaginais lo que supondrá eso en la travesía de un desierto? INSCENTINEL inventa un sistema de entrenamiento para que abejas sean capaces de detectar bombas y explosivos.

Como se descubrió la penicilina

  Las cosas no llegaron por arte de magia… ¡muchas ideas hicieron falta!

Ahora miramos a nuestro alrededor y todo lo que vemos que ocurre nos parece lo normal, que las cosas son así. Sin embargo, habría que pensar -por ejemplo, en el ámbito de la física de partículas- que, el diluvio de estructuras subnucleares que desencadenó “el acelerador”  de partículas, fue tan sorprende como los objetos celestes que descubrió el telescopio de Galileo. Lo mismo que pasó con la revolución galileana, con la venida de los aceleradores de partículas, la Humanidad adquirió unos conocimientos nuevos e insospechados acerca de cómo era el mundo, la naturaleza de la materia.

Que en este caso de los aceleradores se refería al “espacio interior” en lugar de al “espacio exterior” no los hacía menos profundos ni menos importantes. El descubrimiento de los microbios y del universo biológico invisible por Pasteur fue un descubrimiento similar y, ya puestos, haremos notar que pocos se acuerdan ya de Demócrito, aquel filósofo sontiente que, tomó prestado de los antiguos hindúes, la idea del á-tomo, la expresión “más pequeña de la materia” que era “indivisible”.

Ahora sabemos que Demócrito estaba equivocado y que el átomo, sí se puede dividir. Sin embargo, él señaló un camino y, junto a Empédocles, el que hablaba de “elementos” como agua, aire, fuego y tierra, para significar que eran los componentes, en la debida proporción de todo lo que existía…, junto a otros muchos, nos han traído hasta aquí. Así que, los inventos que antes se mencionaban, no han llegado porque sí, ha sido un largo camino, mucha curiosidad y mucho trabajo y, no lo olvidemos: ¡Observar, Imaginar y Experimentar!

Nos dimos cuenta y estaba claro que la búsqueda de la menor de las partículas requería que se expandiese la capacidad del ojo humano: primero lupas, después microscopios y, finalmente… ¡Aceleradores! que, utilizando energías inimaginables ( 14 TeV), nos llevaría hasta las entrañas de la materia que tratamos de conocer.

Todos estos experimentos en los aceleradores han posibilitado muchos de los avances que hoy día conocemos en los distintos campos del saber humano. Generalmente, cuando se habla de aceleradores de partículas, todos piensan en el Bosón de Higgs y cosas por el estilo. Sin embargo, las realidades prácticas de dichos ingenios van mucho más allá.

CERN

“La “gran ciencia” (big science) genera tecnología, tecnología punta, genera industria, mucha industria, genera riqueza. Los grandes aceleradores de partículas, como el LHC del CERN, son ejemplos perfectos de ello. La tecnología de aceleradores de partículas ha permitido desarrollar dispositivos de implantación iónica que se utilizan para la fabricación de mejores semiconductores, para la fabricación prótesis de rodilla más duraderas, para la fabricación de neumáticos menos contaminantes, para el desarrollo de nuevas terapias contra el cáncer. Esto último gracias a que lo último de lo último en superimanes superconductores está en los grandes aceleradores. Esta tecnología ha permitido desarrollar y permitirá mejorar los potentes imanes necesarios en el diagnóstico clínico (como en resonancia magnética nuclear) y para terapias contra el cáncer basadas en haces de protones. Nos lo cuenta Elizabeth Clements, en “Particle physics benefits: Adding it up,” Symmetry, dec. 2008″ (Francis (th)E mule Science’s News).

Beneficios de la investigación básica en Física de Partículas: La tecnología desarrollada en los aceleradores de partículas tiene beneficios indirectos para la Medicina, la Informática, la industria o el medio ambiente. Los imanes superconductores que se usan para acelerar las partículas han sido fundamentales para desarrollar técnicas de diagnóstico por imagen como la resonancia magnética. Los detectores usados para identificar las partículas son la base de los PET, la tomografía por emisión de positrones (antipartícula del electrón). Y muchos hospitales utilizan haces de partículas como terapia contra el cáncer.

Con velocidades 10.000 mayor que una conexión típica, “The Grid” podrá enviar un catálogo completo de información desde Gran Bretaña a Japón en menos de 2 segundos. Esta red, creada en el centro de física de partículas CERN, puede proveer el poder necesario para transmitir imágenes holográficas; permitir juegos en línea con cientos de miles de personas, y ofrecer una telefonía de alta definición en video al precio de una llamada local

Así, la World Wide Web (WWW), el ‘lenguaje’ en el que se basa Internet, fue creado en el CERN para compartir información entre científicos ubicados alrededor del mundo, y las grandes cantidades de datos que se producen motivan el desarrollo de una red de computación global distribuida llamada GRID. Los haces de partículas producidos en aceleradores tipo sincrotrón o las fuentes de espalación de neutrones, instrumentos creados para comprobar la naturaleza de la materia, tienen aplicaciones industriales en la determinación de las propiedades de nuevos materiales, así como para caracterizar estructuras biológicas o nuevos fármacos. Otras aplicaciones de la Física de Partículas son la fabricación de paneles solares, esterilización de recipientes para alimentos o reutilización de residuos nucleares, entre otros muchos campos.

Tambien en el campo de la Astronomía, el LHC, nos puede ayudar a comprender cosas que ignoramos. Nos henmos preguntado sobre la existencia de estrellas de Quarks-Gluones, y, sobre el tema, algo nos ha dicho ya el Acelerador Europeo de Partículas que trata de llegar hasta “la materia oscura” y algunos otros enigmas que nos traen de cabeza.

No es extraño encontrarnos una mañana al echar una mirada a la prensa del día, con noticias como éstas:

Colisión de iones pesados registrada por el experimento ALICE. (Imagen: CERN.)

El acelerador europeo ha obtenido plasma de quarksgluones, el primer estado de la materia tras el Big Bang.

“No todo son bosones de Higgs en las instalaciones del CERN. Aún hay muchas preguntas sobre el universo y sus partículas que se pueden responder a base de colisiones de alta energía. Y en eso, elLHC es el mejor. Un grupo de investigadores del consorcio europeo ha realizado nuevas mediciones de la que creen que es el primer tipo de materia que hubo durante los instantes iniciales del universo. El plasma de quarksgluones.

Los quarks y los gluones son, respectivamente, los ladrillos y el cemento de la materia ordinaria. Durante los primeros momentos tras el Big Bang, sin embargo, no estaban unidos constituyendo partículas —como protones o neutrones— sino que se movían libremente en estado de plasma. A base de colisionar iones de plomo —que es un átomo muy pesado— a velocidades cercanas a las de la luz, el LHC pudo recrear durante pequeños lapsos de tiempo las que se creen fueron las condiciones de los primeros momentos del universo.

El plasma de quarksgluones es extremo y efímero. Por eso los investigadores han tenido que analizar los resultados de más de mil millones de colisiones para obtener resultados significativos.”

Evento de colisión de 7 TeV visto por el detector LHCb. El experimento del LHCb en el LHC estará bien ubicado para explorar el misterio de la antimateria. Crédito: LHC, CERN. Ya sabéis que, durante muchos años, la ausencia de antimateria en el Universo ha atormentado a los físicos de partículas y a los cosmólogos: mientras que el Big Bang debería haber creado cantidades iguales de materia y antimateria, no observamos ninguna antimateria primordial hoy en día. ¿Dónde ha ido? Los experimentos del LHC tienen el potencial de dar a conocer los procesos naturales que podrían ser la clave para resolver esta paradoja.

Cada vez que la materia es creada a partir de energía pura, se genera la misma cantidad de partículas y antipartículas. Por el contrario, cuando la materia y la antimateria se encuentran, se aniquilan mutuamente y producen luz. La antimateria se produce habitualmente cuando los rayos cósmicos chocan contra la atmósfera de la Tierra, y la aniquilación de materia y antimateria se observa durante los experimentos de física en los aceleradores de partículas.

Equipos de físicos en todo el mundo siguen analizando datos. Aquellas primeras colisiones de protones a la alta energía prevista de 7 Teraelectronvoltios (TeV), una potencia jamás alcanzada en ningún acelerador antes, nos puede traer noticias largamente esperadas y desvelar misterios, contestar a preguntas planteadas y, en definitiva, decirnos cómo es la Naturaleza allí, donde el ojo humano no puede llegar pero, si la inteligencia.

Lo cierto es que, todos tenemos que convenir en el hecho cierto de que, el LHC es el mayor experimento físico de la historia de la Ciencia y que, de seguro, nos dará la oportunidad de comprender muchas cuestiones que antes se nos aparecían oscuras e indistinguibles entre la bruma de esa lejanía infinitesimal de la cuántica. Ahora, tenemos una herramienta capaz de llevarnos hasta aquellos primeros momentos en los que se construyó la historia del universo y, si podemos, de esta manera “estar allí”, veremos, con nuestros propios ojos lo que pasó y por qué pasó de esa manera.

Toda esta larga exposición de temas, de alguna manerta conectados, viene al caso para dejar claro que, aquellos detractores del LHC, no llevaban la razón y, sus protestas no tenían un contenido científico. El Acelerador de Partículas que llamamos abreviadamente LHC, nos ha dado y nos seguirá dando, muchos beneficios para toda la Humanidad.

emilio silvera

¡La curiosidad humana! Siempre queriéndo saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

 

 

 

Sagitario A es una poderosa fuente de ondas de radio situada en el corazón mismo de la Vía Láctea, nuestra Galaxia, y ubicada en la Constelación de …

Hubo que descubrir la historia y tratar de explorarla. Los mensajes del pasado se transmitían primero a través de las habilidades de la memoria, luego de la escritura y, finalmente, de modo explosivo, en los libros. El insospechado tesoro de reliquias que guardaba la tierra se remontaba a la prehistoria. El pasado se convirtió en algo más que un almacén de mitos y leyendas o un catálogo de lo familiar. Todavía, en algunos rincones antiguos de nuestras ciudades se pueden encontrar vestigios del pasado.

Casco HistóricoIglesia de los Padres FranciscanosIglesia de Sabugo

Calles y edificios del casco antiguo de Avilés (uno de los más importantes del norte de España) están declarados Conjunto Histórico Artístico por el Estado Español – La ciudad conserva importantes vestigios del pasado, algunos de ellos realmente notables. Lo mismo ocurre en otras muchas ciudades repartidas por todo el mundo y que nos recuerda lo que se fue.

Algunos mensajes que todavía podemos leer en algunos perdidos lugares de la geografía española, ¡son tan inocentes! que nos remontan a otros tiempos, a otro mundo que, aunque nos parezca mentira, es el mundo nuestro, el mismo que habitamos y la diferencia está marcada por el paso del tiempo y la evolución. Es fácil pasar de lo cotidiano y entrañable al átomo invisible que está, sin estar, presente en todo y en todos. En relación al átomo se podría decir, sin temor a equivocarnos que, es lo invisible siempre presente.

 

Nuevos mundos terrestres y marinos, riquezas de continentes remotos, relatos de viajeros aventureros que nos traían otras formas de vida de pueblos ignotos y lejanos, abrieron perspectivas de progreso y novedad. La sociedad, la vida diaria del hombre en comunidad, se convirtió en un y cambiante escenarios de descubrimientos. Muy atrás quedaron aquellos tiempos en que la vida que pululaba por el planeta era rudimentaria, sin consciencia. El nacimiento de la Humanidad, lleno el mundo de pensamientos.

                              Cuando en el Neolítico se descubrió la rueda y el arado, ¿qué salto hacia el futuro no daría la Humanidad?

Aquí, como sería imposible hacer un recorrido por el ámbito de todos los descubrimientos de la Humanidad, me circunscribo al ámbito de la física, y, hago un recorrido breve por el mundo del átomo que es el tema de hoy, sin embargo, sin dejar de mirar al hecho cierto de que, TODA LA HUMANIDAD ES UNA, y, luego, teniendo muy presente que, todo lo que conocemos es finito y lo que no conocemos infinito. Es bueno tener presente que intelectualmente nos encontramos en medio de un océano ilimitado de lo inexplicable. La tarea de cada generación es reclamar un poco más de terreno, añadir algo a la extensión y solidez de nuestras posesiones del saber (eso nos aconseja Wheeler).

    Como decía Einstein:  “El eterno misterio del mundo es su comprensibilidad.”

Ahora amigos, hablemos del átomo. Veamos, para comenzar como es, la imagen de un átomo en movimiento (aunque aquí lo veamos estático, utilizad la imaginación).

Átomo en movimiento

“Ha supuesto un gran avance en el campo de la Física. Científicos de la Universidad de Otago, en Nueva Zelanda, desarrollaron una técnica para aislar sistemáticamente y capturar un átomo en rápido movimiento neutral, y también han conseguido en primicia ver y fotografiar este átomo por primera vez, lo que han denominado la universidad como el “sueño de los científicos.

Átomo de Rubidio 85 diciendo "hola" a la cámara.

La captura del átomo de rubidio 85 es el resultado de un proyecto de investigación de tres años de duración financiado por la Fundación para la Investigación, Ciencia y Tecnología, y ha suscitado el interés en la comunidad científica internacional por las nuevas investigaciones que podrán surgir de este hito.”

 

 

La Tierra desde el espacio

                                             ¡Hay tántos mundos dentro de este nuestro! Sí,  dentro de cada Mente existe un mundo… ¡Tan diferentes!

De lo Grande a lo Pequeño

El 6 de Agosto de 1945 el mundo recibió estupefacto desde Hiroshima la noticia de que el hombre había desembarcado en el oscuro continente del átomo. Sus misterios habrían de obsesionar al siglo XX. Sin embargo, el “átomo” había sido más de dos mil años una de las más antiguas preocupaciones de los filósofos naturales. La palabra griega átomo significa unidad mínima de materia, que se suponía era indestructible. el átomo era un término de uso corriente, una amenaza y una promesa sin precedentes.

Leucipo (c. 450-370 a.C.), filósofo griego. Es reconocido como creador de la teoría atómica de la materia, más tarde desarrollada por su discípulo, el filósofo griego Demócrito. Según teoría, toda materia está formada por partículas idénticas e indivisibles llamadas átomos.

Leucipo fue un griego legendario. Sin embargo, fue su discípulo Demócrito el que dio al atomismo su clásica como filosofía: “la parte invisible e indivisible de la materia”, se divertía tanto con la locura de los hombres que era conocido como “el filósofo risueño” o “el filósofo que ríe”. No obstante fue uno de los primeros en oponerse a la idea de la decadencia de la Humanidad a partir de una Edad de Oro mítica, y predicó sobre una base de progreso. Si todo el Universo estaba compuesto solamente por átomos y vacío, no sólo no era infinitamente complejo, sino que, de un modo u otro, era inteligible, y seguramente el poder del hombre no tenía límite.

Lo cierto es que, nuestro futuro es un libro en blanco y, lo que se pueda leer en él, aún no está escrito … ¿dependerá de nosotros?

Tito Lucrecio Caro

Lucrecio (c. 95 a.C. -c. 55 a.C.) perpetuó en De rerum natura (De la naturaleza de lascosas) uno de los más importantes poemas latinos, al atomismo antiguo. Con la intención de liberar al pueblo del temor a los dioses, el poeta demostró que el mundo entero estaba constituido por vacío y átomos, los cuales se movían según sus leyes propias; que el alma moría con el cuerpo y que por consiguiente no había razón temer a la muerte o a los poderes sobrenaturales.

Lucrecio decía que comprender la Naturaleza era el único modo de hallar la paz de espíritu, y, como era de esperar, los padres de la Iglesia que pregonaban la vida eterna, atacaron sin piedad a Lucrecio y fue ignorado y olvidado durante toda la Edad Media que, como sabéis, fue la culpable de la paralización del saber de la Humanidad. Sin embargo, Lucrecio fue, una de las figuras más influyentes del Renacimiento.

Así pues, en un principio el atomismo vino al mundo sistema filosófico. Del mismo modo que la simetría pitagórica había proporcionado un marco a Copérnico, la geometría había seducido a Kepler y el círculo perfecto aristotélico hechizo a Harvey, así los “indestructibles” átomos de los filósofos atrajeron a los físicos y a los químicos. Francis Bacon observó que “la teoría de Demócrito referida a los átomos es, si no cierta, al menos aplicable con excelentes resultados al análisis de la Naturaleza”.

                                                            Descartes

Descartes (1596-1650) inventó su propia noción de partículas infinitamente pequeñas que se movían en un medio que llamó éter. Otro filósofo francés, Pierre Gassendi (1592-1655), pareció confirmar la teoría de Demócrito y presentó otra versión más del atomismo, que Robert Boyle (1627-1691) adaptó a la química demostrando que los “elementos clásicos -tierra, aire, fuego y agua- no eran en absoluto elementales.

Las proféticas intuiciones de un matemático jesuita, R.G. Boscovich (1711-1787) trazaron los caminos una nueva ciencia, la física atómica. Su atrevido concepto de “los puntos centrales” abandonaba la antigua idea de una variedad de átomos sólidos diferentes. Las partículas fundamentales de la materia, sugería Boscovich, eran todas idénticas, y las relaciones espaciales alrededor de esos puntos centrales constituían la materia… Boscovich que había llegado a estas conclusiones a partir de sus conocimientos de matemáticas y astronomía, anunció la íntima conexión entre la estructura del átomo y la del Universo, entre lo infinitesimal y lo infinito.

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/John_Dalton_by_Charles_Turner.jpg/240px-John_Dalton_by_Charles_Turner.jpg

                   John Dalton

El camino experimental hacia el átomo fue trazado por John Dalton (1766-1844). Era este un científico aficionado cuáquero y autodidacta que recogió un sugestivo concepto de Lavoisier (1743-1794). Considerado una de los fundadores de la química moderna, Lavoisier, cuando definió un “elemento” como una sustancia que no ser descompuesta en otras sustancias por medio de ningún método conocido, hizo del átomo un útil concepto de laboratorio y trajo la teoría atómica a la realidad.

Dalton había nacido en el seno de una familia de tejedores de Cumberland, localidad inglesa situada en la región de los lagos, y estuvo marcada toda su vida por su origen humilde. A los doce ya se encontraba a cargo de la escuela cuáquera de su pueblo. Después, comenzó a ejercer la enseñanza en la vecina Kendal, y en la biblioteca del colegio encontró ejemplares de los Principia de Newton, de las Obras de la Historia Natural de Buffón, así un telescopio reflectante de unos setenta centímetros y un microscopio doble. Dalton recibió allí la influencia de John Gough, un notable filósofo natural ciego.

Dalton escribió a un amigo, “entiende muy bien todas las diferentes ramas de las matemáticas…Conoce por el tacto, el sabor y el olor de casi todas las plantas que crecen a casi treinta kilómetros a la redonda”. También Wordsworth elogia a Gough en su Excursión. Dalton recibió del filósofo ciego una educación básica en latín, griego y francés, y fue introducido en las matemáticas, la astronomía y todas las ciencias “de la observación”. Siguiendo el ejemplo de Gough, Dalton comenzó a llevar un meteorológico diario, que continuó hasta el día de su muerte.

Cuando los “disidentes” fundaron su colegio propio en Manchester, Dalton fue designado profesor de matemáticas y de filosofía natural. Halló una audiencia muy receptiva para sus experimentos en la Sociedad Literaria y Filosófica de Manchester, y presentó allí sus Hechos extraordinarios concernientes a la visión de los colores, que probablemente fue el primer sistemático sobre la imposibilidad de percibir los colores, o daltonismo, enfermedad que padecían tanto John Dalton como su hermano Jonathan. “He errado tantas veces el camino por aceptar los resultados de otros que he decidido escribir lo menos posible y solamente lo que pueda afirmar por mi propia experiencia”.

http://www.pasarlascanutas.com/fondos%20de%20pantalla/la_luz_al_final_del_tunel/la_luz_al_final_del_tunel_2560x1920.JPG

  Al final del túnel oscuro de la ignorancia, siempre nos aguarda la luz del saber pero, hay que recorrer la distancia alcanzar el resplandor el saber.

Dalton observó la aurora boreal, sugirió el probable origen de los vientos alisios, las causas de la formación de nubes y de la lluvia y, sin habérselo propuesto, introdujo mejoras en los pluviómetros, los barómetros, los termómetros y los higrómetros. Su interés por la atmósfera le proporcionó una visión de la química que lo condujo al átomo.

Newton había confiado en que los cuerpos visibles más pequeños siguieran las leyes cuantitativas que gobernaban los cuerpos celestes de mayor tamaño. La química sería una recapitulación de la Astronomía. , ¿Cómo podía el hombre observar y medir los movimientos y la atracción mutua de estas partículas invisibles? En los Principios Newton había conjeturado que los fenómenos de la Naturaleza no descritos en este libro podrían “depender todos de ciertas fuerzas por las cuales las partículas de los cuerpos, debido a causas hasta desconocidas, se impulsan mutuamente unas hacia otras y se unen formando figuras regulares, o bien se repelen y se apartan unas de otras.”

En la esquina inferior derecha de esta placa fotográfica de Joseph John Thomson están marcados los dos isótopos del neón: neón-20 y neón-22.

Dalton se lanzó a la búsqueda de “estas partículas primitivas” tratando de encontrar algún medio experimental que le permitiera incluirlas en un sistema cuantitativo. Puesto que los gases eran la de materia más fluida, más móvil, Dalton centró su estudio en la atmósfera, la mezcla de gases que componen el aire, el cual constituyó el punto de partida de toda su reflexión sobre los átomos.

“¿Por qué el agua no admite un volumen similar de gas?, preguntó Dalton a sus colegas de la Sociedad Literaria y Filosófica de Manchester en 1803. “Estoy casi seguro de que la circunstancia depende del peso y el número de las partículas últimas de los diversos gases; aquellos cuyas partículas son más ligeras y simples se absorben con más dificultad, y los demás con mayor facilidad, según vayan aumentando en peso y en complejidad.”

Teoría cinética de los Gases: La termodinámica se ocupa solo de variables microscópicas, como la presión, la temperatura y el volumen. Sus leyes básicas, expresadas en términos de dichas cantidades, no se ocupan para nada de que la materia formada por átomos. Sin embargo, la mecánica estadística, que estudia las mismas áreas de la ciencia que la termodinámica, presupone la existencia de los átomos. Sus leyes básicas son las leyes de la mecánica, las que se aplican en los átomos que forman el sistema.

Dalton había descubierto que, contrariamente a la idea dominante, el aire no era un vasto disolvente químico único sino una mezcla de gases, uno de los cuales conservaban su identidad y actuaba de manera independiente. El producto de sus experimentos fue recogido en la trascendental TABLE: Of the Relative Weights of Ultimate Particles of Gaseous and Other Bodies (“Tabla de los pesos relativos de las partículas últimas de los cuerpos gaseosos y de otros cuerpos”).

En las reacciones químicas, los átomos no se crean ni se destruyen, solamente cambian de distribución.

Mucho hemos avanzado desde aquellos primeros elementos que, según Empédocles, lo conformaban todo mezclados en la debida proporción. Él decía que la tierra, el agua, el aire y el fuego eran todos los elemetos del mundo físico y que todo estaba hecho de a partir de ellos. No hay que quitarle mérito a la idea germinal que nos trajo muy lejos, hasta la Tabla periódica con sus 92 elementos naturales.

 

Finalmente trazará un programa de investigación que él mismo resume así: Es objetivo principal de este trabajo mostrar las ventajas que reporta la determinación precisa de los pesos relativos de las partículas últimas, tanto de los cuerpos simples como de los compuestos, determinar el de partículas simples elementales que constituyen una partícula compuesta y el número mínimo de partículas compuestas que entran en la formación de una nueva partícula compuesta.

Tomando al Hidrógeno como número uno, Dalton detalló en esta obra sustancias. Describió las invisibles “partículas últimas” como diminutas bolitas sólidas, similares a balas pero mucho más pequeñas, y propuso que se les aplicaran las leyes newtonianas de las fuerzas de atracción de la materia. Dalton se proponía lograr “una nueva perspectiva de los primeros principios de los elementos de los cuerpos y sus combinaciones”, que “sin duda…con el tiempo, producirá importantísimos cambios en el sistema de la química y la reducirá a una ciencia de gran simplicidad, inteligible hasta para los intelectos menos dotados”. Cuando Dalton mostró una “partícula de aire que descansa sobre cuatro partículas de agua como una ordenada pila de metralla” donde cada pequeño globo está en contacto con sus vecinos, proporcionó el modelo de esferas y radio de la química del siglo siguiente.

Dalton inventó unas “señales arbitrarias como signos elegidos para representar los diversos elementos químicos o partículas últimas”, organizadas en una tabla de pesos atómicos que utilizaba en sus populares conferencias. Naturalmente, Dalton no fue el primero en emplear una escritura abreviada para representar las sustancias químicas, pues los alquimistas también tenían su código. Pero él fue probablemente el primero que utilizó este tipo de simbolismo en un sistema cuantitativo de “partículas últimas”. Dalton tomó como unidad el átomo de Hidrógeno, y a partir de él calculó el peso de las moléculas como la suma de los pesos de los átomos que la componían, creando así una sintaxis moderna para la química. Las abreviaturas actuales que utilizan la primera letra del latino (por ejemplo H2O) fueron ideadas por el químico sueco Berzelius (1779-1848).

http://upload.wikimedia.org/wikipedia/commons/3/3c/London_-_The_Royal_Society_of_Arts.jpg

Habiendo cumplido más de 350 años, la Institución que presidiera Newton “Real Sociedad de Londres para el Avance de la Ciencia Natural” más conocida como “Royal Society”, sigue en plena y ostenta el respetado título de Sociedad más Antigua. ¡Si nos pudiera contar todo lo que allí se vivió”.

La teoría del átomo de Dalton no fue recibida en un principio con entusiasmo. El gran sir Humphry Davy desestimó inmediatamente sus ideas tachándolas de “más ingeniosas que importantes”. Pero las nociones de Dalton, desarrolladas en A New System of Chemical Philosophy (1808), eran tan convincentes que en 1826 le fue concedida la medalla real. Como Dalton no olvidó nunca su origen plebeyo, permaneció siempre apartado de la Royal Society de Londres, pero fue elegido miembro, sin su consentimiento, en 1822. Receloso del tono aristocrático y poco profesional de la Sociedad, él se encontraba más a gusto en Manchester, donde realizó la mayor parte de su obra, colaboró con Charles Babage y contribuyó a fundar la Asociación Británica el Progreso de la Ciencia, cuyo objetivo era llevar la ciencia hasta el pueblo. Los newtonianos partidarios de la ortodoxia religiosa no creían que Dios hubiera hecho necesariamente sus invisibles “partículas últimas” invariables e indestructibles. Compartían con Isaac Newton la sospecha de que Dios había utilizado su poder “ variar las leyes de la Naturaleza y crear mundos diversos en distintos lugares del Universo”.

atomo dalton

Las verdaderas investigaciones sobre el átomo comenzaron en el siglo XVII, cuando los experimentos de Robert Boyle dieron impulso a la investigación de las intimidades de la materia. En 1803, el científico inglés John Dalton propuso por primera vez, la teoría de que cada elemento tiene un tipo particular de átomo y que cualquier cantidad de un mismo elemento está formada por átomos idénticos. Lo que distingue a un elemento de otro es la naturaleza de sus átomos.

El átomo indestructible de Dalton se convirtió en el fundamento de una naciente ciencia de la química, proporcionando los principios elementales, las leyes de composición constante y de proporciones múltiples y la combinación de elementos químicos en razón de su peso atómico. “El análisis y la síntesis química no van más allá de la separación de unas partículas de otras y su reunión”, insistió Dalton. “La creación o la destrucción de la materia no está al alcance de ningún agente químico. Sería lo mismo tratar de introducir un planeta en el Sistema Solar o aniquilar uno de los ya existentes que crear o destruir una partícula de Hidrógeno.” Dalton continuó usando las leyes de los cuerpos celestes visibles como indicios del Universo infinitesimal. El profético sir Humphry Davy, sin embargo, no se convencía, “no hay razón para suponer que ha sido descubierto un principio real indestructible”, afirmó escéptico.

                            Gay-Lussac

Dalton no era más que un Colón. Los Vespucios aún no habían llegado, y cuando lo hicieron trajeron consigo algunas sorpresas muy agradables y conmociones aterradoras. Entretanto, y durante medio siglo, el sólido e indestructible átomo de Dalton fue muy útil para los químicos, y dio lugar a prácticas elaboraciones. Un científico francés, Gay-Lussac, demostró que cuando los átomos se combinaban no lo hacían necesariamente de dos en dos, como había indicado Dalton, sino que podían agruparse en asociaciones distintas de unidades enteras. Un químico italiano, Avogadro (1776-1856), demostró que volúmenes iguales de gases a la misma temperatura y presión contenían el mismo de moléculas. Un químico ruso Dmitri Mendeléiev, nos trajo la Tabla Periódica de los elementos, propuso una sugestiva “Ley periódica” de los elementos. Si los elementos estaban dispuestos en orden según su creciente peso atómico entonces grupos de elementos de características similares se repetirían periódicamente.

                           Dmitri Mendeléiev

Más tarde se trasladó a Alemania, ampliar estudios en Heidelberg, donde conoció a los químicos más destacados de la época. A su regreso a Rusia fue nombrado profesor del Instituto Tecnológico de San Petersburgo (1864) y profesor de la universidad (1867), cargo que se vería forzado a abandonar en 1890 por motivos políticos, si bien se le concedió la dirección de la Oficina de Pesos y Medidas (1893).

Entre sus trabajos destacan los estudios acerca de la expansión térmica de los líquidos, el descubrimiento del punto crítico, el estudio de las desviaciones de los gases reales respecto de lo enunciado en la ley de Boyle-Mariotte y una formulación más exacta de la ecuación de . En el campo práctico destacan sus grandes contribuciones a las industrias de la sosa y el petróleo de Rusia.

Todos recordamos cuán difícil era memorizar la tabla periódica en el colegio. Más todavía que memorizar la tabla de multiplicar. Porque, además, la tabla periódica estaba compuesta por nombres y valores extraños, poco útiles la vida diaria. Sin embargo, algunos profesores de vocación, se valían de mil triquiñuelas para que, los niños la pudieran memorizar.

Con todo, su principal logro investigador fue el establecimiento del llamado sistema periódico de los elementos químicos, o tabla periódica, gracias al cual culminó una clasificación definitiva de los citados elementos (1869) y abrió el paso a los grandes avances experimentados por la química en el siglo XX.

Aunque su sistema de clasificación no era el primero que se basaba en propiedades de los elementos químicos, como su valencia, sí incorporaba notables mejoras, como la combinación de los pesos atómicos y las semejanzas entre elementos, o el hecho de reservar espacios en blanco correspondientes a elementos aún no descubiertos como el eka-aluminio o galio (descubierto por Boisbaudran, en 1875), el eka-boro o escandio (Nilson, 1879) y el eka-silicio o germanio (Winkler, 1886).

Atomos de diferentes Elementos

Mendeléiev demostró, en controversia con químicos de la talla de Chandcourtois, Newlands y L. Meyer, que las propiedades de los elementos químicos son funciones periódicas de sus pesos atómicos. Dio a conocer una primera versión de dicha clasificación en marzo de 1869 y publicó la que sería la definitiva a comienzos de 1871. Mediante la clasificación de los elementos químicos conocidos en su época en función de sus pesos atómicos crecientes, consiguió que aquellos elementos de comportamiento químico similar estuvieran situados en una misma columna vertical, formando un grupo. Además, en sistema periódico hay menos de diez elementos que ocupan una misma línea horizontal de la tabla. Tal como se evidenciaría más adelante, su tabla se basaba, en efecto, en las propiedades más profundas de la estructura atómica de la materia, ya que las propiedades químicas de los elementos vienen determinadas por los electrones de sus capas externas.

                    Tabla de elementos de Dalton, siglo XIX

Convencido de la validez de su clasificación, y a fin de lograr que algunos elementos encontrasen acomodo adecuado en la tabla, Mendeléiev «alteró» el valor de su peso atómico considerado correcto hasta entonces, modificaciones que la experimentación confirmó con posterioridad. A tenor de mismo patrón, predijo la existencia de una serie de elementos, desconocidos en su época, a los que asignó lugares concretos en la tabla.

Pocos después (1894), con el descubrimiento de ciertos gases nobles (neón, criptón, etc.) en la atmósfera, efectuado por el químico británico William Ramsay (1852-1816), la tabla de Mendeléiev experimentó la última ampliación en una columna, tras lo cual quedó definitivamente establecida.

La sustancia más caliente de todas se creó al colisionar átomos de oro entre sí a velocidades cercanas a las de la luz. Es llamada “sopa de quarks y gluones” y alcanza unos humildes 4 trillones grados centígrados, lo que equivale a una temperatura de 250 mil veces más caliente que el interior del sol.

La disolución del indestructible átomo sólido provendría de dos fuentes, una conocida y la otra bastante nueva: el estudio de la luz y el descubrimiento de la electricidad. El propio Einstein describió este histórico movimiento como la decadencia de una perspectiva “mecánica” y el nacimiento de una perspectiva “de campo” del mundo físico, que le ayudó a encontrar su propio camino la relatividad, explicaciones y misterios nuevos.

Albert Einstein tenía en la pared de su estudio un retrato de Michael Faraday (1791-1867), y ningún otro hubiera podido ser más apropiado, pues Faraday fue el pionero y el profeta de la gran revisión que hizo posible la obra de Einstein. El mundo ya no sería un escenario newtoniano de “fuerzas a distancias”, objetos mutuamente atraídos por la fuerza de la Gravedad inversamente proporcional al cuadrado de la distancia que hay entre ellos. El mundo material se convertiría en una tentadora escena de sutiles y omnipresentes “campos de fuerzas”. idea era tan radical como la revolución newtoniana, e incluso más difícil de comprender para los legos en la materia

emilio silvera

¿Quiénes somos? ¿De donde venimos? II

Autor por Emilio Silvera    ~    Archivo Clasificado en ¿Quiénes somos? ¿De donde venimos?    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

No pocas veces contemplamos escenas que son dignas del mayor asombro. Parece mentira que el felino, no sólo esté mirando al desvalido pajarillo con curiosidad, sino que, da la impresión de que en su mirado y gestos, está presente la ternura. ¿Es posible que hasta los animales tengan más sensibilidad que muchos jumanos?

En la entrada que deje ayer rferida a las Nebukosas, se pudo dar un amplio repaso a su variedad, formar y las distintas muestras que de ellas tenemos en el espacio interestelar. A partir de estas inmensas Nubes de gas y Polvo nacen las estrellas y surgen los mundos por aglomeración del material ahí presente, los elementos fabricados en los núcleos de las estrellas están espacirdos por estas Nebulosas para, con el tiempo, cumplir su destino de que nuevas estrellas de segunda o tercera generación puedan calentar planetas que, como el nuestro, podrían tener posibilidad de albergar alguna clase de vida.

 

                 Repasemos (hasta donde sabemos) de donde venimos y quiénes somos

En aquellas selvas, los simios se encontraban en su paraíso. Las condicione climatológicas eran las más adecuadas: siempre reinaba la misma temperatura cálida, y la lluvia que con frecuencia caía, era también caliente. Apenas tenían enemigos peligrosos, ya que, ante la menor amenaza, en dos saltos estaban en refugio seguro entre las ramas de los árboles, hasta donde ningún depredador podía perseguirles. En este escenario, en el que había poco riesgo, alimentos abundantes y las condiciones más favorables para la reproducción, surgieron nuestros antepasados.

Hace unos cinco millones de años, a comienzos del Pleistoceno, el período que siguió al Mioceno, en los bosques que entonces ocupaban África oriental, más concretamente en la zona correspondiente a lo que hoy es Kenia, Etiopía y Nigeria, habitaba una estirpe muy especial de monos hominoideos: Los Ardipithecus ramidus. Éstos, como el resto de primates, estaban adaptados a vivir en zonas geográficas en las que no existían variaciones estacionales. Porque los monos, en general, no pueden soportar largos periodos en los que no haya frutas, hojas verdes, tallos, brotes tiernos o insectos de los que alimentarse: por eso solo viven en zonas tropicales, salvo muy contadas excepciones.

Los fósiles de quien hoy se considera uno de nuestros primeros antepasados, el Ardipithecus ramidus, han aparecido siempre junto a huesos de otros mamíferos cuya vida estaba ligada al bosque. Se puede suponer, por lo tanto, que habitaba un bosque que aún era espeso, con algunos claros, y abundante en frutas y vegetales blandos, aunque el enfriamiento progresivo que se venía produciendo en esos últimos miles de años y las catastróficas modificaciones geológicas tuvieron que reducir la disponibilidad de los alimentos habituales de estos simios.

El Ardipithecus ramidus no abandonaba nunca sus selvas. Como los monos antropomorfos de hoy, debía tratarse de una especie muy poco tolerante a los cambios ambientales. Todo apunta a que se auto-confinaban en la búsqueda de la comodidad fresca y húmeda y la fácil subsistencia que les proporcionaba sus bosques y nunca traspasaban los límites: en la linde se encontraba, para él, el fin del mundo, la muerte.

Estos antepasados nuestros son, de entre todos los homínidos fósiles, los que más se parecen a los monos antropomorfos que viven en la actualidad. Su cerebro era como el de un chimpancé actual: de una capacidad de 400 cm3 aproximadamente. Sus condiciones físicas estaban totalmente adaptadas al medio, con piel cubierta de pelo fuerte y espeso, impermeable, adaptadas al clima lluvioso y la humedad ambiental, en donde el sudor era totalmente ineficaz para refrigerar el cuerpo.

El equipo sensorial de estos antepasados nuestros debía de ser como el de todos los primates. Predominaba el sentido de la vista más que el del olfato: en el bosque, el hecho de ver bien es más importante que el de tener una gran capacidad olfativa. Una buena visión de los colores les permitía detectar las frutas multicolores en las umbrías bóvedas de la selva. El sentido del oído tampoco debía de estar muy desarrollado: contaban con orejas de pabellones pequeños que no tenían la posibilidad de modificar su orientación. En cambio, poseían un refinado sentido del gusto, ya que en su dieta tenían cabida muchos sabores diferentes; de ahí deriva el hecho de que cuando nos resfriamos y tenemos la nariz atascada los alimentos pierdan su sabor.

A pesar de su escasa capacidad cerebral, es posible que en ocasiones se sirviera de algún utensilio, como alguna rama para defenderse, y de un palito para extraer insectos de sus escondites, y hasta utilizara piedras para partir semillas. El uso de estas herramientas no era premeditado, sino que acudían a él de manera instintiva en el momento que lo necesitaban y luego no conservaba el utensilio, sencillamente los abandonaban para buscar otro nuevo en la próxima ocasión.

Con el paso de los años fueron evolucionando y transformándose físicamente, perdiendo sus enormes colmillos, el pelo, la forma simiesca de desplazarse. El cambio climático introdujo una modificación ecológica y trajeron dificultades para encontrar alimentos lo que hizo que los individuos de esa especie de simios estuvieran permanentemente amenazados de muerte. En consecuencia, las ventajas genéticas de adaptación al medio les trajeron variaciones como la ya mencionada reducción de los caminos, se convertían en algo decisivo para que llegaran a hacerse adultos con un óptimo desarrollo y que se reprodujeran más y con mayor eficacia.

La existencia dejó de ser idílica para estar rodeada de riesgos que, constantemente, amenazaban sus vidas por los peligrosos depredadores que acechaban desde el cielo, desde el suelo o desde las propias ramas de los árboles en los que el Ardipithecus ramidus pasaba la totalidad de su existencia.

Pasaron un par de millones de años, el planeta continuó evolucionando junto con sus pobladores y, según los indicios encontrados en las sabanas del este de África, allí vivieron unos homínidos que tenían el aspecto y el cerebro de un chimpancé de hoy. Caminaban sobre dos pies con soltura, aunque sus brazos largos sugieren que no despreciaban la vida arbórea; eran los Australopithecus. De una hembra de Austrolopithecus aferensis que se paseaba por la actual Etiopía hace tres millones de años poseemos un esqueleto completo: Lucy.

Sabemos que la selección natural sólo puede producirse si hay variación. La variación supone que los descendientes, si bien pueden tener muchos caracteres comunes con sus padres, nunca son idénticos a ellos. La selección natural actúa sobre estas variaciones favoreciendo unas y eliminando otras, según si proporcionan o no ventajas para la reprodución; las que sobreviven y se reproducen son las que están mejor dotados y mejor se adaptan al entorno. Estas variaciones vienen dadas por mutación (inapreciable en su momento) y por recombinación de genes y mezclas enriquecedoras de la especie. Ambos procesos, en realidad se rigen exclusivamente por el azar, es decir, ocurren independientemente de que los resultados sean o no beneficiosos para los individuos, cuando se producen.

Los cambios ecológicos y climáticos progresivos, junto con la aparición casual de unas afortunadas mutaciones, permitieron que unos simios como los antes mencionados Ardipithecus ramidus se transformaran a lo largo de miles de años en los Australopithecus afarensis. El segundo peldaño en la escalera de la evolución del hombre se había superado: la bipedestación. Esta ventaja evolutiva les permitió adaptarse a sus nuevas condiciones ambientales, no solo proporcionándoles una mayor movilidad por el suelo, sino liberando sus manos para poder acarrear alimentos y consumirlos en un lugar seguro. Hay que tener en cuenta que, al desplazarse erguidos, estos homínidos regulaban mejor su temperatura corporal en las sabanas ardientes porque exponían menos superficie corporal al sol abrasador. También podían percibir con mayor antelación el peligro. Por supuesto, estos cambios positivos, también incidieron en el despetar de sus sentidos.

                                                  Australopithecus afarensis

Correr para salvarse desarrolló sus pulmones y el corazón, los peligros y la necesidad agudizó su ingenio y su mente se fue desarrollando, apareció la extrañeza por lo desconocido, lo que mucho más tarde sería curiosidad.

El tiempo siguió transcurriendo miles de años, los siglos se amontonaban unos encima de otros, cientos de miles de años hasta llegar al año 1.500.000 antes de nuestra era, y seguiremos en África.

Al iniciar la época denominada Pleistoceno, hace un millón ochocientos mil años, el mundo entró en un periodo aún más frío que los anteriores en el que comenzaban a sucederse una serie de periodos glaciales, separados por fases interglaciares más o menos largas. Cerca de los polos de la Tierra, los periodos glaciales ocasionaron la acumulación de espesas capas de hielo a lo largo de los miles de años en que persistió el frío más intenso; luego, en los miles de años siguientes que coincidieron con una fase más calida, los hielos remitieron algo, aunque no desaparecieron por completo.

En las latitudes más bajas, como en el este africano, la mayor aridez del clima favoreció que prosperara un tipo de vegetación hasta entonces desconocido, más propio de las zonas desérticas. También se incrementaron las sabanas de pastos, casi desprovistas de árboles, semejantes a las praderas, las estepas o las pampas actuales.

A lo largo del millón y medio de años transcurridos desde que Lucy se paseaba por África habían surgido numerosas especies de homínidos, algunas de las cuales prosperaron durante cientos de miles de años y luego desaparecieron.

Por aquellos tiempos habitaba la zona del este de África el primer representante del género Homo:

El Homo habilis, un antecesor mucho más próximo a nosotros que cualquiera de las anteriores especies, con una capacidad craneal de entre 600 y 800 cm3 y que ya era capaz de fabricar utensilios de piedra, aunque muy toscos. Es conveniente tener en cuenta que la aparición de una nueva especie no tiene por qué coincidir necesariamente con la extinción de la precedente. En realidad, muchas de estas especies llegaron a convivir durante miles de años.

Las peripecias de estos personajes por sobrevivir llenarían varios miles de libros como este y, desde luego, no es ese el motivo de lo que aquí queremos explicar, más centrado en hacer un repaso desde los orígenes de nuestros comienzos hasta nuestros días y ver que la evolución del conocimiento es imparable, desde las ramas de los árboles y los gruñidos, hemos llegado hasta la Mecánica Cuántica y la Relatividad General que, mediante sofisticadas matemáticas nos explican el mundo en el que vivimos, el Universo al que pertenecemos, y las fuerzas que todo lo rigen para crear la materia.

http://1.bp.blogspot.com/-sgEK_aD_ZUI/T0fsFMIxMFI/AAAAAAAABWQ/chJcrzZ4Fv0/s1600/neurona.jpg

                                                                             Aquí reside el mayor misterio del Universo

Pero continuemos. En dos millones de años de evolución se dobló el volumen cerebral desde los 450 cm3 del Australopithecus aferensis hace cuatro millones de años hasta los 900 cm3 del Homo ergaster. Es un misterio cómo se llegó a desarrollar nuestro cerebro con una capacidad de 1.300 cm3 y una complejidad estructural tan sorprendente como se comentaba en las primeras páginas de este trabajo.

Pero también resulta un misterio cómo fue posible que nuestro cerebro evolucionara a la velocidad a la que lo hizo: en apenas tres millones de años el volumen cerebral pasó de 450 a 1.300 cm3. Esto representa un crecimiento de casi 30 mm3 por siglo de evolución. Si consideremos una duración media de treinta años para cada generación, han pasado unas cien mil generaciones desde Lucy hasta nosotros, lo que supone un crecimiento medio de 9 mm3 de encéfalo por cada generación.

El aumento del volumen del cerebro es una especialización como la de cualquier otro órgano, y la selección natural favoreció el crecimiento encefálico porque proporcionó ventajas de supervivencias y reproducción en el nicho ecológico de los homínidos. Tradicionalmente, a la hora de abordar la cuestión de la evolución del cerebro se plantean grandes cuestione: ¿Para qué necesitaron nuestros antecesores un cerebro grande ? ¿Por qué la evolución desarrolló una estructura que permite sembrar una huerta, componer una sinfonía, escribir una poesía o inventar un tensor métrico que nos permita operar con dimensiones curvas del espacio ?

¿Qué puede suceder en lugares como éste para que desde ahí puedan surgir las ideas, los pensamientos, los sentimientos?

Estas y otras muchas preguntas, nunca tienen una respuesta científica convincente. Eso sí, sabemos que nuestro cerebro es un lujo evolutivo, la herramienta más delicada, compleja y precisa jamás creada en la biología.

El cerebro es un órgano que consume mucha energía y posee una elevada actividad metabólica. El cerebro humano tiene una actividad metabólica varias veces mayor de lo esperado para un primate de nuestro mismo peso corporal: consume entre un veinte y un veinticinco por 100 del gasto energético en reposo (metabolismo basal), en comparación con el ocho a diez por 100 de consumo energético para los primates. Además, el cerebro es exquisito y muy caprichoso en cuanto al combustible que utiliza para producir energía; no le sirve cualquier cosa. En situaciones normales el cerebro sólo consume glucosa y utiliza 100 gr. de este azúcar cada día, la cual procede de los hidratos de carbono ingeridos con los alimentos vegetales. Sólo en casos extrema necesidad, por ejemplo cuando llevamos varios días sin comer hidratos de carbono, el cerebro recurre a su combustible alternativo, un sucedáneo, que son los cuerpos cetónicos que proceden de las grasas.

A causa de estas peculiaridades metabólicas del tejido cerebral, su funcionamiento entraña un importante consumo de recursos y gasta una notable cantidad de combustible metabólico. Estos valores aumentan si consideramos el precio del desarrollo del cerebro; el cerebro de un recién nacido representa el doce por 100 del peso corporal y consume alrededor del sesenta por 100 de la energía del lactante. Una gran parte de la leche que mama un niño se utiliza para mantener y desarrollar su cerebro.

Está claro que el cerebro necesita energía. Sin embargo, no quiere decir que cuanto más comamos más crecerá y más inteligentes seremos. El cerebro crece porque se ejercita, es el órgano pensante de nuestro ser, allí se elaboran todas las ideas y se fabrican todas las sensaciones, y, su mecanismo se pone en marcha para buscar soluciones a problemas que se nos plantean, para estudiar y comprender, asimilar nuevos conceptos, emitir teorías y plantear cuestiones complejas sobre múltiples problemas que el ser humano maneja en los distintos ámbitos del saber científico y técnico o simplemente de conocimientos especializados de la actividad cotidiana. Todo esto, hace funcionar al cerebro, a veces al límite de sus posibilidades, exigiéndole más de lo que es capaz de dar y exprimiendo su energía hasta producir agotamiento mental.

podermental

Esta actividad, sobre todo en las ramas de las matemáticas, la física, y la química (está comprobado), es lo que hace crecer más a nuestro cerebro que, en el ejercicio de tales actividades, consumen, de manera selectiva la energía necesaria para tal cometido de una máxima exigencia intelectual que requiere manejar conceptos de una complejidad máxima que no todos los cerebros están capacitados para asimilar, ya que, se necesita una larga y cuidada preparación durante años y, sobre todo, que el cerebro esté capacitado para asimilarla.

Así que, el cerebro crece por que lo hacemos trabajar y lo educamos, no porque nos atraquemos de comer. Hay animales que consumen enormes cantidades de alimentos y tienen cerebros raquíticos.

                                            El deseo de saber, eso sí que agranda el cerebro, hacerlo trabajar

En 1.891, sir Arthur Seit enunció que en los primates existe una relación inversa entre el tamaño del cerebro y el del intestino: “Un primate no puede permitirse tener a la vez un sistema digestivo grande y un cerebro también grande”.

En 1.995, L. Aiello y P.Wheeler, completaron este principio formulando la llamada “Hipótesis del órgano costoso”. En ella se establece que, dado que el cerebro es uno de los órganos más costosos desde el punto de vista metabólico, un aumento del volumen cerebral sólo sería posible a cambio de reducir el tamaño y la actividad de otro órgano con similar consumo de energía. ¿Pero cuál es este órgano ? El otro sistema que consume tanta energía como el cerebro es el aparato digestivo. El intestino puede reducirse a lo largo de la evolución porque su tamaño, en una determinada especie, depende de la calidad de la alimentación que esa especie ingiera. Una alimentación de alta calidad es la que se digiere con facilidad y libera mayor cantidad de nutrientes y energía por unidad de trabajo digestivo invertido.

http://1.bp.blogspot.com/-DVr2mEX_3ko/TvY8bSEaKRI/AAAAAAAAHBE/ALyrPtXgqVk/s1600/erectus.jpg

La alimentación a base de plantas es de más baja calidad que la dieta a base de carne, por eso una forma de aumentar la calidad dietética de una alimentación es incrementar la cantidad de comida de procedencia animal (huevos, carne, insectos, pescados, reptiles, etc.

Cuando se comparan las proporciones de volumen de cerebro y de aparato digestivo en humanos y en chimpancés en términos energéticos se obtiene un resultado concluyente: la energía ahorrada por la reducción del tamaño del intestino en humanos es aproximadamente del mismo orden que el coste energético adicional de su mayor cerebro.

Así, según estas teorías, la expansión cerebral que se produjo durante la evolución desde nuestros antecesores hasta el hombre sólo fue energéticamente posible mediante una reducción paralela del tamaño del aparato digestivo y el aumento del cerebro. Lo que nos lleva al dicho:

Hay que comer para vivir, no vivir para comer.

emilio silvera